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The main topic of the report concerns constructing singular surfaces in linear 
differential games with fixed terminal time. The considered algorithm is 
embedded into the backward procedures for constructing value function level 
sets. These procedures were elaborated in Sverdlovsk (now Ekaterinburg) at the 
beginning of 80's.
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While level sets of value function are constructed, the backward procedures 
based on papers of classics of DG are used.

Singular surfaces were studied theoretically (necessary conditions) and in the 
frames of concrete problems.

Nowadays, there are many papers devoted to numerical algorithms for DG 
solving. However algorithms for global construction and classification of singular 
surfaces are absent.



LINEAR  DIFFERENTIAL  GAME

Level sets of value function,
singular surfaces (for the case of 
scalar controls u, v)

'  depends on 2 coordinates of x
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In this paper, linear differential games with fixed terminal time and convex 
payoff function depending on two components of the phase vector are considered. 
Computer programs for building level sets of the value function (stable bridges or 
Krasovskii bridges) were worked-out for arbitrary convex compact constraints P, 
Q. The algorithm of constructing singular surfaces is elaborated now only for the 
case of scalar players' controls.



TYPES  OF  SINGULAR  SURFACES
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without leaving
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When we speak about singular surfaces, we mean Isaacs' classification. The 
type of a singularity is determined by behavior of optimal motions near the 
surface. In the class of games considered (with scalar players' controls), only the 
following types of singularity can appear: dispersal, equivocal, and switching.

In the base of our method, there is the algorithm for constructing level sets of the 
value function. Therefore, let us describe it shortly.



EQUIVALENT  GAME

APPROXIMATING  GAME

ti ti+1 T
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After transform to the equivalent coordinates, we have a DG of the second 
order on the phase variable. Changing the dynamics of the equivalent game by 
piecewise-constant one, we get the game with simple motion in every interval of 
time division. Also, original convex compacta P and Q are changed by convex 
polyhedra P* and Q*.



BACKWARD  CONSTRUCTING
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Taking a value c of the payoff function ', we build the corresponding level 
set of the payoff function. Then, making constructions in the reverse time, we find 
consecutively sections W (t ) of the level set W  of the value function ¡.c i c
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LEVEL  SET  OF  VALUE  FUNCTION
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So, the level set W  in general is built as a collection of sections W (t ) on the c c i

time grid. It can be imagined as a “tube” in the three-dimensional space  t,  y ,  y .1 2



CONVEX  HULL  CONSTRUCTING
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Under this approximation, each time section W (t ) is a convex polygon c i

described by its support function r. The passage from one section to the next one 
is based on the operation of constructing convex hull of a piecewise-linear 
positively-homogeneous function g. This function is calculated using support 
functions of the previous section and polygons, defined by players' controls.



LOCAL  CONVEXITY  AND  CONCAVITY

Local convexity

Local concavity
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The procedure of convex hull construction is very fast because we have 
information about possible places of violation of local convexity. In this slide, the 
structure of the function g graph is shown schematically. Dash lines point out 
“corrections” of the function during convexing process. Herewith, this process 
stops after a few steps.



PROCEDURE  OF  NORMALS  GATHERING

Input  sets

Suspicious normals
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9

The piecewise-linearity is defined by the bundle of normals taken from the 
following polygons: W (t ), which is the previous section, –DP(t ) and Q(t ). The c i+1 i i

polygons P(t ) = *(t ) *, Q(t ) = E*(t )Q*  describe dynamic capabilities of i i i i

players in the time interval [t , t ). Normals taken from the polygon Q(t ) are i i+1 i

named “suspicious” because the local violation of convexity can be only near 
them.

D
D P



ELEMENTARY  PROCEDURE  
OF  CONVEX  HULL  CONSTRUCTING
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An elementary step of the convexing procedure consists of checking three 
linear inequalities defined by three neighbor vectors from current bundle and 
values of the function g on these vectors. The middle vector is taken from the 
collection of suspicious ones. After the check, the middle vector either is removed 
from the bundle (and its neighbors become suspicious) or stays and looses the 
“suspicious” mark.

The algorithm of convex hull construction stops when the collection of 
suspicious vectors is empty after some elementary step. There is also a control for the 
case when the convex hull does not exist, that is, the tube W  breaks at some time c

instant.



THREE  LEVEL  SETS  
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In this slide, three tubes for the DG with the oscillator dynamics are shown. 
Two outer tubes are cut  by  a  plane.  The  internal  one  breaks.  The  tube  
visualization  program  is  elaborated  by  Averbukh V.L., Yurtaev D.A.,     
Zenkov A.I. and Shilov E.A. from the System Support Department of the Institute 
of Mathematics and Mechanics (Ekaterinburg). This program gives very 
convenient interface for manipulation and investigation of three-dimensional 
tubes, defined by their sections.
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LEVEL  SET  AND  SINGULAR  LINES
(scheme sketch)
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In the base of singular surface construction, there is the algorithm for 
building singular lines going along concrete level set. Such lines in turn are 
combined from separate singular points, detected on the level set sections during 
their computing. When a singular point is found, it is classified.
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The algorithm for detection and classification of singular points on the next 
time section uses information obtained when the convex hull of the function g is 
built. This information consists of some marks for vectors participated in the 
convexing process. Possible combinations of these marks and corresponding 
singularity types are shown in the table.
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LEVEL  SET  AND  SINGULAR  LINES
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In this picture, a numerically calculated level set and singular lines on it are 
drawn. Here, the DG “material point”  is considered. The dispersal line for the 
second player (green) and the switching line for the first one (blue) come (in 
reverse time) into the equivocal line (magenta). Due to symmetry of the problem 
with respect to zero, there is another system of singular lines, located on the 
invisible side of the level set surface. 
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FROM  LEVEL  SET  SURFACE
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The singular lines taken from the tube shown in the previous slide are drawn.



In this picture, the collection of singular lines from different tubes is given. 
Again, the “material point” dynamics is used. The payoff function describes the 
following interest of the first player: to lead the motion to the x -axis as close to 1

zero as possible.



SINGULAR  SURFACES
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This slide demonstrates how separate singular lines join into singular 
surfaces. The equivocal surface is marked by the magenta color, the dispersal one 
by green. The gaps near the reverse time t-axis can be filled by means of more 
delicate grids in time and value of the parameter c.

The singular surfaces appearing in this problem were investigated analytically in 
1983. The numerical results coincide well with the analytical ones.



EQUIVOCAL  LINES
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In particular, the behavior of equivocal lines from different tubes is very 
interesting. There is a critical value c* of the parameter c, near which projections 
of equivocal lines onto x , x  plane look like spirals. The character of these spirals 1 2

was investigated analytically. Computed equivocal lines are very similar.



THREE  LEVEL  SETS  
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We calculated a lot of examples. The singular surfaces are the most 
complicated in oscillating systems. Quite naturally, this difficulty is generated by 
very tricky level sets in these systems. In this picture, the level sets for the 
“oscillator” DG are shown. Two variants of the sets cut are presented.



DISCONTINUOUS  SINGULAR  LINE
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t
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Here, the fragment of the middle tube is drawn. One can see that the corner 
line has a jump. This line is singular. Presence of such peculiarities causes 
complexity of singular surfaces in general.
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In this slide, the singular surfaces for the “oscillator” DG are viewed from the 
x -axis.1
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Here, the same surfaces are observed from the -axis.t
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Next example has no any mechanical interpretation. But the level sets are 
very beautiful: they seem as a drawing-pin.
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The dependence of the singular surfaces on parameters of the problem is 
shown. When the segment Q (the second player control constraint) goes to P (the 
first player control constraint), the dispersal surface near the t-axis increases. It 
happens when the second player is “stronger” than the first one: the length of  Q 
is greater than the length of  P.

P

Q

P
Q
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If the situation is vice versa (that is, the first player is stronger), then the 
closing of P and Q does not change singular surfaces essentially.
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