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LEVEL SETS OF THE VALUE FUNCTION IN DIFFERENTIALGAMES WITH THE HOMICIDAL CHAUFFEUR DYNAMICSV. S. PATSKOInstitute of Mathematis and Mehanis, S.Kovalevskaya str., 16, Ekaterinburg, 620219, Russiae-mail: patsko�imm.uran.ruV .L. TUROVACenter of Advaned European Studies and Researh, Friedensplatz 16, 53111 Bonn, Germanye-mail: turova�aesar.deThree di�erential games with the dynamis of the homiidal hau�eur are onsidered.The �rst problem is the Isaas' homiidal hau�eur di�erential game. In this game, apursuer P minimizes the apture time of an evader E. The objetive of the evader is toprevent the apture or to maximize the apture time. The magnitude of the veloity isonstant for the pursuer, and his maneuverability is bounded through a minimal turnradius. The maneuverability of the evader is not bounded. The pursuer's ontrol is therate of turn; the evader steers by hoosing diretions of his veloity. The main di�ereneof the seond problem is that the size of the onstraint on the ontrol parameter ofthe evader depends on the position of the game. The idea of suh a modi�ation wassuggested by Bernhard. The third problem is a oni surveillane-evasion game studiedby Lewin and Olsder. In this game, the dynamis is the same as in the Isaas' problem,but the goals of the players di�er from the lassi formulation: an evader E minimizesthe time of esaping from a detetion set that is a two-dimensional semi-in�nite one.The detetion set is attahed to the veloity vetor of a pursuer P whose objetive isto keep the evader within the detetion set for maximal time. The paper desribes theomputation of level sets of the value funtions for these games. The algorithm proposedby the authors is used. An analysis of families of semipermeable urves is arried out.The results of this analysis are used to hek the orretness of the omputation of levelsets and to explain the appearane of holes in vitory domains of the pursuer in theseond problem.1. IntrodutionThe homiidal hau�eur game was formulated more than thirty years ago in Isaas(1965). Sine that time, many authors have studied this problem in various ways.The most omplete qualitative solution was given in Merz (1971).In many papers [see, for example, Breakwell and Merz (1970), Lewin and Break-well (1975), Breakwell (1977), Lewin and Olsder (1979) and Cardaliaguet et al.67



68 V. S. Patsko & V. L. Turova(1995)℄, the problems with some alterations of the dynamis or objetives of theplayers were onsidered.In Bernhard and Larrouturou (1989), an aousti version of the homiidal hauf-feur problem was proposed. The evader must apply a redued speed (in order not tobe heard by the pursuer) when the distane between him and the pursuer beomesless than a given value. In Cardaliaguet et al. (1995, 1999), level sets of the valuefuntion for partiular magnitudes of parameters of the problem were omputedusing an algorithm based on viability theory. The solution to the problem has aompliated struture: holes in the solvability set (in the vitory domain) of thepursuer an arise, the evader being safe from the pursuer within these holes.In Lewin and Olsder (1979), a surveillane-evasion game with the pursuer'sdetetion zone in the shape of a one was stated and a qualitative solution to thisproblem was given. Similar to Merz (1971), the parameter spae of the problem isdivided into subregions. In eah subregion, the type of solution (possible singularlines and the strategies of the players) was desribed.In this paper, the homiidal hau�eur game in the lassial statement of Isaasand modi�ed problems from Cardaliaguet et al. (1995) and Lewin and Olsder (1979)are studied using an algorithm the authors propose for the omputation of level setsof the value funtion. Our method is based on general theory of di�erential games[see Krasovskii and Subbotin (1974, 1988)℄. The algorithm is a natural extension ofthe algorithms from Subbotin and Patsko (1984) and exploits ideas of the algorithmsfrom Patsko and Turova (1995, 1996, 1997) for linear time-optimal di�erential gamesin the plane. Some experiene [see Patsko (1973, 1975), Subbotin and Patsko (1984),Turova (1985) and Patsko and Turova (1995)℄ in solving di�erential games of kind[Isaas (1965)℄ in the plane helps to �nd very ompliated types of solutions andto verify the solutions validity. The omputation results are onsistent with thoseobtained in Merz (1971), Cardaliaguet et al. (1995, 1999) and Lewin and Olsder(1979). The algorithm uses spei� properties of the plane and is very aurate.It allows to explore some �ne peuliarities of the solutions. The development ofsuh algorithms together with the general algorithms from Ushakov (1981, 1998),Taras'yev et al. (1987), Bardi and Falone (1990), Bardi et al. (1997, 1999),Ivanov et al. (1993), Cardaliaguet et al. (1994, 1995, 1999), Subbotin (1995), andGrigor'eva et al. (1996) for solving nonlinear di�erential games is of great interestfor the theory of di�erential games and appliations.2. Statement of the ProblemThe pursuer P has a �xed speed w(1) but his radius of turn is bounded by a givenquantity R: The evader is inertialess. He steers by hoosing his veloity vetor fromthe set Q: The kinemati equations are:P : _xp = w(1) sin E : _xe = v1_yp = w(1) os _ye = v2; v 2 Q:_ = w(1)'=R; j'j � 1The number of equations an be redued to two [see Isaas (1965)℄ if a oordinatesystem with the origin at P and the axis x2 in the diretion of P 's veloity vetoris used (see Fig. 1).
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Fig. 1. Homiidal hau�eur dynamis.The dynamis in the redued oordinates is_x1 = �w(1)x2 '=R+ v1_x2 = w(1)x1 '=R+ v2 � w(1); j'j � 1; v 2 Q: (2.1)Here (x1; x2)0 is the state vetor whih gives the relative position of the evaderE with respet to the pursuer P; and w(1) and R are onstants whih de�ne thepursuer's veloity and the minimal radius of turn, respetively.2.1. Homiidal hau�eur gameThe objetive of the ontrol ' of the pursuer is to minimize the time of attaining agiven terminal set M: The objetive of the ontrol v = (v1; v2)0 of the evader is tomaximize this time. Therefore the payo� of the game is the time of attaining theterminal set.The lassial formulation [see Isaas (1965) and Merz (1971)℄ of the homiidalhau�eur game assumes that the sets M and Q are irles of the radii l (aptureradius) and w(2); respetively, with the entres at the origin. It is aepted thatw(2) < w(1): With the proposed algorithm, level sets of the value funtion an beomputed for suÆiently wide lass of setsM and Q:We assume that Q is a onvexompat set and (0; 0) 2 intQ:2.2. Aousti gameThe dynamis of the problem is desribed by (2.1). The di�erene is that theonstraint on the ontrol of player E depends on x: It is given by the formulaQ(x) = k(x)Q; k(x) = min fjxj; sg=s; s > 0:
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Fig. 2. Detetion one.Here Q is the same as in Se. 2.1 and s is a parameter. We have Q(x) = Q if jxj � s:The objetive of the ontrol ' is to minimize the time of attaining a terminal setM: The objetive of the ontrol v = (v1; v2)0 is to maximize this time.In this paper, the terminal set M in the form of the retanglef(x1; x2)2 R2 : �� � x1 � �; �� � x2 � 0g; � > 0; � > 0will be used. The statement of the aousti problem with suh terminal set wastaken from Cardaliaguet et al. (1995). Very interesting ases from the mathematialpoint of view arise when the horizontal side of the retangle is muh greater thanits vertial side.2.3. Coni surveillane-evasion gameThe statement of the problem is given in Lewin and Olsder (1979). The dynamis ofthe game is desribed by (2.1). The terminal set M is the omplement of the opendetetion one depited in Fig. 2. The objetive of the ontrol v = (v1; v2)0 of theevaderE is to minimize the time of attainingM: The objetive of the ontrol ' of thepursuer P is to maximize this time. Therefore, in ontrast to the Isaas' homiidalhau�eur game, the roles of the players hange: the evader is the \minimizing"player and the pursuer is the \maximizing" one.In the following, for the uniformity of notation of the onstraint of player E; letus agree that Q(x) = Q for problems 2.1 and 2.3.2.4. Level sets of the value funtionWe restrit ourselves to a oneptual de�nition of level sets of the value funtion.The preise de�nition an be found in Krasovskii and Subbotin (1974, 1988).Let T � 0: The level set (the Lebesgue set) of the value funtion is denoted byW (T;M): This is the set of all points in the plane suh that the minimizing playerusing feedbak strategies an guarantee the transition of trajetories of the system(2.1) to the terminal set M within time T:
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Fig. 3. Constrution of the sets W (i�;M):3. The AlgorithmIn this setion, the basi idea of the algorithm for omputing sets W (T;M) isdesribed.The set W (T;M) is formed via a step-by-step bakward proedure giving asequene of embedded setsW (�;M) �W (2�;M) �W (3�;M) � ::: �W (i�;M) � ::: �W (T;M):Here � is the step of the bakward proedure. Eah set W (i�;M) onsists ofall initial points from whih the minimizing player guarantees the attainment ofW ((i� 1)�;M) within time �: We put W (0;M) =M .This is a dynami programming method. In the theory of di�erential games,the fundamental ideas of the bakward onstrution of level sets were onsidered inworks of Isaas, Fleming, Pontryagin, Krasovskii and Pshenihnyi.The ruial point of our algorithm is the omputation of \fronts". The front Fi(Fig. 3) is the set of all points of �W (i�;M) with the property that the minimalguaranteed time of attaining the previous set W ((i� 1)�;M) is equal to �: Forother points of �W (i�;M); the optimal time is less than �: The line �W (i�;M)nFi possesses the properties of the barrier [see Isaas(1965) for the de�nition℄. Thefront Fi is omputed using the previous front Fi�1: For the �rst step of the bakwardproedure, F0 oinides with the usable part [see Isaas(1965) for the de�nition℄ �0of the boundary ofM: It may be one or several usable parts. The omputations arearried out separately for eah usable part. One should take into aount that theobtaining parts of the level set an ollide with eah other. From here on we willassume for simpliity that only one usable part is on the boundary of M:Let us explain, assuming the problems from Ses. 2.1 and 2.2, how the frontsan be onstruted. We write Q(x) although the onstraint Q of player E does notdepend on x in the ase of problem 2.1. Using the notation p(x) = (�x2; x1)0 �w(1)=Rand g = (0;�w(1))0; we rewrite the Eqs. (2.1) as _x = p(x)'+ v + g: First, supposethat the front Fi�1 is a smooth urve. We distinguish points of loal onvexityand points of loal onavity. In Fig. 4, d is a point of loal onvexity, and e isa point of loal onavity. Let x� be a point of loal onvexity on Fi�1 and ` bethe normal vetor to the front at x� direted outside the set W ((i � 1)�;M): Put'Æ = argminf`0p(x�)' : j'j � 1g and vÆ = argmaxf`0v : v 2 Q(x�)g: We all 'Æ
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+� d eFig. 4. Loal onvexity and onavity.
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Fig. 5. Nonuniqueness of extremal ontrols.and vÆ the extremal ontrols. Similarly, for the points of loal onvexity, the innernormal vetor to the set W ((i � 1)�;M) at x� is onsidered, and the extremalontrols 'Æ = argmaxf`0p(x�)' : j'j � 1g and vÆ = argminf`0v : v 2 Q(x�)g areintrodued. Atually, the distintion of outer and inner normals for ases of loalonvexity and onavity is onvenient when fronts are treated as polygonal lines.If the vetor x� is ollinear to `; then any ontrol ' 2 [�1; 1℄ is extremal. IfQ(x�) is a polygon in the plane, and ` is ollinear to some normal vetor to anedge [q1; q2℄ of Q(x�); then any ontrol q 2 [q1; q2℄ is extremal.Using the extremal ontrols, one omputes the extremal trajetories x(�) =x� � � (p(x�)'Æ + vÆ + g); � 2 (0;�℄, started from the front points, in reversetime. The ends of these trajetories at � = � are used to form the next frontFi: If the extremal ontrol 'Æ is not unique at some point x� 2 Fi�1, then thesegment �(x�) = fx� �� (p(x�)'Æ + vÆ + g) : 'Æ 2 [�1; 1℄g is onsidered insteadof the single point. Similarly, if the extremal ontrol vÆ is not unique, the segment�(x�) = fx� �� (p(x�)'Æ + vÆ + g) : vÆ 2 [q1; q2℄g is onsidered.If x� is a point of loal onvexity, and the extremal ontrol 'Æ is not unique, oneobtains a loal piture like that shown in Fig. 5(a) after omputing the extremaltrajetories from the point x�: Here, an additional segment �(x�) appears on thenew front Fi: If the extremal ontrol vÆ is not unique, a loal piture similar to thatshown in Fig. 5(b) is obtained. The \swallow tail " �1��2 does not belong to thenew front Fi; and it is taken away. For points of loal onavity, there is an inversesituation: if the extremal ontrol 'Æ is not unique, a swallow tail that should be
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Fig. 6. Computation of fronts.removed ours [Fig. 5()℄; if the extremal ontrol vÆ is not unique, an additionalsegment �(x�) appears on the new front Fi [Fig. 5(d)℄. If both 'Æ and vÆ are non-unique, an insertion or a swallow tail ours depending on whih of segments �(x�)or �(x�) is greater.In the ourse of numerial omputations, we operate with polygonal lines insteadof smooth urves. Let the front Fi�1 be omputed. One an divide it into regularparts so that the extremal trajetories emanating from the points of one part donot interset for � 2 (0;�℄. Thus, eah regular part generates a regular �eld ofextremal trajetories. The ends of these trajetories form an ordered olletion ofpoints. Being onneted, these points give a polygonal line, whih is alled theseondary ar. The new front Fi is obtained by proessing the regular seondaryars, the proessing being redued to the intersetion of seondary ars. In Fig. 6,the front Fi�1 onsists of two regular parts: [z1 � � � z!℄ and [z! � � � zr℄: The endsof the extremal trajetories omputed at � = � give two seondary ars, namely[�1�2 � � � �s℄ and [�s+1 � � � �m℄: The front Fi = [�1�2 � � � �� � � � �m℄ is obtained afterremoving the swallow tail �s���s+1:Unfortunately, very often it is not suÆient to interset the neighboring se-ondary ars only. Figure 7 gives an example where the seondary ars S1; S2 and S3are omputed sequentially, but the next front is obtained due to the intersetionof S1 and S3.The deomposition of the front Fi�1 into regular parts is being done when pro-essing its verties. Two normal vetors to the links [a; b℄ and [b; ℄ of the polygonalline are onsidered at eah vertex b (Fig. 8). At the endpoints of the front, themissing extreme normals are omputed from speial relations [see Patsko and Tur-ova (1995)℄. The algorithm treats all possible variants of disposition of the normalvetors `[ab℄ and `[b℄ to the edges of Fi�1; the normals to the edges of Q(b); and thenormals to the segment fp(b)' : ' 2 [�1; 1℄g: The vetors b (from the origin to thepoint b) and �b are used as the normal vetors to the last segment. In Fig. 8, for
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S1 S2S3Fig. 7. Seondary ars: ompliated ase of disposition.
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K �`[ab℄ `[b℄Ob 6Æn1 n206 Æn1 n2Q(b)q1 q2 q3Fig. 8. Example of loal onstrutions.instane, the vetor b is between the vetors `[ab℄ and `[b℄; and the normals n1 andn2 to the set Q(b) are between the vetors b and `[b℄: Sine b is the point of loalonvexity, the loation of normals to the set Q(b) between the vetors `[ab℄ and `[b℄means that b is one of the deomposition points that separate the front Fi�1 intoregular parts. The ends of the extremal trajetories omputed at � = � give a loalpiture shown in the left half of Fig. 8. Here, four extremal trajetories emerge fromthe point b: Their ends are �1; �2; �3 and �4: The segment [�1; �2℄ appears due tononuniqueness of the extremal ontrol 'Æ for the vetor b: The segments [�2; �3℄and [�3; �4℄ arise due to nonuniqueness of the extremal ontrol vÆ for the vetors n1and n2: After removing the swallow tail �2��4; the polygonal line ��1� beomesa fragment of the next front Fi:Some additional details of suh loal onstrutions are given in Patsko and Tur-ova (1997). The main di�erene from the ase of the linear dynamis [see Patskoand Turova (1997)℄ is that the extremal ontrol of player P an hange its valuenot only at the front's verties but also at some interior points of the front's links.



Level Sets of the Value Funtion in Di�erential Games 75In the game onsidered, suh a swithing may our only one for eah front link.Let us explain the last assertion. LetK be a straight line and ` its normal vetor.Sine the restrition of the salar funtion `0p(x) to K is a linear funtion in x; theexpression `0p(x) an hange its sign only one for x 2 K: Therefore, the extremalontrol of player P; whih is determined by the formula argminf`0p(x)' : j'j � 1g;an swith only one if x runs throughK: The swithing happens at the point �x 2 Kfor whih the vetor �x is orthogonal to K: If 0 2 K, then �x = 0.In order to take into aount the dependene of the onstraint of player E on x;other additional division points on the front links may also be introdued.In the ase of surveillane-evasion game from Se. 2.3, the players hange theirroles: the extremal ontrols of the pursuer P and the evader E are determined viathe relations 'Æ = argmaxf`0p(x�)' : j'j � 1g and vÆ = argminf`0v : v 2 Qg;for every point x� of loal onvexity and outer normal ` to the front at x�: Forthe points of loal onavity, the extremal ontrols of P and E are de�ned by theformulae 'Æ = argminf`0p(x�)' : j'j � 1g and vÆ = argmaxf`0v : v 2 Qg; where `is an inner normal to the front at x�. So, the loal onstrutions desribed earlierfor the points of loal onvexity are now true for the points of loal onavity, andvie versa.4. Semipermeable Curves in Di�erential Games with the HomiidalChau�eur DynamisThis setion gives the results of some analysis of families of smooth semipermeableurves in di�erential games with homiidal hau�eur dynamis. The semipermeableurves an be helpful for heking the omputation of level sets of the value funtion.The families of semipermeable urves are determined from only the dynamis ofthe system and the bounds on the ontrols of the players.We explain now what semipermeable urves mean [see also Isaas (1965)℄. LetH(`; x) = minj'j�1 maxv2Q(x) `0f(x; '; v)= maxv2Q(x) minj'j�1 `0f(x; '; v); x 2 R2; ` 2 R2 (4.1)be the Hamiltonian of the game. Here f(x; '; v) = p(x)' + v + g: Fix x 2 R2and onsider ` suh that H(`; x) = 0: Letting '� = argminf`0p(x)' : j'j � 1gand v� = argmaxf`0v : v 2 Q(x)g, it follows that `0f(x; '�; v) � 0 holds for anyv 2 Q(x), and `0f(x; '; v�) � 0 holds for any ' 2 [�1; 1℄. This means thatthe diretion f(x; '�; v�); whih is orthogonal to `; separates the vetogramsU(v�) = ff(x; '; v�): ' 2 [�1; 1℄g and V ('�) = ff(x; '�; v): v 2 Q(x)g of playersP and E as in Fig. 9. Suh a diretion is alled semipermeable. A smooth urve isalled a semipermeable urve if the tangent vetor at any point of this urve is asemipermeable diretion.The number of semipermeable diretions depends on the form of the funtion`! H(`; x) at the point x: In the ase onsidered, the funtion H(�; x) is omposed



76 V. S. Patsko & V. L. Turovaof two onvex funtions:H(`; x) =8<: maxv2Q(x) `0v + `0p(x) + `0g if `0p(x) < 0;maxv2Q(x) `0v � `0p(x) + `0g if `0p(x) � 0:The semipermeable diretions are derived from the roots of the equationH(`; x)= 0.We will distinguish the roots \�" to \+" and the roots \+" to \�". When las-sifying these roots, we suppose that ` 2 E ; where E is the boundary of a onvexpolygon ontaining the origin. We say that `� is a root � to + if H(`�; x) = 0, andif H(`; x) < 0 (H(`; x) > 0) for ` < `� (` > `�) that are suÆiently lose to `�,where the notation ` < `� means that the diretion of the vetor ` an be obtainedfrom the diretion of the vetor `� using a ounterlokwise rotation through anangle not exeeding �. The roots � to + and the roots + to � are alled roots ofthe �rst and seond type, respetively.
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+ �
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Fig. 9. Semipermeable diretion.
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`(2);2Fig. 10. Appearane of four roots.



Level Sets of the Value Funtion in Di�erential Games 77We denote roots of the �rst type by `(1);i(x) and roots of the seond typeby `(2);i(x): The right index takes the value 1 or 2, and indiates the half-planef` 2 R2 : `0p(x) < 0g or f` 2 R2 : `0p(x) � 0g. Figure 10 explains the appearaneof four roots in terms of vetograms. The upper and lower irles are the vetogramsof player E for ' = 1 and ' = �1; respetively.Due to the above mentioned property of the pieewise onvexity of the funtionH(�; x), the equation H(`; x) = 0 an have at most two roots of eah type for anygiven x.We now desribe how the families of smooth semipermeable urves an be on-struted.4.1. Constraint Q on the ontrol of player E does not depend on xAssume that the onstraint Q does not depend on x that is Q(x) = Q: DenoteA� = f(x1; x2) : x1 = v2Rw(1) �R; x2 = � v1Rw(1) ; (v1; v2)0 2 Qg; (4.2)B� = f(x1; x2) : x1 = � v2Rw(1) +R; x2 = v1Rw(1) ; (v1; v2)0 2 Qg: (4.3)The set B� is symmetri to the set A� with respet to the origin. Let C� = A�TB�:1. Let us show for all x =2 C� that the equation H(`; x) = 0 has at least oneroot of the �rst type and one root of the seond type. To prove this, it is suÆientto verify that, for any x; there exist vetors ` and ` suh that H(`; x) < 0 andH(`; x) > 0.Let x =2 A�: Then there exists a vetor è suh that è0x > è0z for any z 2 A�.That is �è0x+ maxz2A� è0z < 0:Denote by x the nearest to x point of A�: The vetor x� x an be onsidered as è:Assume ` = ��è2R=w(1); è1R=w(1)�0 : We haveH(`; x) � `0�w(1)x2R ; �w(1)x1R �0 + `0g +maxv2Q `0v= �è2x2 � è1x1 � è1R+maxv2Q  �è2Rw(1) v1 + è1Rw(1) v2!= �è0x+maxv2Q è0� v2Rw(1) �R; �v1Rw(1) �0 = �è0x+maxz2A� è0z < 0:Similarly, one an show for x =2 B� that there exists a vetor ` suh thatH(`; x) < 0: Therefore, if x =2 C�; then there exists a vetor ` suh thatH(`; x) < 0:Consider ` 6= 0 suh that `0p(x) = 0 and `0g � 0. With the assumption 0 2 intQ;one derives H(`; x) = maxv2Q `0v + `0g > 0:This ompletes the proof.



78 V. S. Patsko & V. L. TurovaLet x 2 intC�:We show that H(`; x) > 0 for all ` 6= 0: Take ` 6= 0: Suppose thatminf`0p(x)' : ' 2 [�1; 1℄g ours for ' = �1 (' = 1): It follows from the de�nitionof the set A� (B�) that for x 2 intA� (x 2 intB�), there exists a vetor v� 2 intQsuh that f(x; �1; v�) = 0 (f(x; 1; v�) = 0): Hene, H(`; x) > 0: Therefore,roots of the �rst and seond type do not exist for x 2 intC�. Due to ontinuityof H , strit roots do not exist for x 2 �C� too.2. Suppose C� = ;: Consider ones spanned onto the sets A� and B� with theapex at the origin. Denote these ones by oneA� and oneB�, respetively. Thepart of oneA� after deleting the setf(x1; x2) : x1 = v2Rw(1)' �R='; x2 = � v1Rw(1)'; 1 < ' <1; (v1; v2)0 2 Qgis denoted by A: Similarly, the set B as the part of oneB� is introdued.One an �nd the domains of the funtions `(j);i(�); j = 1; 2; i = 1; 2: Thedomains are idential for problems 2.1 and 2.3 if the set Q is the same.Figure 11 presents the setsA andB and the domains of the funtions `(j);i(�); j =1; 2; i = 1; 2; for the ase where the set Q is a polygonal approximation of a irleof some radius w(2) with the entre at the origin. The boundaries of A and B aredrawn with the thik lines. There exist two roots of the �rst type and two roots ofthe seond type at eah internal point of the sets A and B: For any point in theexterior of A and B; there exist one root of the �rst type and one root of the seondtype.The sets analogous to that shown in Fig. 11 are used in Isaas (1965), Merz(1971), Lewin and Breakwell (1975), Breakwell (1977) and Lewin and Olsder (1979)to onstrut semipermeable urves. Here, the modi�ation onsists in that theroots of the �rst and seond types are being distinguished and the orrespondingsemipermeable urves of the �rst and seond types are onsidered. The funtion`(j);i(�) is Lipshitz ontinuous on any losed bounded subset of the interior of itsdomain. One an onsider the two-dimensional di�erential equationdx=dt = �`(j);i(x); (4.4)
0`(1);1 `(2);2

`(2);1 `(1);2`(1);1; `(1);2`(2);1; `(2);2A B`(1);1; `(1);2`(2);1; `(2);2
Fig. 11. Domains of `(j);i. Set Q does not depend on x; C� = ;:
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Fig. 12. Families of semipermeable urves. Set Q does not depend on x; C� = ;:where � is the matrix of rotation through the angle �=2; the rotation being lokwiseor ounterlokwise if j = 1 or j = 2, respetively. Sine the tangent vetor at eahpoint of the trajetory de�ned by this equation is a semipermeable diretion, thetrajetories are semipermeable urves. Therefore player P an keep the state vetorx on one side of the urve (positive side), and player E an keep x on the other(negative) side. Further, Eq. (4.4) spei�es a family �(j);i of smooth semipermeableurves.The families �(j);i; j = 1; 2, i = 1; 2; for the games from Ses. 2.1 and 2.3 inthe ase C� = ; are depited in Fig. 12. Eah smooth semipermeable urve isa trajetory of system (2.1) for ontrols of the players that deliver minimum andmaximum in (4.1). The arrows show the diretion of motion in reverse time. Notethat all the pitures an be obtained from one piture by reetions in the x1- andx2-axes.3. Let now C� 6= ;: There are no roots in the set C�; there are four roots in theset R2 n (A�SB�); and there are two roots (one root of the �rst type and one rootof the seond type) in the rest part of the plane that is in (A�SB�)nC�: Figure 13shows the domains of the funtions `(j);i(�) for this ase. The set Q is a irle ofsome radius w(2) > w(1) with the entre at the origin. The digits 4, 2 and 0 statethe number of roots.



80 V. S. Patsko & V. L. Turova`(1);1; `(1);2`(2);1; `(2);24 4`(1);1; `(2);12 `(1);2; `(2);22C�A� B�0Fig. 13. Domains of `(j);i(�): Set Q does not depend on x; C� 6= ;:
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Fig. 14. Family of semipermeable urves for the root `(1);1: Set Q does not depend on x; C� 6= ;:Using (4.4), one an produe the families �(j);i for the ase where C� 6= ;: Fig-ure 14 presents the family �(1);1: The initial points for emitting the semipermeableurves are uniformly distributed over the irumferene of radius 4 with the entreat the origin. The families �(1);2; �(2);1 and �(2);2 an be obtained from �(1);1 byreetions in the x1- and x2-axes. The urves of families belonging to the sametype an be sewed so that the semipermeability property is preserved for a om-posite [see Bernhard (1971), Patsko (1973) and Breakwell (1977)℄ urve obtained.Suh a sewing for semipermeable urves of the �rst (seond) type is only possibleif the sewing point belongs to ertain parts of the boundaries of the sets where thefamilies �(1);1 and �(1);2 ( �(2);1 and �(2);2 ) are de�ned. The omposite urve ofthe �rst or seond type an be smooth in some ases. Very often, the boundary ofthe solvability set is formed by omposite urves [see, for example, Patsko (1973,1975), Lewin and Olsder (1979), Turova (1985) and Patsko and Turova (1995)℄.



Level Sets of the Value Funtion in Di�erential Games 81The following important property holds true for any point x 2 C� = A�TB�:for any ' 2 [�1; 1℄ there exists v 2 Q suh that f(x; '; v) = 0:Therefore, in the region C�; player E an ounter any ontrol of player P , so thestate remains immovable all the time. Further, if a point x with the above propertydoes not belong to the terminal set M , then M annot be reahed from x: We allregions of suh points the superiority sets of player E.4.2. Constraint Q on the ontrol of player E depends on xUsing the form of the domains of `(j);i(�) from Se. 4.1, one an onstrut thedomains for problem 2.2 with Q(x) = k(x)Q; where k(x) = minfjxj; sg=s; s > 0:Let us desribe shematially how it an be done. We have Q(x) = Q outsidethe irle of radius s with the entre at the origin. Inside the irle of radius s; theoeÆient k(x) is proportional to jxj:First note that k(x) = onst for the points x of any irumferene of some �xedradius with the entre at (0; 0): It holds k(x) = 1 outside the irle of radius s: Takea irumferene 
(r) of radius r with the entre at (0; 0): Set k(r) = minfr; sg=sand Q(r) = k(r)Q:Form the sets A�(r) and B�(r) substituting the set Q(r) instead of Q in formulae(4.2) and (4.3) for A� and B�: Let C�(r) = A�(r)TB�(r): Using A�(r) and B�(r);onstrut domains of `(j);i(�); the ases C�(r) = ; and C�(r) 6= ; being distinguished.Put the irumferene 
(r) onto the onstruted domains. As a result, a divisionof the irumferene onto ars is obtained. The number and the type of roots arethe same for all points of eah ar. This tehnique is applied for every r in [0; s℄,and identially named division points are onneted. Thus the irle of radius s isdivided into parts aording to the kinds of roots. Outside this irle, the dividinglines oinide with the lines onstruted for the ase when Q does not depend on x.We now explain the desribed proedure for the ase when Q is a irle ofradius we with the entre at the origin. In this ase, Q(r) is the irle of radius
abd(a) (b)

e

f
Fig. 15. Constrution of domains of funtions `(j);i(�): (a) w(2)(r) � w(1) and (b) w(2)(r) > w(1).
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`(1);1; `(1);2`(2);1; `(2);2A B`(1);1; `(1);2`(2);1; `(2);2
Fig. 16. Domains of `(j);i(�): Set Q depends on x; we = 0:8:
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Fig. 17. Family of semipermeable urves for the root `(1);1: Set Q depends on x; we = 0:8:



Level Sets of the Value Funtion in Di�erential Games 83w(2)(r) = minfr; sgwe=s: The ondition C�(r) = ; means that w(2)(r) < w(1); andthe ondition C�(r) 6= ; is equivalent to the relation w(2)(r) � w(1): If w(2)(r) �w(1), we put the points x 2 
(r) onto the domains of Fig. 11 onstruted forw(2) = w(2)(r). Otherwise, if w(2)(r) > w(1), we put these points onto the domainsof Fig. 13. In Fig. 15(a), the division points a; b;  and d, and those symmetri tothem in the left half-plane, are shown, 
(r) being the dotted line. In Fig. 15(b),the division points e and f , and those symmetri to them, are depited.Figures 16, 18 and 20 were onstruted in this way for the parameters w(1) = 1;R = 0:8; s = 0:75 and we = 0:8; 1:8 and 2. In Fig. 16, the domains of the funtions
4 42 20
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CLFig. 18. Superiority sets CU and CL of player E: Set Q depends on x; we = 1:8:
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Fig. 19. Family of semipermeable urves for the root `(1);1: Set Q depends on x; we = 1:8:



84 V. S. Patsko & V. L. Turova`(j);i(�) are shown, and also the sets that are analogous to A and B in Fig. 11 aremarked. In Fig. 18, two symmetri superiority sets of player E arise, the upper setbeing denoted by CU and the lower set by CL. If we inrease we; the sets CU andCL expand and form a doubly onneted region that is denoted by C� in Fig. 20.The number of roots of the equation H(`; x) = 0 is also given in Figs. 16, 18 and 20.Ars whih separate the domains of the funtions `(j);i (and are similar to that inthe entral part of Fig. 16) are not inluded. In Figs. 17, 19 and 21, the family �(1);1of semipermeable urves for the values of parameters orresponding to Figs. 16, 18and 20 is shown.
4 42 22 2A� C� B�

04Fig. 20. Superiority set C� of player E: Set Q depends on x; we = 2:
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Fig. 21. Family of semipermeable urves for the root `(1);1: Set Q depends on x; we = 2:



Level Sets of the Value Funtion in Di�erential Games 855. Formation of Holes in Solvability Sets due to Superiority SetsThe role of superiority sets in the appearane of holes within the solvability setswill be explained in this setion. For the surveillane-evasion game, the existene ofsuperiority sets of player E annot be a ause for the arising of holes beause the ob-jetive of E is to bring the state to the terminal setM: Therefore the onsiderationsof this setion are related to problems 2.1 and 2.2.We will suppose here that the set Q is a irle of radius we with the entre atthe origin.As noted above, there an be one doubly onneted superiority set C� of playerE, or two simply onneted sets CU and CL; or the superiority set an be empty.1. Let D be a losed set. Assume that the objetive of player E is to bring thestate of the system to the set D: Denote by D̂ the maximal solvability set (vitorydomain) of player E: It follows from the de�nition of D̂ that E an bring the stateof the system to D from any point x 2 D̂; but player P an prevent the state ofthe system from approahing the set D for any point x 62 D̂: The boundary of D̂ isomposed of smooth semipermeable urves of the families �(j);i: The sewing pointspossess the semipermeability property [see Cardaliaguet (1997)℄. In some ases, apart of the boundary of D̂ an oinide with a part of the boundary of D:Below, the set C� or one of the sets CU and CL is used as the set D: Sine inthis ase, D is a superiority set of E, it possesses the property of v-stability [seeKrasovskii and Subbotin (1974, 1988) for the de�nition℄ or, in other terms, theproperty of viability for E [see Aubin (1990) and Cardaliaguet et al. (1995)℄, andthe set D̂ is v-stable too. This means that player E an hold the trajetories of thesystem in D̂ for in�nite time. Hene, if D̂TM = ;, then the time for ahievingthe terminal set M in the main problem is in�nite for any point x in D̂: For thisreason, level lines of the value funtion annot \penetrate" into the set D̂:

(a) (b)
p(1);1 p(2);2

p(2);1 p(1);2CUĈU CL
ĈLp(1);1 p(2);2

Fig. 22. Constrution of the sets ĈU and ĈL on the base of the superiority sets CU and CL:
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p(1);1 p(2);2

(a)
Ĉ�C� Ĉ�

C�
(b)

p(1);1 p(2);2
Fig. 23. Struture of sets Ĉ�: (a) Q depends on x and (b) Q does not depend on x:Due to the simple geometry of the sets D of the problem onsidered, the setsD̂ an be obtained easily using the families of semipermeable urves. For example,Fig. 22(a) presents the on�guration of ĈU . The values of parameters orrespondto Figs. 18 and 19. The sewing point of the urves p(2);2 and p(1);2; and symmetrito it sewing point of the urves p(1);1 and p(2);1; lie on the boundary of CU : InFig. 22(b), an example of the set ĈL is given. The same values of parameters as forFig. 22(a) are used.Figure 23(a) shows the set D̂ = Ĉ� for the ase when the sets CU and CL aremerged in the set C�: A similar struture of the set D̂ is obtained if Q does notdepend on x [see Fig. 23(b)℄.Sine level lines of the value funtion annot penetrate into the set D̂ in the aseD̂TM = ;; one an try to generate examples with holes in solvability sets usingthe knowledge of the geometry of the sets D̂: The onstrution of suh examples isonly possible on the base of a set CU : We will show that only sets ĈU ; but not setsĈL or Ĉ� an our as the holes.2. Let us explain why a set ĈL annot our as the hole. For the set CL, aolletion of expanding v-stable sets an be easily obtained. Figure 24(a) showssuh a olletion omputed for the set CL from Figs. 18, 19 and 22(b). The �rst setof the olletion is ĈL: The boundaries of the sets are formed by the semipermeableurves p(1);1 and p(2);2 whih are symmetri with respet to the axis x2:Figure 24(b) shows the semipermeable urves that form the boundary of someset S from the above olletion. The urve p(1);1 orresponds to the ontrol ' = 1;but the urve p(2);2 orresponds to the ontrol ' = �1: The sign \+" (\�") marksthose sides of semipermeable urves that player P (E) keeps. The urves p(1);1and p(2);2 are faed with negative sides at the intersetion point a: The property ofv-stability means the following: for any x 2 �S and any ' 2 [�1; 1℄ there existsv 2 Q(x) suh that the vetor f(x; '; v) is direted inside the set S or it is tangent
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ĈL
(a) (b)

Sap(1);1 p(2);2�+�+~̀
Fig. 24. (a) Colletion of expanding v-stable sets for the set CL: (b) Explanation of v-stability.to the boundary of S at x: For any point x 2 �S exluding the point a; everyv 2 Q(x) that gives the maximum in (2.1) would be appropriate. A normal vetorto the semipermeable urve in the negative side diretion is onsidered as ` whenomputing the maximum in (2.1). For the point a; the hoie of an appropriate vdepends on ':Let us assume that there exists a hole ĈL whih is loated stritly inside thesolvability set. It follows from this assumption that: 1) ĈLTM = ;; 2) for anyboundary point x of ĈL; there exist points of the fronts that are arbitrarily loseto x: Consider a v-stable set �S from the expanding olletion generated by the setCL and suh that �S and M have ommon points on the boundaries of �S and Monly. Take a point x on a front stritly inside the set �S: Suh a point exists beausethe set ĈL belongs to the interior of the set �S and the fronts ome arbitrarily loseto the set ĈL: Then, player E an keep the trajetories of the system within a seteS; whih is a subset of �S and ontains the point x on its boundary, for in�nite time.This ontradits to the fat that x lies on the front and, therefore, player P bringsthe system to M for a �nite time.Similar arguments are true for sets Ĉ� arising in the aousti or lassial game.3. Let us now onsider the situation with the set ĈU : We show that the set CUannot generate an expanding olletion of v-stable sets.Denote by r[ = w(1)s=we the minimal r for whih C�(r) 6= ;: Consider the irleF (er) of radius er = r[=2 with the entre at the origin. We havew(1) � w(2)(jxj) � w(1) � w(2)(er) = w(1)2 ; x 2 F (er): (5.1)Let �(r) = �R+ w(2)(r)Rw(1) ; r � 0: (5.2)Sine the set CU is stritly above the axis x1, then, for any r � 0; the set C�(r)does not ontain the points of intersetion of the irumferene 
(r) of radius r and



88 V. S. Patsko & V. L. Turovathe entre at the origin with the axis x1. Hener > �(r): (5.3)Let x#(r; �) and x}(r; �) are the right and left intersetion points of thestraight line x2 = � with the irumferene 
(r); 0 � � � er; r � er: Using (5.2)and (5.3), hoose positive e� and e�, e� � er, so thatx#1 (r; �) � e� + �(r); r � er; 0 � � � e�: (5.4)We obtain simultaneouslyx}1 (r; �) � �e� � �(r); r � er; 0 � � � e�: (5.5)Denote by X(�) = fx : 0 < x2 � �g; � � e�; a horizontal strip of the width �over the axis x1.Using (5.4), we obtain x1 � e� + �(jxj) for the points x 2 X(e�) on the right ofthe irle F (er): Hene, it holds_x2j'=�1 = �x1w(1)R + v2 � w(1)� �e�w(1)R � w(2)(jxj) + w(1) + v2 � w(1)� �e�w(1)R (5.6)for any v 2 Q(x) and ' = �1:Similarly, using (5.5), we get_x2j'=1 = x1w(1)R + v2 � w(1) � �e�w(1)R (5.7)for x 2 X(e�) on the left of the irle F (er); any v 2 Q(x) and ' = 1.If a point x 2 X(e�) belongs to the irle F (er) and satis�es the inequalityx1 � �(er)=2 = �R=4; then we obtain_x2j'=�1 = �x1w(1)R + v2 � w(1) � 14w(1) + v2 � w(1) � �14w(1) (5.8)for any v 2 Q(x) and ' = �1: It was taken into aount here that, using (5.1), therelation jv2j � w(2)(jxj) � w(2)(er) = w(1)=2 holds for x 2 F (er).Similarly, if a point x 2 X(e�) belongs to the irle F (er) and satis�es theinequality x1 � R=4; then for any v 2 Q(x) and ' = 1; we get_x2j'=1 = x1w(1)R + v2 � w(1) � �14w(1): (5.9)Let e = minfe�w(1)R ; 14w(1)g:



Level Sets of the Value Funtion in Di�erential Games 89Take positive � � minfe�; er=2g suh that�e we � minfR4 ; er2g: (5.10)Put ' � �1 for the states x0 2 X(�) with x01 � 0: Taking into aount (5.10)and the estimate _x1 = w(1)R x2 + v1 � v1 � �wefor x2 � 0; we obtain that any trajetory emanated from the point x0 remains onthe right side from the vertial straight line x1 = maxf�R=4; �er=2g within thetime �=e: Using (5.6) and (5.8), we get from here that the trajetory arrives at theaxis x1 within this time.Similarly, setting ' = 1 and using (5.7), (5.9) and (5.10), one obtains that anytrajetory emanated from the point x0 2 X(�); x10 � 0; arrives at the axis x1 withinthe time �=e remaining on the left side from the straight line x1 = minfR=4; er=2g.Thus player P an bring trajetories to the axis x1 from any initial point xthat belongs to the strip X(�): It follows from this property that ĈU TX(�) = ;:Moreover, there is no any olletion of v-stable sets that monotonially expands fromthe set ĈU and �lls out the whole plane. Indeed, let us suppose the opposite. Denoteby �S the smallest of v-stable sets that has ommon points with X(�). Then playerE; using the disrimination of player P; an keep trajetories in �S for in�nite time.On the other hand, player P; applying a onstant ontrol, an bring trajetories tothe axis x1 from any point of the set �STX(�) within a �nite time that is he anbring out trajetories from the v-stable set �S: We ome to a ontradition.The onsiderations of this setion make lear that it is impossible to obtainexamples with holes in the solvability sets for the lassial game. For this reason,the aousti game is of partiular interest.6. Analysis of Computation ResultsWe ompute the level sets of the value funtion. The optimal time for a given statex is the minimal time � subjet to x 2 W (�;M):We do not have a priori estimates of the auray of the algorithm. The or-retness of omputations is veri�ed via omparison of omputation results with thequalitative results of Merz (1971), Lewin (1979) and Cardaliaguet (1995). Addi-tionally, the orretness of the onstrution of barriers is heked and the front'sbehavior after the termination of barriers is inspeted. An analytial desription offronts is absent for the examples onsidered.In the following Ses. 6.1 to 6.3, the results of omputing the sets W (�;M); � =i�; for the problems from Ses. 2.1 to 2.3 are disussed. The omputation step �in the examples below is seleted experimentally. For some examples of Se. 6.1,a smaller time step than the one for Ses. 6.2 and 6.3 is required to �nd all �nedetails of the evolution of the fronts. The time step depends also on the size of theterminal set M and on the length of the reverse time interval onsidered.



90 V. S. Patsko & V. L. Turova6.1. Level sets of the value funtion in the homiidal hau�eur gameIn Fig. 25, the omputation results for the following values of parameters are pre-sented: w(1) = 3; w(2) = 1 and R = 3: The set Q is a 25-polygon insribed into theirle of radius w(2) with the entre at (0; 0): The terminal set M is a 15-polygonapproximating the unit irle with the entre at the origin. The step � is 0:01:Every 10th front is plotted. The fronts are symmetri with respet to the x2-axis.The left and right barrier lines terminate on the lower boundary of the sets A andB; respetively. After that, the left and right ends of the front begin to bend aroundthe left and right barrier lines, and two symmetri orner points arise on the front.These orner points beome more and more lose, and at � = 8:42, a self-intersetionof the front ours. As a result, the front is divided into two parts: the internal partand the external one. The omputations are arried out from eah part separately.The internal part of the front propagates upwards sliding with its ends along theorresponding barriers. At � = 10:6; it ollides with the terminal set,and two symmetri gaps whih are �lled out at � = 11:3 arise. The external partof the front propagates outwards and an �ll out the whole plane with the time(the last external front in the piture orresponds to � = 9). Therefore, for eah
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Fig. 25. Level sets of the homiidal hau�eur game for w(1) = 3; w(2) = 1 and R = 3.
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Fig. 26. The graph of the value funtion for w(1) = 3; w(2) = 1 and R = 3.point of the plane, the minimal guaranteed time of approahing the set M is �nite.For the points where the value funtion oinides with the funtion of programmingmaxmin, the optimal guaranteed time an be omputed analytially. Our resultsare in a good agreement with the values given for some partiular points by Raivioand Ehtamo (2000).In Fig. 26, a three-dimensional graph of the value funtion of Fig. 25 exampleis presented. The axes in the horizontal plane are x1 and x2; and the vertial axismeasures the value funtion. The piture shows the value funtion for the regionof (x1; x2) where the fronts are omputed. The programs for the visualization ofsuh graphs were developed by Averbukh and Pykhteev [see Averbukh et al. (1999,2000)℄.For two examples shown in Figs. 27 and 31, the following values of parametersof the problem are used: w(1) = 2; w(2) = 0:6; R = 0:2: The set Q is a 25-polygoninsribed into the irle of radius w(2) with the entre at (0; 0): The set M is aregular polygon insribed into the irle of radius 0:015: The entre of the irle is(0:2; 0:3) and (0;�0:45) for Figs. 27 and 31, respetively. The step � is 0:001: Thesets W (8k�;M); k = 1; 2; :::; are depited.Let us explain the onstrutions presented in Fig. 27. The right barrier lineterminates on the lower boundary of the auxiliary set B. The front begins tobend around this barrier line. After some time, the left barrier line ends on thelower boundary of the set A; and the left part of the front bends around the leftbarrier. The left and right parts of the front go toward eah other until the �rst
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Fig. 27. Compliated struture of level sets in the \region of turn." The terminal set is a smallirle in the �rst quadrant; w(1) = 2; w(2) = 0:6 and R = 0:2:
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-0.6 -0.4 -0.2 0 0.2Fig. 28. Enlarged fragment of Fig. 27.self-intersetion of the front ours at � = 0:725: The front is divided into two parts(internal and external). For � > 0:725; only internal fronts that propagate into the\region of turn" are drawn. Here, a very ompliated struture of fronts arises.
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x1 x2Fig. 29. The graph of the value funtion for level sets in Fig. 27.

x1
Fig. 30. The graph of the value funtion from another point of view.



94 V. S. Patsko & V. L. TurovaAt � = 0:904; the seond self-intersetion of the front whih is drawn with thethik dashed line produes two gaps that are �lled out afterwards separately. Thenext front onsists of three parts: one exterior part (whih is not shown), and twointerior parts (two loops inside the dashed ontour). The greatest value of � in theregion of turn is 0:95: This orresponds to the time when the fronts omplete �llingthe gap on the left hand side of the axis x2: The gap with the entre on the axis x2is �lled at � = 0:948: As a result, the sets W (�;M) for 0:904 < � < 0:948 are triplyonneted. Figure 28 shows an enlarged fragment of Fig. 27.Figures 29 and 30 show three-dimensional graphs of the value funtion orre-sponding to the level sets of Fig. 27. Two di�erent points of view were used. InFig. 30, level lines of the value funtion are additionally plotted onto the graph.In Fig. 31, the fronts are symmetri with respet to the x2-axis. The self-intersetion of the front ours at � = 0:355: The gap that arises after � = 0:355;and whose entre has oordinates (0; 0:22); is �lled out with level lines separately.Filling out the gap �nishes at � = 0:38: The sets W (�;M) for 0:355 < � < 0:38are doubly onneted. At � = 0:766; the front ollides with the barrier lines. Twosymmetri gaps arise. The struture of the fronts within the right gap is shownin an enlarged sale in Fig. 32(a). Filling out the gap ends at � = 0:85: The setsW (�;M); 0:766 < � < 0:85; are triply onneted. The omputations are arried outup to � = 0:872. The value funtion is disontinuous on two symmetri barrier
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0.33 0.355 0.38Fig. 32. Enlarged fragments of Fig. 31.lines that emerge tangentially from the boundary of M and terminate on the upperboundaries of the auxiliary sets A and B: In regions of the aumulation of fronts,the value funtion hanges very rapidly but it is ontinuous. Figure 32(b) shows anenlargement of the aumulation region within the retangle in Fig. 32(a).Let us explain more preisely what happens when fronts begin to bend aroundthe aumulation region. After the front omes onto the lower boundary of theset B; a new orner point k(�) arises on the front [see Fig. 33(a)℄. The point k(�)moves up as � inreases. The point b(�) of the front moves down along the outerside of the barrier line dg at a low rate. The part of the front between points b(�)and k(�) propagates to the outside very slowly. The length of the urve b(�)k(�)beomes smaller as � inreases. The part of the front between points k(�) and (�)moves enough rapidly to the left, and the front ollides with the barrier line dg at� = 0:766:It is useful to ompare this evolution of fronts with the one in Fig. 27 where theends of the front move down along the orresponding barrier lines and then bendaround them. Figure 33(b) shows the bending of the right barrier line. Here thepoint k(�) is the endpoint of the front. It moves up along the outer side of thebarrier line fe:For the example in Fig. 34, the following values of parameters are used: w(1) = 2and R = 0:2: The terminal set M is a regular 25-polygon insribed into the irleof the radius 0.015 with the entre at (0:2;�0:4): The set Q is thetriangle with the verties (�0:96; 0:8), (0:96; 0:8) and (0;�4:8): The step � is 0:001:The sets W (20k�;M); k = 1; 2; :::; are depited. In this example, the left barrier
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Fig. 34. Level sets of the value funtion for w(1) = 2; R = 0:2 and a triangular onstraint Qof player E:
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0 0.1 0.2Fig. 35. Enlarged fragments of Fig. 34.line �nishes on the lower part of the boundary of set A; and the right barrier line�nishes on the upper part of the boundary of set B: The struture of fronts nearthe end of the right barrier line is shown in Fig. 35(a). The aumulation of frontsmeans very rapid hanging of the value funtion. The twisted part of the left barrierline is depited in Fig. 35(b).In all examples presented in this setion, the barriers �nish on the boundariesof the auxiliary sets A and B: This is onsistent with the fat that every barrierline is a smooth semipermeable urve of one of the families desribed in Se. 4,or it is omposed of suh smooth semipermeable urves. All barriers onstrutedapproximate orresponding semipermeable urves very well.The orretness of the omputation of level sets of the value funtion an beadditionally veri�ed using the information about the solvability set of the game ofkind. Very often the solvability set is determined by a system of semipermeableurves of the �rst and seond type whih is generated by the terminal set. Weexplain using the example from Fig. 34 how suh a system an be onstruted.The semipermeable urves p(2);1 2 �(2);1 and p(1);2 2 �(1);2 emanated in re-verse time from the endpoints of the usable part of M do not interset eah otherbefore they terminate on the boundaries of the orresponding domains (Fig. 36).The join of p(2);1 and p(2);2 at the point b is smooth. This provides the semiper-meability property of the omposite semipermeable urve p(2);1S p(2);2 at b: Theurve p(2);1S p(2);2 does not interset p(1);2: Though the join of the ar as � p(1);2and the urve p(1);1 is not smooth, the semipermeability property is ful�lled [seePatsko (1973, 1975), Turova (1985) and Patsko and Turova (1995) for analogoussituations℄ at the juntion point s: Thus the urve asr is a omposite semipermeable



98 V. S. Patsko & V. L. Turova

| ||
-1.5 1.50

-

-

0

1.5

p(2);1p(2);2 p(1);1p(1);2b aM s r x1

x2
A B

Fig. 36. The system of semipermeable urves for the example with the triangle set Q.urve of the �rst type. The omposite semipermeable urves of the �rst and seondtypes do not interset eah other. Further semipermeable urves are not being pro-dued. One an prove using the desribed mutual disposition of the semipermeableurves that the solvability set of the game of kind is the whole plane. Numerialomputation of the level sets of the value funtion on�rms this fat.One an see that the urve p(2);1S p(2);2 is the left barrier line in Fig. 34. Theurve p(1);2 is the right barrier. It is interesting to observe that the urve p(1);1is not a barrier. The value funtion is ontinuous aross this urve. Sine asris a omposite semipermeable urve, the fronts an not penetrate the urve p(1);1from above. Therefore, the ars of the fronts that form the aumulation region inFig. 35(a) should remain above the urve p(1);1: The ful�llment of this property foromputed fronts an be onsidered as an additional on�rmation of the algorithmvalidity.A similar loation of the aumulation region of fronts an be established forthe example in Fig. 31.6.2. Level sets of the value funtion in the aousti gameThe examples of this setion orrespond to the following values of parameters:w(1) = 1; R = 0:8 and s = 0:75: The terminal setM is the retangle f(x1; x2)2 R2 :�3:5 � x1 � 3:5; �0:2 � x2 � 0g: The set Q is a irle of radius we: The on-straint Q(x) is a irle of radius minfjxj; sgwe=s whih is approximated by a poly-gon. Below, the dependene of the solution of the aousti game on the parameterwe is demonstrated.In Fig. 37, the initial omputations for we = 0:4 are shown. The step � is 0:005:The usable part of the terminal set M onsists of three segments: the upper side ofM and two segments on the lower side. The upper fronts that our until � = 0:29



Level Sets of the Value Funtion in Di�erential Games 99are bounded on the left and right by barrier lines. At � = 0:29; these barrier linesmeet the upper boundaries of the sets A and B; so they terminate.
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Fig. 37. Level sets for we = 0:4; 200 upper and lower fronts, every 10th front is plotted.

0.4

0.8

1.2

1.6

2.6 2.8 3 3.2 3.4 3.6

barrier line
end of barrier line *
Fig. 38. The struture of fronts near the barrier line.



100 V. S. Patsko & V. L. TurovaThe value funtion is disontinuous aross the barrier lines. For � > 0:29, the frontsbegin to envelop the barrier lines, and left and right orner points on the upperfront arise. The propagation of the front beyond the barrier lines from these ornerpoints is at a very low rate. An enlargement of this development of the fronts onthe right hand side is presented in Fig. 38.
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Fig. 39. Level sets for we = 0:4; 320 upper fronts, 660 lower fronts.
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Level Sets of the Value Funtion in Di�erential Games 101The ontinuation of the omputation is shown in Fig. 39. The upper and lowerfronts are alulated until � = 1:6 and � = 3:3; respetively. The left and rightlower fronts ollide at � = 1:76: Only one lower front remains after this ollision.The greatest value of � below M ours on the lower boundary of M at the point(0;�0:2):
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102 V. S. Patsko & V. L. TurovaAn enlargement of the aumulation of the lower fronts is shown in Fig. 40. Wesee that the end of the front moves along the terminal set from the end of the usablepart to the point a on the boundary of the set B: The aumulation of fronts beginswhen they approah the semipermeable urve p(1);1 that emanates from the pointa; as shown in Fig. 37. The value funtion hanges very rapidly in the aumulationregion, but it remains ontinuous.Figure 41 presents the omputation results for we = 0:95 and � = 0:005:Figure 42 shows an enlarged fragment of Fig. 41. As in the previous example, theupper barrier lines end at some moment of reverse time, and the fronts begin toenvelop them. The main di�erene from before is the formation of a loop wherethe upper fronts from the two sides of the �gure meet. In this example, the regionwithin this loop (a \lagoon") is �lled out entirely by the further development of thefronts, the �lling out being ompleted at � = 1:68:
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Fig. 43. Level sets for we = 1:5; 746 upper fronts, 340 lower fronts, every 10th front is plotted.



Level Sets of the Value Funtion in Di�erential Games 103An important feature of the lower part of Fig. 41 is that the semipermeableurve p(1);1, emanating from the point a, intersets the right barrier whih is thesemipermeable urve p(2);1. This did not happen in the previous example. Thusthe right lower fronts are on�ned to the right side of the urve p(1);1. The time ofattaining the terminal set beomes in�nite as the fronts approah the urve p(1);1.A symmetri situation ours for the left lower fronts. All the fronts are omputeduntil � = 2:4.The following fats were found experimentally. A lagoon is generated by theupper fronts only if we � 0:65. For we 2 [0:65; 1:37), a lagoon ours and ompletely�lled by the further development of the fronts. For we 2 [1:37; 1:61℄; the fronts donot �ll the lagoon ompletely. For we > 1:61, the lagoon disappears.Figure 43 presents omputational results for we = 1:5 and � = 0:005. The leftand right parts of the upper front meet at � = 2:855. Then the omputation withinthe lagoon begins. The fronts do not penetrate the set ĈU , whih is a hole insidethe solvability set of player P , the value funtion being in�nite for x 2 ĈU . Theomputation is done until � = 3:73. The struture of the lower fronts is similar tothat in the previous example.It is emphasized in Cardaliaguet et al. (1995, 1999) that the vitory domain insimilar examples with holes annot be obtained using semipermeable urves (bar-riers) emitted from the boundary of the terminal set only. Now this onlusion an

x1 x2Fig. 44. The graph of the value funtion for we = 1:5:



104 V. S. Patsko & V. L. Turovabe formulated more preisely: the boundary of the vitory domain is omposed notonly of semipermeable urves issued from the boundary of the terminal set but alsoof semipermeable urves emitted from the boundary of the set CU :In Fig. 44, a three-dimensional graph of the value funtion of Fig. 43 exampleis presented.Further inreases in the value of we extend the set ĈU . The hole is beinginated and beomes \open". The boundary of the vitory domain transforms intoa onneted urve but even in this ase, it is omposed of semipermeable urvesemitted both from the boundary of the terminal set and boundary of the set CU :Figure 45 gives omputational results for we = 1:9 and � = 0:01. The upper andlower fronts are omputed until � = 8:42 and � = 1:6, respetively.The following question an be formulated. Does an example with the homiidalhau�eur dynamis exist where a hole, whih is stritly inside the vitory domain,
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Fig. 45. Level sets for we = 1:9; 842 upper fronts, 160 lower fronts, every 5th front is plotted.



Level Sets of the Value Funtion in Di�erential Games 105does not oinide with the set ĈU? (In this paper, it is shown that suh holes annotoinide with the sets Ĉ� and ĈL:)6.3. Level sets of the value funtion in the surveillane-evasion gameFigures 46 to 51 present the omputational results for w(1) = 1:7. For all the �guresexept for Fig. 51, the set Q is a regular hexagon insribed into the unit irle with

-1

0

1

2

3

-2 -1 0 1 2

A B x1
x2
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abFig. 48. The rise of aumulation of fronts. (a) �� = 136:30 and (b) �� = 1300:the entre at the origin. The verties are (0; 1); (0:5; 0:87); (0:5;�0:87); (0;�1);(�0:5;�0:87) and (�0:5; 0:87): The half-angle �� of the detetion one is 450, 1430,136:30; 1300; 125:60 and 1210 for Figs. 46, 47, 48(a), 48(b), 49(a) and 49(b), re-spetively. Aording to the lassi�ation of the paper Lewin and Olsder (1979),Figs. 46, 47, 48(b) and 49(b) orrespond to ases I, VI, V and IV. Figures 48(a)and 49(a) orrespond to transient states. The step � is 0.01. Figure 46 shows thesets W (�) for � = 2�i; i = 1; 65. In Figs. 47 to 49, the sets W (�) for � = 10�i;i = 1; k; are depited (k = 16; 18 and 58 for Figs. 47, 48(a) and 48(b) to 49, respe-tively). In this setion, the boundaries of sets A and B are marked with dashedlines.The player E esapes from all initial positions within the detetion set in Fig. 46.The omputations are done up to � = 1:3:In Figs. 47 to 49, the gradual hange of the esape zone depending on the value�� is shown. In Figs. 48 and 49, only the right half of every piture is presented.In Fig. 47, the esape zone is bounded by two symmetri barrier lines ab anda0b0 that emanate from the ends of the usable part and interset at point . Themaximal esaping time is � = 1:6:The esape zone in Fig. 48(a) is similar to the one in Fig. 47. The barrier linesthat bound the esape set touh the auxiliary sets A and B in the usp points. Themaximal esaping time is � = 1:8:Further derease in the value of �� yields Fig. 48(b). The esape zone is boundedby mutually symmetri (with respet to the vertial axis) urves aef and a0e0f . The
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abFig. 49. The hange of solution from a bounded to unbounded esape set. (a) �� = 125:60 and(b) �� = 1210:ars ae and a0e0 are parts of the barrier lines ab and a0b0 that �nish on the boundaryof auxiliary sets B and A; respetively. The ar efe0 is a limit of fronts as � !1:In Fig. 49(a), the boundary of the esape zone is also a limit of fronts as � !1:Here, the point e [see Fig. 48(b)℄ oinides with point a:Player E an esape from any point within the detetion set in Fig. 49(b). Thefronts go around the endpoint b of the barrier ab: After passing the point a; the endof the front moves down the line � = �� with a onstant veloity. Thus the detetionone an be ompletely �lled out with the fronts. As noted in Lewin and Olsder(1979), the esape zone oinides with the whole detetion one for ases similar tothat shown in Fig. 49(b).Note that the ase shown in Fig. 48(a) is a transient state from the situationwhere there is no aumulation of fronts (the esape set is similar to that one inFig. 47) to the situation where an aumulation of fronts ours. The ase shownin Fig. 49(a) is a transient state from the ase of the aumulation of fronts to thease where the detetion one is �lled out with the fronts ompletely.Figure 50 presents the fronts for an asymmetri detetion set. The left inlina-tion angle orresponds to ase IV of the lassi�ation of Lewin and Olsder (1979),and the right one orresponds to ase VI.The esape zone in Fig. 51 is similar to the one in Fig. 47 but a 25-polygoninsribed into the unit irle is used as set Q instead of the 6-polygon.
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Fig. 51. Fronts for a irular onstraint Q of player E.Let us ompare the above solutions with those that an be obtained via solvingthe game of kind. When solving the game of kind, semipermeable urves are emitted[see Patsko (1973,1975), Subbotin and Patsko (1984), Turova (1985) and Patsko



Level Sets of the Value Funtion in Di�erential Games 109and Turova (1995)℄ in reverse time from endpoints of the usable part so that thesemipermeability property (the property of barrier) holds at these points. In thegame onsidered, the negative sides of the semipermeable urves emitted fae theusable part. To provide this, a urve of the seond type must emanate from theright endpoint of the usable part, and a urve of the �rst type must emanate fromthe left endpoint. The semipermeable urves with suh properties are absent for theexample in Fig. 46. For the examples in Figs. 47 to 49 and 51, the semipermeableurve p(2);1 of the family �(2);1 emanated in reverse time from the right endpointa of the usable part is proper. The urve p(2);1 is extended to the boundary of thedomain of �(2);1: In Figs. 47 to 49 and 51, the urve ab oinides pratially withp(2);1:For the examples in Figs. 47 and 51, the extended urve an be smoothly on-tinued by a urve p(2);2 of the family �(2);2: After this ontinuation, a smoothomposite semipermeable urve of the seond type is obtained. Let us denote it byg(2): Beause of the symmetry, there is a smooth omposite semipermeable urveg(1) of the �rst type that emanates from the left endpoint a0 of the usable part.The urves g(2) and g(1) interset at a point that lies on the x2-axis. This yields aomposite barrier that bounds the solvability set of the game of kind (the esapeset). The optimal guaranteed time for attaining the terminal set (esaping time) is�nite for any initial point on the barrier. The above-mentioned fats are ompletelyon�rmed by the omputation of the fronts shown in Figs. 47 and 51.For the examples in Figs. 48 and 49, the semipermeable urve p(2);1 annot besmoothly ontinued beyond the endpoint. Moving along the urve p(2);1 from theendpoint toward the point a; one looks for a point from whih a semipermeableurve p(2);2 of the family �(2);2 emanates so that the omposite urve g(2) formedby the initial part of p(2);1 and the urve p(2);2 would possess the semipermeabilityproperty at the sewing point. One an establish that suh sewing points an onlylie on the boundary of the domain of �(2);2: A sewing point with the above propertyexists for the ases shown in Figs. 48 and 49(a).Note that the sewing point in the ase of Fig. 48(a) oinides with the point b(therefore the urve p(2);1 is ompletely inluded into the urve g(2)), but the sewingpoint in the ase of Fig. 49(a) oinides with the point a (therefore no part of theurve p(2);1 is inluded into the urve g(2)). One an see that point e is atually asewing point in the ase shown in Fig. 48(b). There are no sewing points for thease of Fig. 49(b).The pieewise-smooth omposite semipermeable urve g(2) and symmetri to itwith respet to the x2-axis urve g(1) de�ne a solution to the game of kind in theases orresponding to Figs. 48 and 49(a). Parts of these urves till the intersetionpoint on the axis x2 form a omposite barrier that determines the solvability setof the game of kind. However, in ontrast to the examples in Figs. 47 and 51, theesaping time in the ases of Figs. 48(b) and 49(a) is in�nite for any point thatbelongs to those parts of the omposite barrier that are obtained using the urvesp(2);2 and p(1);1: This nontrivial fat was mentioned in Lewin and Olsder (1979),and it is on�rmed by the aumulation of fronts as � ! 1 in Figs. 48(b) and49(a).
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