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Three differential games with the dynamics of the homicidal chauffeur are considered.
The first problem is the Isaacs’ homicidal chauffeur differential game. In this game, a
pursuer P minimizes the capture time of an evader E. The objective of the evader is to
prevent the capture or to maximize the capture time. The magnitude of the velocity is
constant for the pursuer, and his maneuverability is bounded through a minimal turn
radius. The maneuverability of the evader is not bounded. The pursuer’s control is the
rate of turn; the evader steers by choosing directions of his velocity. The main difference
of the second problem is that the size of the constraint on the control parameter of
the evader depends on the position of the game. The idea of such a modification was
suggested by Bernhard. The third problem is a conic surveillance-evasion game studied
by Lewin and Olsder. In this game, the dynamics is the same as in the Isaacs’ problem,
but the goals of the players differ from the classic formulation: an evader E minimizes
the time of escaping from a detection set that is a two-dimensional semi-infinite cone.
The detection set is attached to the velocity vector of a pursuer P whose objective is
to keep the evader within the detection set for maximal time. The paper describes the
computation of level sets of the value functions for these games. The algorithm proposed
by the authors is used. An analysis of families of semipermeable curves is carried out.
The results of this analysis are used to check the correctness of the computation of level
sets and to explain the appearance of holes in victory domains of the pursuer in the
second problem.

1. Introduction

The homicidal chauffeur game was formulated more than thirty years ago in Isaacs
(1965). Since that time, many authors have studied this problem in various ways.
The most complete qualitative solution was given in Merz (1971).

In many papers [see, for example, Breakwell and Merz (1970), Lewin and Break-
well (1975), Breakwell (1977), Lewin and Olsder (1979) and Cardaliaguet et al.
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(1995)], the problems with some alterations of the dynamics or objectives of the
players were considered.

In Bernhard and Larrouturou (1989), an acoustic version of the homicidal chauf-
feur problem was proposed. The evader must apply a reduced speed (in order not to
be heard by the pursuer) when the distance between him and the pursuer becomes
less than a given value. In Cardaliaguet et al. (1995, 1999), level sets of the value
function for particular magnitudes of parameters of the problem were computed
using an algorithm based on viability theory. The solution to the problem has a
complicated structure: holes in the solvability set (in the victory domain) of the
pursuer can arise, the evader being safe from the pursuer within these holes.

In Lewin and Olsder (1979), a surveillance-evasion game with the pursuer’s
detection zone in the shape of a cone was stated and a qualitative solution to this
problem was given. Similar to Merz (1971), the parameter space of the problem is
divided into subregions. In each subregion, the type of solution (possible singular
lines and the strategies of the players) was described.

In this paper, the homicidal chauffeur game in the classical statement of Isaacs
and modified problems from Cardaliaguet et al. (1995) and Lewin and Olsder (1979)
are studied using an algorithm the authors propose for the computation of level sets
of the value function. Our method is based on general theory of differential games
[see Krasovskii and Subbotin (1974, 1988)]. The algorithm is a natural extension of
the algorithms from Subbotin and Patsko (1984) and exploits ideas of the algorithms
from Patsko and Turova (1995, 1996, 1997) for linear time-optimal differential games
in the plane. Some experience [see Patsko (1973, 1975), Subbotin and Patsko (1984),
Turova (1985) and Patsko and Turova (1995)] in solving differential games of kind
[Isaacs (1965)] in the plane helps to find very complicated types of solutions and
to verify the solutions validity. The computation results are consistent with those
obtained in Merz (1971), Cardaliaguet et al. (1995, 1999) and Lewin and Olsder
(1979). The algorithm uses specific properties of the plane and is very accurate.
It allows to explore some fine peculiarities of the solutions. The development of
such algorithms together with the general algorithms from Ushakov (1981, 1998),
Taras’yev et al. (1987), Bardi and Falcone (1990), Bardi et al. (1997, 1999),
Ivanov et al. (1993), Cardaliaguet et al. (1994, 1995, 1999), Subbotin (1995), and
Grigor’eva et al. (1996) for solving nonlinear differential games is of great interest
for the theory of differential games and applications.

2. Statement of the Problem

The pursuer P has a fixed speed w(?) but his radius of turn is bounded by a given
quantity R. The evader is inertialess. He steers by choosing his velocity vector from
the set ). The kinematic equations are:

P: ip,=wWsiny E: i.=un
gp = w) cosyp Ye =02, UEQ.
v=wVp/R, o <1
The number of equations can be reduced to two [see Isaacs (1965)] if a coordinate

system with the origin at P and the axis x5 in the direction of P’s velocity vector
is used (see Fig. 1).
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Fig. 1. Homicidal chauffeur dynamics.
The dynamics in the reduced coordinates is

i1 = —wWzy /R + v,

2.1
wWz o/R+ vy —wh), lp] <1, veQ. 2.1)

T

Here (z1, x2)' is the state vector which gives the relative position of the evader
E with respect to the pursuer P, and w") and R are constants which define the
pursuer’s velocity and the minimal radius of turn, respectively.

2.1. Homaicidal chauffeur game

The objective of the control ¢ of the pursuer is to minimize the time of attaining a
given terminal set M. The objective of the control v = (vy,vs)" of the evader is to
maximize this time. Therefore the payoff of the game is the time of attaining the
terminal set.

The classical formulation [see Isaacs (1965) and Merz (1971)] of the homicidal
chauffeur game assumes that the sets M and @ are circles of the radii [ (capture
radius) and w(?), respectively, with the centres at the origin. It is accepted that
w? < w®, With the proposed algorithm, level sets of the value function can be
computed for sufficiently wide class of sets M and (). We assume that @) is a convex
compact set and (0,0) € intQ.

2.2. Acoustic game

The dynamics of the problem is described by (2.1). The difference is that the
constraint on the control of player E' depends on z. It is given by the formula

Q(z) = k(z)Q, k(z)=min{|z|,s}/s, s> 0.
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Fig. 2. Detection cone.

Here @ is the same as in Sec. 2.1 and s is a parameter. We have Q(z) = Q if |z| > s.
The objective of the control ¢ is to minimize the time of attaining a terminal set
M. The objective of the control v = (v1,v2)" is to maximize this time.

In this paper, the terminal set M in the form of the rectangle

{(z1,22)€E R*: —a <z <a, —f<22<0}, a>0,3>0

will be used. The statement of the acoustic problem with such terminal set was
taken from Cardaliaguet et al. (1995). Very interesting cases from the mathematical
point of view arise when the horizontal side of the rectangle is much greater than
its vertical side.

2.3. Conic survetllance-evasion game

The statement of the problem is given in Lewin and Olsder (1979). The dynamics of
the game is described by (2.1). The terminal set M is the complement of the open
detection cone depicted in Fig. 2. The objective of the control v = (v1,vs)" of the
evader F is to minimize the time of attaining M. The objective of the control ¢ of the
pursuer P is to maximize this time. Therefore, in contrast to the Isaacs’ homicidal
chauffeur game, the roles of the players change: the evader is the “minimizing”
player and the pursuer is the “maximizing” one.

In the following, for the uniformity of notation of the constraint of player E, let
us agree that Q(x) = @ for problems 2.1 and 2.3.

2.4. Level sets of the value function

We restrict ourselves to a conceptual definition of level sets of the value function.
The precise definition can be found in Krasovskii and Subbotin (1974, 1988).

Let T > 0. The level set (the Lebesgue set) of the value function is denoted by
W (T, M). This is the set of all points in the plane such that the minimizing player
using feedback strategies can guarantee the transition of trajectories of the system
(2.1) to the terminal set M within time 7.
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Fig. 3. Construction of the sets W (iA, M).

3. The Algorithm

In this section, the basic idea of the algorithm for computing sets W (T, M) is
described.

The set W (T, M) is formed via a step-by-step backward procedure giving a
sequence of embedded sets

W(A,M)cWQERAM)CWBA,M)C..CWEA,M)C ...Cc W(T,M).

Here A is the step of the backward procedure. Each set W (iA, M) consists of
all initial points from which the minimizing player guarantees the attainment of
W((i — 1)A, M) within time A. We put W (0, M) = M.

This is a dynamic programming method. In the theory of differential games,
the fundamental ideas of the backward construction of level sets were considered in
works of Isaacs, Fleming, Pontryagin, Krasovskii and Pschenichnyi.

The crucial point of our algorithm is the computation of “fronts”. The front F;
(Fig. 3) is the set of all points of OW (iA, M) with the property that the minimal
guaranteed time of attaining the previous set W ((i —1)A, M) is equal to A. For
other points of OW (1A, M), the optimal time is less than A. The line OW (i A, M)\
F; possesses the properties of the barrier [see Isaacs(1965) for the definition]. The
front F; is computed using the previous front F;_. For the first step of the backward
procedure, Fy coincides with the usable part [see Isaacs(1965) for the definition] I'g
of the boundary of M. It may be one or several usable parts. The computations are
carried out separately for each usable part. One should take into account that the
obtaining parts of the level set can collide with each other. From here on we will
assume for simplicity that only one usable part is on the boundary of M.

Let us explain, assuming the problems from Secs. 2.1 and 2.2, how the fronts
can be constructed. We write Q(z) although the constraint Q of player E does not
depend on z in the case of problem 2.1. Using the notation p(z) = (—z2,21) -w() /R
and g = (0, —w™M)’, we rewrite the Eqs. (2.1) as & = p(z)y + v + g. First, suppose
that the front F;_; is a smooth curve. We distinguish points of local convexity
and points of local concavity. In Fig. 4, d is a point of local convexity, and e is
a point of local concavity. Let x, be a point of local convexity on F; 1 and { be
the normal vector to the front at z. directed outside the set W((i —1)A, M). Put

o

©° = argmin{l'p(z. )¢ : |p| < 1} and v° = argmax{l'v : v € Q(z.)}. We call ¢°
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Fig. 4. Local convexity and concavity.

Local convexity Local concavity

Fig. 5. Nonuniqueness of extremal controls.

and v° the extremal controls. Similarly, for the points of local convexity, the inner
normal vector to the set W((i — 1)A, M) at x, is considered, and the extremal
controls ¢° = argmax{{'p(z.)p : |p| < 1} and v° = argmin{l'v : v € Q(z,)} are
introduced. Actually, the distinction of outer and inner normals for cases of local
convexity and concavity is convenient when fronts are treated as polygonal lines.

If the vector z, is collinear to ¢, then any control ¢ € [—1,1] is extremal. If
Q(z.) is a polygon in the plane, and £ is collinear to some normal vector to an
edge [q1,q2] of Q(x.), then any control ¢ € [q1, ¢2] is extremal.

Using the extremal controls, one computes the extremal trajectories z(r) =
ze — 7 (p(zs)p® + v° + g), 7 € (0,A], started from the front points, in reverse
time. The ends of these trajectories at 7 = A are used to form the next front
F;. If the extremal control ¢° is not unique at some point x. € F;_;, then the
segment ®(z.) = {z. — A (p(z.)@° +0v° +g): ¢° € [-1,1]} is considered instead
of the single point. Similarly, if the extremal control v° is not unique, the segment
E(x.) = {zs — A (p(zs)@® +v° + g) : v° € [q1,¢2]} is considered.

If z, is a point of local convexity, and the extremal control ¢° is not unique, one
obtains a local picture like that shown in Fig. 5(a) after computing the extremal
trajectories from the point z.. Here, an additional segment ®(z.) appears on the
new front F;. If the extremal control v° is not unique, a local picture similar to that
shown in Fig. 5(b) is obtained. The “swallow tail ” ,£3, does not belong to the
new front F;, and it is taken away. For points of local concavity, there is an inverse
situation: if the extremal control ¢° is not unique, a swallow tail that should be
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Fig. 6. Computation of fronts.

removed occurs [Fig. 5(c)]; if the extremal control v° is not unique, an additional
segment Z(z.) appears on the new front F; [Fig. 5(d)]. If both ¢° and v® are non-
unique, an insertion or a swallow tail occurs depending on which of segments ®(x,)
or Z(x,) is greater.

In the course of numerical computations, we operate with polygonal lines instead
of smooth curves. Let the front F;_; be computed. One can divide it into regular
parts so that the extremal trajectories emanating from the points of one part do
not intersect for 7 € (0,A]. Thus, each regular part generates a regular field of
extremal trajectories. The ends of these trajectories form an ordered collection of
points. Being connected, these points give a polygonal line, which is called the
secondary arc. The new front F; is obtained by processing the regular secondary
arcs, the processing being reduced to the intersection of secondary arcs. In Fig. 6,
the front F;_; consists of two regular parts: [z1---2,] and [z, ---2.]. The ends
of the extremal trajectories computed at 7 = A give two secondary arcs, namely
[£1&2 -+ &s] and [€s41 -+ &m]- The front F; = [§1&a -+ -&q -+ - &m] is obtained after
removing the swallow tail s, &sy1-

Unfortunately, very often it is not sufficient to intersect the neighboring sec-
ondary arcs only. Figure 7 gives an example where the secondary arcs Sy, So and Ss
are computed sequentially, but the next front is obtained due to the intersection
of Sl and 53.

The decomposition of the front F;_; into regular parts is being done when pro-
cessing its vertices. Two normal vectors to the links [a, b] and [b, ¢] of the polygonal
line are considered at each vertex b (Fig. 8). At the endpoints of the front, the
missing extreme normals are computed from special relations [see Patsko and Tur-
ova (1995)]. The algorithm treats all possible variants of disposition of the normal
vectors £[q and £[c) to the edges of F;_1, the normals to the edges of Q(b), and the
normals to the segment {p(b)¢ : ¢ € [—1,1]}. The vectors b (from the origin to the
point b) and —b are used as the normal vectors to the last segment. In Fig. 8, for
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Fig. 7. Secondary arcs: complicated case of disposition.

D2 g

Fig. 8. Example of local constructions.

instance, the vector b is between the vectors [, and £[;.), and the normals n; and
ny to the set Q(b) are between the vectors b and £). Since b is the point of local
convexity, the location of normals to the set Q(b) between the vectors €[4 and £[p]
means that b is one of the decomposition points that separate the front F; ; into
regular parts. The ends of the extremal trajectories computed at 7 = A give a local
picture shown in the left half of Fig. 8. Here, four extremal trajectories emerge from
the point b. Their ends are 3, 5,83 and 3,. The segment [3,, 3,] appears due to
nonuniqueness of the extremal control ¢° for the vector b. The segments [3,, 53]
and [f5, 3,] arise due to nonuniqueness of the extremal control v° for the vectors n;
and ns. After removing the swallow tail 5,£43,, the polygonal line af,£y becomes
a fragment of the next front Fj.

Some additional details of such local constructions are given in Patsko and Tur-
ova (1997). The main difference from the case of the linear dynamics [see Patsko
and Turova (1997)] is that the extremal control of player P can change its value
not only at the front’s vertices but also at some interior points of the front’s links.
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In the game considered, such a switching may occur only once for each front link.

Let us explain the last assertion. Let K be a straight line and £ its normal vector.
Since the restriction of the scalar function £'p(z) to K is a linear function in z, the
expression £'p(z) can change its sign only once for x € K. Therefore, the extremal
control of player P, which is determined by the formula argmin{¢'p(z)¢ : |¢| < 1},
can switch only once if x runs through K. The switching happens at the point £ € K
for which the vector z is orthogonal to K. If 0 € K, then T = 0.

In order to take into account the dependence of the constraint of player E on z,
other additional division points on the front links may also be introduced.

In the case of surveillance-evasion game from Sec. 2.3, the players change their
roles: the extremal controls of the pursuer P and the evader E are determined via
the relations p° = argmax{{'p(z.)p : |p| < 1} and v° = argmin{f'v : v € Q},
for every point x, of local convexity and outer normal ¢ to the front at x,. For
the points of local concavity, the extremal controls of P and E are defined by the
formulae ¢° = argmin{¢'p(z.)y : |p| < 1} and v° = argmax{l'v : v € Q}, where ¢
is an inner normal to the front at z,. So, the local constructions described earlier
for the points of local convexity are now true for the points of local concavity, and
vice versa.

4. Semipermeable Curves in Differential Games with the Homicidal
Chauffeur Dynamics

This section gives the results of some analysis of families of smooth semipermeable
curves in differential games with homicidal chauffeur dynamics. The semipermeable
curves can be helpful for checking the computation of level sets of the value function.

The families of semipermeable curves are determined from only the dynamics of
the system and the bounds on the controls of the players.

We explain now what semipermeable curves mean [see also Isaacs (1965)]. Let

— H !
H(l,z) = min Urengé)f f(z,p,0)

= max min ¢ f(z,p,v), =€ R?, (€ R? 4.1
Jnax | min f(z,,v) (4.1)

be the Hamiltonian of the game. Here f(z,¢,v) = p(z)p +v +g. Fix z € R?
and consider ¢ such that H(¢,z) = 0. Letting ¢* = argmin{{'p(z)¢: |¢| < 1}
and v* = argmax{f'v: v € Q(z)}, it follows that ¢'f(z,¢*,v) < 0 holds for any
v € Q(z), and ¢ f(x,p,v*) > 0 holds for any ¢ € [—1,1]. This means that
the direction f(z,¢*,v*), which is orthogonal to ¢, separates the vectograms
U(v*) = {f(z,0,v*): ¢ € [-1,1]} and V(p*) = {f(z,¢*,v): v € Q(z)} of players
P and FE as in Fig. 9. Such a direction is called semipermeable. A smooth curve is
called a semipermeable curve if the tangent vector at any point of this curve is a
semipermeable direction.

The number of semipermeable directions depends on the form of the function
¢ — H({,z) at the point z. In the case considered, the function H(-, z) is composed
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of two convex functions:

max v+ {'p(x)+ g if 'p(z) <O,
H(t,z) =4 "9
’ mQa(X)K'v —l'p(x)+ g if U'p(x) > 0.
veQ(z

The semipermeable directions are derived from the roots of the equation H (¢, z)= 0.
We will distinguish the roots “—” to “+” and the roots “+” to “—”. When clas-
sifying these roots, we suppose that £ € £, where £ is the boundary of a convex
polygon containing the origin. We say that £, is a root — to + if H(¢,,z) = 0, and
if H(¢,z) < 0 (H(L,z) > 0) for £ < £, (£ > £,) that are sufficiently close to £,
where the notation ¢ < /¢, means that the direction of the vector ¢ can be obtained
from the direction of the vector £, using a counterclockwise rotation through an
angle not exceeding m. The roots — to + and the roots + to — are called roots of
the first and second type, respectively.

U(v*)

— flz,e%,0%)

Fig. 9. Semipermeable direction.

(1,2

Fig. 10. Appearance of four roots.
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We denote roots of the first type by £(1)%(z) and roots of the second type
by 8(2)’i(a:). The right index takes the value 1 or 2, and indicates the half-plane
{te R?: I'p(z) <0} or {f € R?: {'p(x) > 0}. Figure 10 explains the appearance
of four roots in terms of vectograms. The upper and lower circles are the vectograms
of player E for ¢ =1 and p = —1, respectively.

Due to the above mentioned property of the piecewise convexity of the function
H(-,z), the equation H(¢,z) = 0 can have at most two roots of each type for any
given .

We now describe how the families of smooth semipermeable curves can be con-
structed.

4.1. Constraint Q on the control of player E does not depend on x

Assume that the constraint @ does not depend on z that is Q(z) = @. Denote
U2R UlR

A, ={(z1,22) : 1 = D " R, x5 = ~ D (v1,12) € Q}, (4.2)
va R nR

B, ={(z1,22) : =, = —% +R, 5= %a (v1,v2)" € Q}. (4.3)
w w

The set B, is symmetric to the set A, with respect to the origin. Let C,. = A, [ B..

1. Let us show for all x ¢ C. that the equation H(¢,z) = 0 has at least one
root of the first type and one root of the second type. To prove this, it is sufficient
to verify that, for any =, there exist vectors £ and £ such that H({,z) < 0 and
H(l,x) > 0.

Let ¢ A.. Then there exists a vector ¢ such that £’z > ¢’z for any z € A,.
That is _ _

—0'z + max {2z <0.
ZEA.

Denote by T the nearest to z point of A,. The vector £ — T can be considered as ‘.
~ ~ !
Assume £ = (—€2R/w(1), élR/w(l)) . We have

Mg, —wDe !

</ w 2 1 ’ ’

H(L, w)_£< 2 R +Lg +max b
I LR QR
= —£2$2 - 61171 - £1R+ 131686\)?( (W’Ul + m’l&)
!
= —0'z+max (' vl - R, —uk = —lz+max('z <0.

veQ w) w) z€A,

Similarly, one can show for = ¢ B, that there exists a vector £ such that
H(¢, x) < 0. Therefore, if ¢ C\, then there exists a vector £ such that H (£, z) < 0.
Consider £ # 0 such that le(a:) =0and Zlg > 0. With the assumption 0 € intQ,
one derives
H(l,z) = max?v+0g > 0.
This completes the proof. veQ
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Let z € intC,. We show that H (¢, =) > 0 for all £ # 0. Take £ # 0. Suppose that
min{l'p(z)y : ¢ € [-1,1]} occurs for p = —1 (¢ = 1). It follows from the definition
of the set A, (B) that for z € intA, (z € intB,), there exists a vector v, € intQ
such that f(z, —1, vx) = 0 (f(z, 1, v.) = 0). Hence, H(¢, z) > 0. Therefore,
roots of the first and second type do not exist for z € intC,. Due to continuity
of H, strict roots do not exist for € 9C, too.

2. Suppose C, = (). Consider cones spanned onto the sets A, and B, with the
apex at the origin. Denote these cones by coneA, and coneB,, respectively. The
part of coneA, after deleting the set

R nR
{(x1,22) 2 &1 = m —R/p, 2 = _ma 1< <oo, (v,12) €Q}

is denoted by A. Similarly, the set B as the part of coneB, is introduced.

One can find the domains of the functions ¢()-*(-), j = 1,2, i = 1,2. The
domains are identical for problems 2.1 and 2.3 if the set @) is the same.

Figure 11 presents the sets A and B and the domains of the functions £(1)-1(), j =
1,2, i = 1,2, for the case where the set @) is a polygonal approximation of a circle
of some radius w(® with the centre at the origin. The boundaries of A and B are
drawn with the thick lines. There exist two roots of the first type and two roots of
the second type at each internal point of the sets A and B. For any point in the
exterior of A and B, there exist one root of the first type and one root of the second
type.

The sets analogous to that shown in Fig. 11 are used in Isaacs (1965), Merz
(1971), Lewin and Breakwell (1975), Breakwell (1977) and Lewin and Olsder (1979)
to construct semipermeable curves. Here, the modification consists in that the
roots of the first and second types are being distinguished and the corresponding
semipermeable curves of the first and second types are considered. The function
¢0):%(.) is Lipschitz continuous on any closed bounded subset of the interior of its
domain. One can consider the two-dimensional differential equation

de/dt = T10W) (), (4.4)

Fig. 11. Domains of £()>¢, Set Q does not depend on z; Cx = 0.
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Fig. 12. Families of semipermeable curves. Set Q does not depend on z; Cx = 0.

where IT is the matrix of rotation through the angle /2, the rotation being clockwise
or counterclockwise if j = 1 or j = 2, respectively. Since the tangent vector at each
point of the trajectory defined by this equation is a semipermeable direction, the
trajectories are semipermeable curves. Therefore player P can keep the state vector
x on one side of the curve (positive side), and player E can keep x on the other
(negative) side. Further, Eq. (4.4) specifies a family A4)>* of smooth semipermeable
curves.

The families AW j = 1,2, i = 1,2, for the games from Secs. 2.1 and 2.3 in
the case C, = 0 are depicted in Fig. 12. Each smooth semipermeable curve is
a trajectory of system (2.1) for controls of the players that deliver minimum and
maximum in (4.1). The arrows show the direction of motion in reverse time. Note
that all the pictures can be obtained from one picture by reflections in the x;- and
Ta-axes.

3. Let now C, # (). There are no roots in the set C,, there are four roots in the
set R?\ (A. | B.), and there are two roots (one root of the first type and one root
of the second type) in the rest part of the plane that is in (A, |J Bs) \ C«. Figure 13
shows the domains of the functions £(9)%(-) for this case. The set @ is a circle of
some radius w® > w() with the centre at the origin. The digits 4, 2 and 0 state
the number of roots.

~—
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Fig. 13. Domains of £()»i(.). Set Q does not depend on z; Ci # 0.

3

2
-3 -2 -1 0 1 2 3

Fig. 14. Family of semipermeable curves for the root M1 Set Q does not depend on z; C # 0.

Using (4.4), one can produce the families A)+ for the case where C, # . Fig-
ure 14 presents the family A(")'. The initial points for emitting the semipermeable
curves are uniformly distributed over the circumference of radius 4 with the centre
at the origin. The families A(1)-2, A and A(®-2 can be obtained from A()!' by
reflections in the x;- and z3-axes.  The curves of families belonging to the same
type can be sewed so that the semipermeability property is preserved for a com-
posite [see Bernhard (1971), Patsko (1973) and Breakwell (1977)] curve obtained.
Such a sewing for semipermeable curves of the first (second) type is only possible
if the sewing point belongs to certain parts of the boundaries of the sets where the
families A1)t and A2 ( A®):! and A®+2 ) are defined. The composite curve of
the first or second type can be smooth in some cases. Very often, the boundary of
the solvability set is formed by composite curves [see, for example, Patsko (1973,
1975), Lewin and Olsder (1979), Turova (1985) and Patsko and Turova (1995)].
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The following important property holds true for any point = € C, = A, [ B.:
for any ¢ € [—1,1] there exists v € @ such that f(z,¢,v) =0.

Therefore, in the region Cy, player E can counter any control of player P, so the
state remains immovable all the time. Further, if a point z with the above property
does not belong to the terminal set M, then M cannot be reached from z. We call
regions of such points the superiority sets of player E.

4.2. Constraint Q on the control of player E depends on x

Using the form of the domains of ¢()-i(.) from Sec. 4.1, one can construct the
domains for problem 2.2 with Q(z) = k(x)Q, where k(z) = min{|z|, s}/s, s > 0.

Let us describe schematically how it can be done. We have Q(x) = @ outside
the circle of radius s with the centre at the origin. Inside the circle of radius s, the
coefficient k(z) is proportional to |z|.

First note that k(xz) = const for the points x of any circumference of some fixed
radius with the centre at (0, 0). It holds k(z) = 1 outside the circle of radius s. Take
a circumference Q(r) of radius r with the centre at (0,0). Set k(r) = min{r, s}/s
and Q(r) = k(r)Q.

Form the sets A, (r) and B, (r) substituting the set Q(r) instead of @ in formulae
(4.2) and (4.3) for A, and B.. Let C.(r) = A.(r) ) B«(r). Using A.(r) and B.(r),
construct domains of £()+(-), the cases Cy(r) = () and O, (r) # ) being distinguished.
Put the circumference (r) onto the constructed domains. As a result, a division
of the circumference onto arcs is obtained. The number and the type of roots are
the same for all points of each arc. This technique is applied for every r in [0, s],
and identically named division points are connected. Thus the circle of radius s is
divided into parts according to the kinds of roots. Outside this circle, the dividing
lines coincide with the lines constructed for the case when Q does not depend on .

We now explain the described procedure for the case when Q) is a circle of
radius w, with the centre at the origin. In this case, Q(r) is the circle of radius

(b)

Fig. 15. Construction of domains of functions £)%(-). (a) w®(r) < w™ and (b) w®(r) > w,
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w? (r) = min{r, s}w./s. The condition C\(r) = § means that w® (r) < w®), and
the condition C,(r) # @ is equivalent to the relation w® (r) > w®. If w(?(r) <
w®, we put the points z € Q(r) onto the domains of Fig. 11 constructed for
w® = w®(r). Otherwise, if w® (r) > w!), we put these points onto the domains
of Fig. 13. In Fig. 15(a), the division points a,b, ¢ and d, and those symmetric to
them in the left half-plane, are shown, Q(r) being the dotted line. In Fig. 15(b),
the division points e and f, and those symmetric to them, are depicted.

Figures 16, 18 and 20 were constructed in this way for the parameters w(!) =1,
R =0.8,s=0.75 and w, = 0.8, 1.8 and 2. In Fig. 16, the domains of the functions

AN
V%

Cr,

Fig. 18. Superiority sets Cyy and Cp, of player E. Set Q depends on z; we = 1.8.

3

Fig. 19. Family of semipermeable curves for the root £(1):1. Set Q depends on z; w. = 1.8.
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¢0)5i(.) are shown, and also the sets that are analogous to A and B in Fig. 11 are
marked. In Fig. 18, two symmetric superiority sets of player E arise, the upper set
being denoted by Cy and the lower set by CL. If we increase we, the sets Cy and
Cr, expand and form a doubly connected region that is denoted by C, in Fig. 20.
The number of roots of the equation H (¢, z) = 0 is also given in Figs. 16, 18 and 20.
Arcs which separate the domains of the functions £(9)* (and are similar to that in
the central part of Fig. 16) are not included. In Figs. 17, 19 and 21, the family A():!
of semipermeable curves for the values of parameters corresponding to Figs. 16, 18
and 20 is shown.

Fig. 20. Superiority set Cx of player E. Set Q depends on z; we = 2.

Fig. 21. Family of semipermeable curves for the root £(1)1. Set Q depends on z; we = 2.



Level Sets of the Value Function in Differential Games 85

5. Formation of Holes in Solvability Sets due to Superiority Sets

The role of superiority sets in the appearance of holes within the solvability sets
will be explained in this section. For the surveillance-evasion game, the existence of
superiority sets of player F cannot be a cause for the arising of holes because the ob-
jective of E is to bring the state to the terminal set M. Therefore the considerations
of this section are related to problems 2.1 and 2.2.

We will suppose here that the set () is a circle of radius w, with the centre at
the origin.

As noted above, there can be one doubly connected superiority set C, of player
E, or two simply connected sets Cyy and C, or the superiority set can be empty.

1. Let D be a closed set. Assume that the objective of player E is to bring the
state of the system to the set D. Denote by D the maximal solvability set (victory
domain) of player E. It follows from the definition of D that E can bring the state
of the system to D from any point = € D but player P can prevent the state of
the system from approaching the set D for any point z ¢ D. The boundary of Dis
composed of smooth semipermeable curves of the families AU)-%. The sewing points
possess the semipermeability property [see Cardaliaguet (1997)]. In some cases, a
part of the boundary of D can coincide with a part of the boundary of D.

Below, the set C, or one of the sets Cy and Cf, is used as the set D. Since in
this case, D is a superiority set of F, it possesses the property of v-stability [see
Krasovskii and Subbotin (1974, 1988) for the definition] or, in other terms, the
property of viability for F [see Aubin (1990) and Cardaliaguet et al. (1995)], and
the set D is v-stable too. This means that player E can hold the trajectories of the
system in D for infinite time. Hence, if D (M = 0, then the time for achieving
the terminal set M in the main problem is infinite for any point z in D. For this
reason, level lines of the value function cannot “penetrate” into the set D.

1),1 2),2
pH) p2) p1 p(2):2

(a) (b)

Fig. 22. Construction of the sets Cy and Cr, on the base of the superiority sets Cyy and C7,.
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(a) (b)

Fig. 23. Structure of sets Ci. (a) Q depends on  and (b) Q does not depend on .

Due to the simple geometry of the sets D of the problem considered, the sets
D can be obtained easily using the families of semipermeable curves. For example,
Fig. 22(a) presents the configuration of Cy. The values of parameters correspond
to Figs. 18 and 19. The sewing point of the curves p(®-? and p(")-2, and symmetric
to it sewing point of the curves p("):! and p®):!, lie on the boundary of Cy. In
Fig. 22(b), an example of the set Cy is given. The same values of parameters as for
Fig. 22(a) are used.

Figure 23(a) shows the set D = C, for the case when the sets Cyy and Cp, are
merged in the set C,. A similar structure of the set D is obtained if Q does not
depend on z [see Fig. 23(b)].

Since level lines of the value function cannot penetrate into the set D in the case
D (M = 0, one can try to generate examples with holes in solvability sets using
the knowledge of the geometry of the sets D. The construction of such examples is
only possible on the base of a set Cy. We will show that only sets C’U, but not sets
C1, or C, can occur as the holes.

2. Let us explain why a set C'L cannot occur as the hole. For the set Cp, a
collection of expanding v-stable sets can be easily obtained. Figure 24(a) shows
such a collection computed for the set C, from Figs. 18, 19 and 22(b). The first set
of the collection is C. The boundaries of the sets are formed by the semipermeable
curves p)1 and p(2)2 which are symmetric with respect to the axis z-.

Figure 24(b) shows the semipermeable curves that form the boundary of some
set S from the above collection. The curve p(1):! corresponds to the control ¢ =1,
but the curve p(*)2 corresponds to the control ¢ = —1. The sign “+” (“~”) marks
those sides of semipermeable curves that player P (E) keeps. The curves pbt
and p(?)2 are faced with negative sides at the intersection point a. The property of
v-stability means the following: for any z € 9S and any ¢ € [—1, 1] there exists
v € Q(x) such that the vector f(x, ¢, v) is directed inside the set S or it is tangent
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ptht P

(a) (b)

Fig. 24. (a) Collection of expanding v-stable sets for the set Cr. (b) Explanation of v-stability.

to the boundary of S at z. For any point z € 0S excluding the point a, every
v € Q(z) that gives the maximum in (2.1) would be appropriate. A normal vector
to the semipermeable curve in the negative side direction is considered as ¢ when
computing the maximum in (2.1). For the point a, the choice of an appropriate v
depends on ¢.

Let us assume that there exists a hole C‘L which is located strictly inside the
solvability set. It follows from this assumption that: 1) Cp, (YM = §, 2) for any
boundary point = of é’L, there exist points of the fronts that are arbitrarily close
to z. Consider a v-stable set S from the expanding collection generated by the set
Cr, and such that S and M have common points on the boundaries of S and M
only. Take a point = on a front strictly inside the set S. Such a point exists because
the set C, belongs to the interior of the set S and the fronts come arbitrarily close
to the set Cy.. Then, player E can keep the trajectories of the system within a set
S, which is a subset of S and contains the point z on its boundary, for infinite time.
This contradicts to the fact that z lies on the front and, therefore, player P brings
the system to M for a finite time.

Similar arguments are true for sets C. arising in the acoustic or classical game.

3. Let us now consider the situation with the set C‘U. We show that the set Cy
cannot, generate an expanding collection of v-stable sets.

Denote by * = w) s /w, the minimal r for which C,(r) # §. Consider the circle
F(7) of radius ¥ = r” /2 with the centre at the origin. We have

(1)
w —w®(jaf) > 0 —w® ) = =, @€ F{). (5.1)
Let,
(2)
f(r)z—R—l—w, r > 0. (5.2)
w(l)

Since the set Cy is strictly above the axis x1, then, for any r > 0, the set Ci(r)
does not contain the points of intersection of the circumference Q(r) of radius r and



88 V. S. Patsko & V. L. Turova

the centre at the origin with the axis x;. Hence

r > &(r). (5.3)

Let z#(r, a) and z¢(r, a) are the right and left intersection points of the
straight line z» = o with the circumference Q(r), 0 < a <7, r > 7. Using (5.2)

and (5.3), choose positive B and o, a <7, so that
af(r, ) > B+Er), r>F 0<a<a. (5.4)
We obtain simultaneously
w0 (r, @) < =B —Er), 7>7, 0<a<a (5.5)

Denote by X(a) = {z: 0 < z3 < a}, a < a, a horizontal strip of the width «
over the axis x1. B

Using (5.4), we obtain z; > 3 + £(|z|) for the points # € X (&) on the right of
the circle F'(7). Hence, it holds

w®)

Eolp=—1 = —21 = + vy —w®
~w®
< —B—wR —w®?(|z]) + wh + vy —w®
~w®
w
< _fB— 5.6
<3 5.6
for any v € Q(z) and ¢ = —1.
Similarly, using (5.5), we get
1 ~w®
. w w
T2)p=1 = TR + vy —w < —5? (5.7)

for z € X (@) on the left of the circle F(7), any v € Q(x) and ¢ = 1.
If a point z € X (&) belongs to the circle F(¥) and satisfies the inequality
x1 > £(7)/2 = —R/4, then we obtain

(1) 1 1
i‘2|@:,1 = —171% + vy — w(l) S Zw(l) + vy — w(l) S —Zw(l) (58)

for any v € Q(z) and ¢ = —1. It was taken into account here that, using (5.1), the
relation |vs| < w® (|z|) < w® (F) = w™ /2 holds for z € F(7).

Similarly, if a point z € X (&) belongs to the circle F(7) and satisfies the
inequality z; < R/4, then for any v € Q(z) and ¢ =1, we get

. w® 1
Talp=1 = T +ug —wd < —Zw(l). (5.9)
Let "
~wW 1
% = min{ f—y. —w®
F=min(3, Tu(),
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Take positive @ < min{a, 7/2} such that

_ R 7
%we < min{, %}. (5.10)
Put ¢ = —1 for the states zo € X (@) with z¢; > 0. Taking into account (5.10)
and the estimate
w®
T = Tw2+v1 > U1 2 —We

for z2 > 0, we obtain that any trajectory emanated from the point zy remains on
the right side from the vertical straight line 1 = max{—R/4, —7/2} within the
time @/7. Using (5.6) and (5.8), we get from here that the trajectory arrives at the
axis x; within this time.

Similarly, setting ¢ = 1 and using (5.7), (5.9) and (5.10), one obtains that any
trajectory emanated from the point 2o € X (@), 10 < 0, arrives at the axis z; within
the time @/4 remaining on the left side from the straight line ; = min{R/4, 7¥/2}.

Thus player P can bring trajectories to the axis xz; from any initial point x
that belongs to the strip X (@). It follows from this property that Cyr () X (@) = 0.
Moreover, there is no any collection of v-stable sets that monotonically expands from
the set Cy and fills out the whole plane. Indeed, let us suppose the opposite. Denote
by S the smallest of v-stable sets that has common points with X (@). Then player
E, using the discrimination of player P, can keep trajectories in S for infinite time.
On the other hand, player P, applying a constant control, can bring trajectories to
the axis z; from any point of the set S () X (@) within a finite time that is he can
bring out trajectories from the v-stable set S. We come to a contradiction.

The considerations of this section make clear that it is impossible to obtain
examples with holes in the solvability sets for the classical game. For this reason,
the acoustic game is of particular interest.

6. Analysis of Computation Results

We compute the level sets of the value function. The optimal time for a given state
x is the minimal time 7 subject to € W (r, M).

We do not have a priori estimates of the accuracy of the algorithm. The cor-
rectness of computations is verified via comparison of computation results with the
qualitative results of Merz (1971), Lewin (1979) and Cardaliaguet (1995). Addi-
tionally, the correctness of the construction of barriers is checked and the front’s
behavior after the termination of barriers is inspected. An analytical description of
fronts is absent for the examples considered.

In the following Secs. 6.1 to 6.3, the results of computing the sets W(r, M), 7 =
1A, for the problems from Secs. 2.1 to 2.3 are discussed. The computation step A
in the examples below is selected experimentally. For some examples of Sec. 6.1,
a smaller time step than the one for Secs. 6.2 and 6.3 is required to find all fine
details of the evolution of the fronts. The time step depends also on the size of the
terminal set M and on the length of the reverse time interval considered.
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6.1. Level sets of the value function in the homicidal chauffeur game

In Fig. 25, the computation results for the following values of parameters are pre-
sented: w") =3, w® =1 and R = 3. The set Q is a 25-polygon inscribed into the
circle of radius w® with the centre at (0,0). The terminal set M is a 15-polygon
approximating the unit circle with the centre at the origin. The step A is 0.01.
Every 10th front is plotted. The fronts are symmetric with respect to the zs-axis.
The left and right barrier lines terminate on the lower boundary of the sets A and
B, respectively. After that, the left and right ends of the front begin to bend around
the left and right barrier lines, and two symmetric corner points arise on the front.
These corner points become more and more close, and at 7 = 8.42, a self-intersection
of the front occurs. As a result, the front is divided into two parts: the internal part
and the external one. The computations are carried out from each part separately.
The internal part of the front propagates upwards sliding with its ends along the
corresponding barriers. At 7 = 10.6, it collides with the terminal set,

and two symmetric gaps which are filled out at 7 = 11.3 arise. The external part
of the front propagates outwards and can fill out the whole plane with the time
(the last external front in the picture corresponds to 7 = 9). Therefore, for each

-20 -15 -10 -5 0 5 10 15 20

Fig. 25. Level sets of the homicidal chauffeur game for w() =3, w(2) =1 and R = 3.
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Fig. 26. The graph of the value function for w™) =3, w® =1 and R = 3.

point of the plane, the minimal guaranteed time of approaching the set M is finite.
For the points where the value function coincides with the function of programming
maxmin, the optimal guaranteed time can be computed analytically. Our results
are in a good agreement with the values given for some particular points by Raivio
and Ehtamo (2000).

In Fig. 26, a three-dimensional graph of the value function of Fig. 25 example
is presented. The axes in the horizontal plane are x; and x,, and the vertical axis
measures the value function. The picture shows the value function for the region
of (z1,z2) where the fronts are computed. The programs for the visualization of
such graphs were developed by Averbukh and Pykhteev [see Averbukh et al. (1999,
2000)].

For two examples shown in Figs. 27 and 31, the following values of parameters
of the problem are used: w® =2, w?® = 0.6, R = 0.2. The set Q is a 25-polygon
inscribed into the circle of radius w(? with the centre at (0,0). The set M is a
regular polygon inscribed into the circle of radius 0.015. The centre of the circle is
(0.2,0.3) and (0, —0.45) for Figs. 27 and 31, respectively. The step A is 0.001. The
sets W(8kA, M), k= 1,2, ..., are depicted.

Let us explain the constructions presented in Fig. 27. The right barrier line
terminates on the lower boundary of the auxiliary set B. The front begins to
bend around this barrier line. After some time, the left barrier line ends on the
lower boundary of the set A, and the left part of the front bends around the left
barrier. The left and right parts of the front go toward each other until the first
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Fig. 29. The graph of the value function for level sets in Fig. 27.

Fig. 30. The graph of the value function from another point of view.
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At 7 = 0.904, the second self-intersection of the front which is drawn with the
thick dashed line produces two gaps that are filled out afterwards separately. The
next front consists of three parts: one exterior part (which is not shown), and two
interior parts (two loops inside the dashed contour). The greatest value of 7 in the
region of turn is 0.95. This corresponds to the time when the fronts complete filling
the gap on the left hand side of the axis 5. The gap with the centre on the axis x5
is filled at 7 = 0.948. As a result, the sets W (7, M) for 0.904 < 7 < 0.948 are triply
connected. Figure 28 shows an enlarged fragment of Fig. 27.

Figures 29 and 30 show three-dimensional graphs of the value function corre-
sponding to the level sets of Fig. 27. Two different points of view were used. In
Fig. 30, level lines of the value function are additionally plotted onto the graph.

In Fig. 31, the fronts are symmetric with respect to the zs-axis. The self-
intersection of the front occurs at 7 = 0.355. The gap that arises after 7 = 0.355,
and whose centre has coordinates (0,0.22), is filled out with level lines separately.
Filling out the gap finishes at 7 = 0.38. The sets W (r, M) for 0.355 < 7 < 0.38
are doubly connected. At 7 = 0.766, the front collides with the barrier lines. Two
symmetric gaps arise. The structure of the fronts within the right gap is shown
in an enlarged scale in Fig. 32(a). Filling out the gap ends at 7 = 0.85. The sets
W(r, M), 0.766 < 7 < 0.85, are triply connected. The computations are carried out
up to 7 = 0.872. The value function is discontinuous on two symmetric barrier

1.2
T T To T T

0.4

0.2

-0.2

04 F

0.6 1 1 I 1 1

Fig. 31. Level sets of the value function for w®) =2 w® =06, R = 0.2 and the terminal set
with the centre on xs-axis.



Level Sets of the Value Function in Differential Games 95

01 x
-0.04 [ i
0.05
0 -0.06 | -
-0.05 ]
-0.08 .
-0.1
-0.15 £ 4 0.1 |
-0.2
012 b 5
-0.25 5
-0.3 -0.14 i
015 02 025 03 035 04 0.33 0.355 0.38

(a) (b)

Fig. 32. Enlarged fragments of Fig. 31.

lines that emerge tangentially from the boundary of M and terminate on the upper
boundaries of the auxiliary sets A and B. In regions of the accumulation of fronts,
the value function changes very rapidly but it is continuous. Figure 32(b) shows an
enlargement of the accumulation region within the rectangle in Fig. 32(a).

Let us explain more precisely what happens when fronts begin to bend around
the accumulation region. After the front comes onto the lower boundary of the
set B, a new corner point k(7) arises on the front [see Fig. 33(a)]. The point k(1)
moves up as 7 increases. The point b(7) of the front moves down along the outer
side of the barrier line dg at a low rate. The part of the front between points b(7)
and k(7) propagates to the outside very slowly. The length of the curve b(7)k(7)
becomes smaller as 7 increases. The part of the front between points k(7) and ¢(7)
moves enough rapidly to the left, and the front collides with the barrier line dg at
T = 0.766.

It is useful to compare this evolution of fronts with the one in Fig. 27 where the
ends of the front move down along the corresponding barrier lines and then bend
around them. Figure 33(b) shows the bending of the right barrier line. Here the
point k(7) is the endpoint of the front. It moves up along the outer side of the
barrier line fe.

For the example in Fig. 34, the following values of parameters are used: w® = 2
and R = 0.2. The terminal set M is a regular 25-polygon inscribed into the circle
of the radius 0.015 with the centre at (0.2, —0.4). The set @ is the
triangle with the vertices (—0.96,0.8), (0.96,0.8) and (0, —4.8). The step A is 0.001.
The sets W(20kA, M), k = 1,2, ..., are depicted. In this example, the left barrier
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function.
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Fig. 35. Enlarged fragments of Fig. 34.

line finishes on the lower part of the boundary of set A, and the right barrier line
finishes on the upper part of the boundary of set B. The structure of fronts near
the end of the right barrier line is shown in Fig. 35(a). The accumulation of fronts
means very rapid changing of the value function. The twisted part of the left barrier
line is depicted in Fig. 35(b).

In all examples presented in this section, the barriers finish on the boundaries
of the auxiliary sets A and B. This is consistent with the fact that every barrier
line is a smooth semipermeable curve of one of the families described in Sec. 4,
or it is composed of such smooth semipermeable curves. All barriers constructed
approximate corresponding semipermeable curves very well.

The correctness of the computation of level sets of the value function can be
additionally verified using the information about the solvability set of the game of
kind. Very often the solvability set is determined by a system of semipermeable
curves of the first and second type which is generated by the terminal set. We
explain using the example from Fig. 34 how such a system can be constructed.
The semipermeable curves p2h! € A@1 and p1)2 ¢ A2 emanated in re-
verse time from the endpoints of the usable part of M do not intersect each other
before they terminate on the boundaries of the corresponding domains (Fig. 36).
The join of p®)! and p(?:2 at the point b is smooth. This provides the semiper-
meability property of the composite semipermeable curve p®:!|Jp?)»? at b. The
curve p»t | Jp?-? does not intersect p!)2. Though the join of the arc as C p):?
and the curve p)! is not smooth, the semipermeability property is fulfilled [see
Patsko (1973, 1975), Turova (1985) and Patsko and Turova (1995) for analogous
situations] at the junction point s. Thus the curve asr is a composite semipermeable
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Fig. 36. The system of semipermeable curves for the example with the triangle set Q.

curve of the first type. The composite semipermeable curves of the first and second
types do not intersect each other. Further semipermeable curves are not being pro-
duced. One can prove using the described mutual disposition of the semipermeable
curves that the solvability set of the game of kind is the whole plane. Numerical
computation of the level sets of the value function confirms this fact.

One can see that the curve p(?)' [ Jp(?)+2 is the left barrier line in Fig. 34. The
curve p(1)-2 is the right barrier. It is interesting to observe that the curve p)!
is not a barrier. The value function is continuous across this curve. Since asr
is a composite semipermeable curve, the fronts can not penetrate the curve p)-!
from above. Therefore, the arcs of the fronts that form the accumulation region in
Fig. 35(a) should remain above the curve p*):!. The fulfillment of this property for
computed fronts can be considered as an additional confirmation of the algorithm
validity.

A similar location of the accumulation region of fronts can be established for
the example in Fig. 31.

6.2. Level sets of the value function in the acoustic game

The examples of this section correspond to the following values of parameters:
w) =1, R = 0.8 and s = 0.75. The terminal set M is the rectangle {(z1,z2)€ R?:
-3.5 <z < 3.5, —0.2 <z <0}. The set @ is a circle of radius w.. The con-
straint Q(z) is a circle of radius min{|z|, s}w./s which is approximated by a poly-
gon. Below, the dependence of the solution of the acoustic game on the parameter
w, is demonstrated.

In Fig. 37, the initial computations for w, = 0.4 are shown. The step A is 0.005.
The usable part of the terminal set M consists of three segments: the upper side of
M and two segments on the lower side. The upper fronts that occur until 7 = 0.29
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are bounded on the left and right by barrier lines. At 7 = 0.29, these barrier lines
meet the upper boundaries of the sets A and B, so they terminate.

T2

T

-4 -3 -2 -1 0 1 2 3 4

Fig. 37. Level sets for we = 0.4; 200 upper and lower fronts, every 10th front is plotted.
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Fig. 38. The structure of fronts near the barrier line.
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The value function is discontinuous across the barrier lines. For 7 > 0.29, the fronts
begin to envelop the barrier lines, and left and right corner points on the upper
front arise. The propagation of the front beyond the barrier lines from these corner
points is at a very low rate. An enlargement of this development of the fronts on
the right hand side is presented in Fig. 38.

-0.8
0.6 0.8 1 12 1.4 16

Fig. 40. The accumulation of fronts near the point a.
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The continuation of the computation is shown in Fig. 39. The upper and lower
fronts are calculated until 7 = 1.6 and 7 = 3.3, respectively. The left and right
lower fronts collide at 7 = 1.76. Only one lower front remains after this collision.
The greatest value of 7 below M occurs on the lower boundary of M at the point
(0,—0.2).

4

2.8 |-

26 I I I I
-1 -0.5 0 0.5 1

Fig. 42. Enlarged fragment of Fig. 41.
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An enlargement of the accumulation of the lower fronts is shown in Fig. 40. We
see that the end of the front moves along the terminal set from the end of the usable
part to the point a on the boundary of the set B. The accumulation of fronts begins
when they approach the semipermeable curve p(')>! that emanates from the point
a, as shown in Fig. 37. The value function changes very rapidly in the accumulation
region, but it remains continuous.

Figure 41 presents the computation results for w, = 0.95 and A = 0.005.
Figure 42 shows an enlarged fragment of Fig. 41. As in the previous example, the
upper barrier lines end at some moment of reverse time, and the fronts begin to
envelop them. The main difference from before is the formation of a loop where
the upper fronts from the two sides of the figure meet. In this example, the region
within this loop (a “lagoon”) is filled out entirely by the further development of the
fronts, the filling out being completed at 7 = 1.68.

3 T T T T
T2

T

Fig. 43. Level sets for we = 1.5; 746 upper fronts, 340 lower fronts, every 10th front is plotted.
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An important feature of the lower part of Fig. 41 is that the semipermeable
curve pt)! | emanating from the point a, intersects the right barrier which is the
semipermeable curve p()'. This did not happen in the previous example. Thus
the right lower fronts are confined to the right side of the curve p('>'. The time of
attaining the terminal set becomes infinite as the fronts approach the curve p(\)!.
A symmetric situation occurs for the left lower fronts. All the fronts are computed
until 7 = 2.4.

The following facts were found experimentally. A lagoon is generated by the
upper fronts only if w, > 0.65. For w, € [0.65,1.37), a lagoon occurs and completely
filled by the further development of the fronts. For w, € [1.37,1.61], the fronts do
not fill the lagoon completely. For w, > 1.61, the lagoon disappears.

Figure 43 presents computational results for w, = 1.5 and A = 0.005. The left
and right parts of the upper front meet at 7 = 2.855. Then the computation within
the lagoon begins. The fronts do not penetrate the set Cyr, which is a hole inside
the solvability set of player P, the value function being infinite for z € Cy. The
computation is done until 7 = 3.73. The structure of the lower fronts is similar to
that in the previous example.

It is emphasized in Cardaliaguet et al. (1995, 1999) that the victory domain in
similar examples with holes cannot be obtained using semipermeable curves (bar-
riers) emitted from the boundary of the terminal set only. Now this conclusion can

T T3

Fig. 44. The graph of the value function for w. = 1.5.
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be formulated more precisely: the boundary of the victory domain is composed not
only of semipermeable curves issued from the boundary of the terminal set but also
of semipermeable curves emitted from the boundary of the set Cy.

In Fig. 44, a three-dimensional graph of the value function of Fig. 43 example
is presented.

Further increases in the value of w, extend the set C’U. The hole is being
inflated and becomes “open”. The boundary of the victory domain transforms into
a connected curve but even in this case, it is composed of semipermeable curves
emitted both from the boundary of the terminal set and boundary of the set Cyp.
Figure 45 gives computational results for w, = 1.9 and A = 0.01. The upper and
lower fronts are computed until 7 = 8.42 and 7 = 1.6, respectively.

The following question can be formulated. Does an example with the homicidal
chauffeur dynamics exist where a hole, which is strictly inside the victory domain,

T

Fig. 45. Level sets for we = 1.9; 842 upper fronts, 160 lower fronts, every 5th front is plotted.
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does not coincide with the set Cyy? (In this paper, it is shown that such holes cannot
coincide with the sets Cy and C1,.)

6.3. Level sets of the value function in the survetllance-evasion game

Figures 46 to 51 present the computational results for w(') = 1.7. For all the figures
except for Fig. 51, the set () is a regular hexagon inscribed into the unit circle with

L2
T T T T T
3t i
2 L i
1k _
A B
L1
0
1 L L | L
-2 -1 0 1 2

Fig. 46. Level sets of the value function of the surveillance-evasion game for § = 459,

T T
c
2L J
1+ 4
0
b b
A
a’l
-1 L 1
-1 0 1

Fig. 47. Level sets of the value function of the surveillance-evasion game for § = 1430,
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Fig. 48. The rise of accumulation of fronts. (a) # = 136.3° and (b) § = 130°.

the centre at the origin. The vertices are (0,1), (0.5,0.87), (0.5,—0.87), (0,—1),
(—0.5,—0.87) and (—0.5,0.87). The half-angle 8 of the detection cone is 45°, 143°,
136.3%, 130°, 125.6° and 121° for Figs. 46, 47, 48(a), 48(b), 49(a) and 49(b), re-
spectively. According to the classification of the paper Lewin and Olsder (1979),
Figs. 46, 47, 48(b) and 49(b) correspond to cases I, VI, V and IV. Figures 48(a)
and 49(a) correspond to transient states. The step A is 0.01. Figure 46 shows the
sets W(r) for 7 = 2Aé, i = 1,65. In Figs. 47 to 49, the sets W(7) for 7 = 10A4,
i =1, k, are depicted (k = 16,18 and 58 for Figs. 47, 48(a) and 48(b) to 49, respec-
tively). In this section, the boundaries of sets A and B are marked with dashed
lines.

The player E escapes from all initial positions within the detection set in Fig. 46.
The computations are done up to 7 = 1.3.

In Figs. 47 to 49, the gradual change of the escape zone depending on the value
f is shown. In Figs. 48 and 49, only the right half of every picture is presented.

In Fig. 47, the escape zone is bounded by two symmetric barrier lines abc and
a'l’'c that emanate from the ends of the usable part and intersect at point c. The
maximal escaping time is 7 = 1.6.

The escape zone in Fig. 48(a) is similar to the one in Fig. 47. The barrier lines
that bound the escape set touch the auxiliary sets A and B in the cusp points. The
maximal escaping time is 7 = 1.8.

Further decrease in the value of  yields Fig. 48(b). The escape zone is bounded
by mutually symmetric (with respect to the vertical axis) curves aef and a’e’ f. The
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T T T T
35 F 1y . 35 .

Fig. 49. The change of solution from a bounded to unbounded escape set. (a) § = 125.6° and
(b) § = 121°.

arcs ae and a'e’ are parts of the barrier lines ab and a'b’ that finish on the boundary
of auxiliary sets B and A, respectively. The arc efe’ is a limit of fronts as 7 — oo.

In Fig. 49(a), the boundary of the escape zone is also a limit of fronts as 7 — 0.
Here, the point e [see Fig. 48(b)] coincides with point a.

Player E can escape from any point within the detection set in Fig. 49(b). The
fronts go around the endpoint b of the barrier ab. After passing the point a, the end
of the front moves down the line § = 8 with a constant velocity. Thus the detection
cone can be completely filled out with the fronts. As noted in Lewin and Olsder
(1979), the escape zone coincides with the whole detection cone for cases similar to
that shown in Fig. 49(b).

Note that the case shown in Fig. 48(a) is a transient state from the situation
where there is no accumulation of fronts (the escape set is similar to that one in
Fig. 47) to the situation where an accumulation of fronts occurs. The case shown
in Fig. 49(a) is a transient state from the case of the accumulation of fronts to the
case where the detection cone is filled out with the fronts completely.

Figure 50 presents the fronts for an asymmetric detection set. The left inclina-
tion angle corresponds to case IV of the classification of Lewin and Olsder (1979),
and the right one corresponds to case VI.

The escape zone in Fig. 51 is similar to the one in Fig. 47 but a 25-polygon
inscribed into the unit circle is used as set @) instead of the 6-polygon.
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Fig. 51. Fronts for a circular constraint @ of player E.

Let us compare the above solutions with those that can be obtained via solving
the game of kind. When solving the game of kind, semipermeable curves are emitted
[see Patsko (1973,1975), Subbotin and Patsko (1984), Turova (1985) and Patsko



Level Sets of the Value Function in Differential Games 109

and Turova (1995)] in reverse time from endpoints of the usable part so that the
semipermeability property (the property of barrier) holds at these points. In the
game considered, the negative sides of the semipermeable curves emitted face the
usable part. To provide this, a curve of the second type must emanate from the
right endpoint of the usable part, and a curve of the first type must emanate from
the left endpoint. The semipermeable curves with such properties are absent for the
example in Fig. 46. For the examples in Figs. 47 to 49 and 51, the semipermeable
curve p®»! of the family A?)! emanated in reverse time from the right endpoint
a of the usable part is proper. The curve p®):! is extended to the boundary of the
dé)r)nain of A1 In Figs. 47 to 49 and 51, the curve ab coincides practically with
L,

For the examples in Figs. 47 and 51, the extended curve can be smoothly con-
tinued by a curve p2)2 of the family A(2)2, After this continuation, a smooth
composite semipermeable curve of the second type is obtained. Let us denote it by
g'?). Because of the symmetry, there is a smooth composite semipermeable curve
gV of the first type that emanates from the left endpoint a’ of the usable part.
The curves ¢(? and ¢V intersect at a point that lies on the z»-axis. This yields a
composite barrier that bounds the solvability set of the game of kind (the escape
set). The optimal guaranteed time for attaining the terminal set (escaping time) is
finite for any initial point on the barrier. The above-mentioned facts are completely
confirmed by the computation of the fronts shown in Figs. 47 and 51.

For the examples in Figs. 48 and 49, the semipermeable curve p(2):! cannot be
smoothly continued beyond the endpoint. Moving along the curve p(®! from the
endpoint toward the point a, one looks for a point from which a semipermeable
curve p(?):2 of the family A?)2 emanates so that the composite curve ¢ formed
by the initial part of p(®-! and the curve p(*>? would possess the semipermeability
property at the sewing point. One can establish that such sewing points can only
lie on the boundary of the domain of A(?):2. A sewing point with the above property
exists for the cases shown in Figs. 48 and 49(a).

Note that the sewing point in the case of Fig. 48(a) coincides with the point b
(therefore the curve p(?)-! is completely included into the curve g(?)), but the sewing
point in the case of Fig. 49(a) coincides with the point a (therefore no part of the
curve p(®-! is included into the curve g(2)). One can see that point e is actually a
sewing point in the case shown in Fig. 48(b). There are no sewing points for the
case of Fig. 49(b).

The piecewise-smooth composite semipermeable curve ¢(2) and symmetric to it
with respect to the zs-axis curve g(l) define a solution to the game of kind in the
cases corresponding to Figs. 48 and 49(a). Parts of these curves till the intersection
point on the axis zs form a composite barrier that determines the solvability set
of the game of kind. However, in contrast to the examples in Figs. 47 and 51, the
escaping time in the cases of Figs. 48(b) and 49(a) is infinite for any point that
belongs to those parts of the composite barrier that are obtained using the curves
p2 and p(1)-'. This nontrivial fact was mentioned in Lewin and Olsder (1979),
and it is confirmed by the accumulation of fronts as 7 — oo in Figs. 48(b) and
49(a).
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In the case corresponding to Fig. 49(b), the solvability set of the game of kind
coincides with the whole detection cone.

7. Conclusion

In the paper, differential games with dynamics of the homicidal chauffeur are stud-
ied numerically. Three variants of the problem setting are considered. Significant
attention is paid to the analysis of families of semipermeable curves. This analysis
is used for the verification of the computation of level sets of the value function, the
computation being done with the algorithm developed by the authors. Examples
that demonstrate the changes in solutions depending on the values of parameters
of the problem are given. Solutions both with regions of accumulation of fronts
and different variants of bending the barrier lines by the fronts are presented. The
reality of multiply connected level sets of the value function is confirmed.
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