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LEVEL SETS OF THE VALUE FUNCTION IN DIFFERENTIALGAMES WITH THE HOMICIDAL CHAUFFEUR DYNAMICSV. S. PATSKOInstitute of Mathemati
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hani
s, S.Kovalevskaya str., 16, Ekaterinburg, 620219, Russiae-mail: patsko�imm.uran.ruV .L. TUROVACenter of Advan
ed European Studies and Resear
h, Friedensplatz 16, 53111 Bonn, Germanye-mail: turova�
aesar.deThree di�erential games with the dynami
s of the homi
idal 
hau�eur are 
onsidered.The �rst problem is the Isaa
s' homi
idal 
hau�eur di�erential game. In this game, apursuer P minimizes the 
apture time of an evader E. The obje
tive of the evader is toprevent the 
apture or to maximize the 
apture time. The magnitude of the velo
ity is
onstant for the pursuer, and his maneuverability is bounded through a minimal turnradius. The maneuverability of the evader is not bounded. The pursuer's 
ontrol is therate of turn; the evader steers by 
hoosing dire
tions of his velo
ity. The main di�eren
eof the se
ond problem is that the size of the 
onstraint on the 
ontrol parameter ofthe evader depends on the position of the game. The idea of su
h a modi�
ation wassuggested by Bernhard. The third problem is a 
oni
 surveillan
e-evasion game studiedby Lewin and Olsder. In this game, the dynami
s is the same as in the Isaa
s' problem,but the goals of the players di�er from the 
lassi
 formulation: an evader E minimizesthe time of es
aping from a dete
tion set that is a two-dimensional semi-in�nite 
one.The dete
tion set is atta
hed to the velo
ity ve
tor of a pursuer P whose obje
tive isto keep the evader within the dete
tion set for maximal time. The paper des
ribes the
omputation of level sets of the value fun
tions for these games. The algorithm proposedby the authors is used. An analysis of families of semipermeable 
urves is 
arried out.The results of this analysis are used to 
he
k the 
orre
tness of the 
omputation of levelsets and to explain the appearan
e of holes in vi
tory domains of the pursuer in these
ond problem.1. Introdu
tionThe homi
idal 
hau�eur game was formulated more than thirty years ago in Isaa
s(1965). Sin
e that time, many authors have studied this problem in various ways.The most 
omplete qualitative solution was given in Merz (1971).In many papers [see, for example, Breakwell and Merz (1970), Lewin and Break-well (1975), Breakwell (1977), Lewin and Olsder (1979) and Cardaliaguet et al.67



68 V. S. Patsko & V. L. Turova(1995)℄, the problems with some alterations of the dynami
s or obje
tives of theplayers were 
onsidered.In Bernhard and Larrouturou (1989), an a
ousti
 version of the homi
idal 
hauf-feur problem was proposed. The evader must apply a redu
ed speed (in order not tobe heard by the pursuer) when the distan
e between him and the pursuer be
omesless than a given value. In Cardaliaguet et al. (1995, 1999), level sets of the valuefun
tion for parti
ular magnitudes of parameters of the problem were 
omputedusing an algorithm based on viability theory. The solution to the problem has a
ompli
ated stru
ture: holes in the solvability set (in the vi
tory domain) of thepursuer 
an arise, the evader being safe from the pursuer within these holes.In Lewin and Olsder (1979), a surveillan
e-evasion game with the pursuer'sdete
tion zone in the shape of a 
one was stated and a qualitative solution to thisproblem was given. Similar to Merz (1971), the parameter spa
e of the problem isdivided into subregions. In ea
h subregion, the type of solution (possible singularlines and the strategies of the players) was des
ribed.In this paper, the homi
idal 
hau�eur game in the 
lassi
al statement of Isaa
sand modi�ed problems from Cardaliaguet et al. (1995) and Lewin and Olsder (1979)are studied using an algorithm the authors propose for the 
omputation of level setsof the value fun
tion. Our method is based on general theory of di�erential games[see Krasovskii and Subbotin (1974, 1988)℄. The algorithm is a natural extension ofthe algorithms from Subbotin and Patsko (1984) and exploits ideas of the algorithmsfrom Patsko and Turova (1995, 1996, 1997) for linear time-optimal di�erential gamesin the plane. Some experien
e [see Patsko (1973, 1975), Subbotin and Patsko (1984),Turova (1985) and Patsko and Turova (1995)℄ in solving di�erential games of kind[Isaa
s (1965)℄ in the plane helps to �nd very 
ompli
ated types of solutions andto verify the solutions validity. The 
omputation results are 
onsistent with thoseobtained in Merz (1971), Cardaliaguet et al. (1995, 1999) and Lewin and Olsder(1979). The algorithm uses spe
i�
 properties of the plane and is very a

urate.It allows to explore some �ne pe
uliarities of the solutions. The development ofsu
h algorithms together with the general algorithms from Ushakov (1981, 1998),Taras'yev et al. (1987), Bardi and Fal
one (1990), Bardi et al. (1997, 1999),Ivanov et al. (1993), Cardaliaguet et al. (1994, 1995, 1999), Subbotin (1995), andGrigor'eva et al. (1996) for solving nonlinear di�erential games is of great interestfor the theory of di�erential games and appli
ations.2. Statement of the ProblemThe pursuer P has a �xed speed w(1) but his radius of turn is bounded by a givenquantity R: The evader is inertialess. He steers by 
hoosing his velo
ity ve
tor fromthe set Q: The kinemati
 equations are:P : _xp = w(1) sin E : _xe = v1_yp = w(1) 
os _ye = v2; v 2 Q:_ = w(1)'=R; j'j � 1The number of equations 
an be redu
ed to two [see Isaa
s (1965)℄ if a 
oordinatesystem with the origin at P and the axis x2 in the dire
tion of P 's velo
ity ve
toris used (see Fig. 1).
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Fig. 1. Homi
idal 
hau�eur dynami
s.The dynami
s in the redu
ed 
oordinates is_x1 = �w(1)x2 '=R+ v1_x2 = w(1)x1 '=R+ v2 � w(1); j'j � 1; v 2 Q: (2.1)Here (x1; x2)0 is the state ve
tor whi
h gives the relative position of the evaderE with respe
t to the pursuer P; and w(1) and R are 
onstants whi
h de�ne thepursuer's velo
ity and the minimal radius of turn, respe
tively.2.1. Homi
idal 
hau�eur gameThe obje
tive of the 
ontrol ' of the pursuer is to minimize the time of attaining agiven terminal set M: The obje
tive of the 
ontrol v = (v1; v2)0 of the evader is tomaximize this time. Therefore the payo� of the game is the time of attaining theterminal set.The 
lassi
al formulation [see Isaa
s (1965) and Merz (1971)℄ of the homi
idal
hau�eur game assumes that the sets M and Q are 
ir
les of the radii l (
aptureradius) and w(2); respe
tively, with the 
entres at the origin. It is a

epted thatw(2) < w(1): With the proposed algorithm, level sets of the value fun
tion 
an be
omputed for suÆ
iently wide 
lass of setsM and Q:We assume that Q is a 
onvex
ompa
t set and (0; 0) 2 intQ:2.2. A
ousti
 gameThe dynami
s of the problem is des
ribed by (2.1). The di�eren
e is that the
onstraint on the 
ontrol of player E depends on x: It is given by the formulaQ(x) = k(x)Q; k(x) = min fjxj; sg=s; s > 0:
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Fig. 2. Dete
tion 
one.Here Q is the same as in Se
. 2.1 and s is a parameter. We have Q(x) = Q if jxj � s:The obje
tive of the 
ontrol ' is to minimize the time of attaining a terminal setM: The obje
tive of the 
ontrol v = (v1; v2)0 is to maximize this time.In this paper, the terminal set M in the form of the re
tanglef(x1; x2)2 R2 : �� � x1 � �; �� � x2 � 0g; � > 0; � > 0will be used. The statement of the a
ousti
 problem with su
h terminal set wastaken from Cardaliaguet et al. (1995). Very interesting 
ases from the mathemati
alpoint of view arise when the horizontal side of the re
tangle is mu
h greater thanits verti
al side.2.3. Coni
 surveillan
e-evasion gameThe statement of the problem is given in Lewin and Olsder (1979). The dynami
s ofthe game is des
ribed by (2.1). The terminal set M is the 
omplement of the opendete
tion 
one depi
ted in Fig. 2. The obje
tive of the 
ontrol v = (v1; v2)0 of theevaderE is to minimize the time of attainingM: The obje
tive of the 
ontrol ' of thepursuer P is to maximize this time. Therefore, in 
ontrast to the Isaa
s' homi
idal
hau�eur game, the roles of the players 
hange: the evader is the \minimizing"player and the pursuer is the \maximizing" one.In the following, for the uniformity of notation of the 
onstraint of player E; letus agree that Q(x) = Q for problems 2.1 and 2.3.2.4. Level sets of the value fun
tionWe restri
t ourselves to a 
on
eptual de�nition of level sets of the value fun
tion.The pre
ise de�nition 
an be found in Krasovskii and Subbotin (1974, 1988).Let T � 0: The level set (the Lebesgue set) of the value fun
tion is denoted byW (T;M): This is the set of all points in the plane su
h that the minimizing playerusing feedba
k strategies 
an guarantee the transition of traje
tories of the system(2.1) to the terminal set M within time T:
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Fig. 3. Constru
tion of the sets W (i�;M):3. The AlgorithmIn this se
tion, the basi
 idea of the algorithm for 
omputing sets W (T;M) isdes
ribed.The set W (T;M) is formed via a step-by-step ba
kward pro
edure giving asequen
e of embedded setsW (�;M) �W (2�;M) �W (3�;M) � ::: �W (i�;M) � ::: �W (T;M):Here � is the step of the ba
kward pro
edure. Ea
h set W (i�;M) 
onsists ofall initial points from whi
h the minimizing player guarantees the attainment ofW ((i� 1)�;M) within time �: We put W (0;M) =M .This is a dynami
 programming method. In the theory of di�erential games,the fundamental ideas of the ba
kward 
onstru
tion of level sets were 
onsidered inworks of Isaa
s, Fleming, Pontryagin, Krasovskii and Ps
heni
hnyi.The 
ru
ial point of our algorithm is the 
omputation of \fronts". The front Fi(Fig. 3) is the set of all points of �W (i�;M) with the property that the minimalguaranteed time of attaining the previous set W ((i� 1)�;M) is equal to �: Forother points of �W (i�;M); the optimal time is less than �: The line �W (i�;M)nFi possesses the properties of the barrier [see Isaa
s(1965) for the de�nition℄. Thefront Fi is 
omputed using the previous front Fi�1: For the �rst step of the ba
kwardpro
edure, F0 
oin
ides with the usable part [see Isaa
s(1965) for the de�nition℄ �0of the boundary ofM: It may be one or several usable parts. The 
omputations are
arried out separately for ea
h usable part. One should take into a

ount that theobtaining parts of the level set 
an 
ollide with ea
h other. From here on we willassume for simpli
ity that only one usable part is on the boundary of M:Let us explain, assuming the problems from Se
s. 2.1 and 2.2, how the fronts
an be 
onstru
ted. We write Q(x) although the 
onstraint Q of player E does notdepend on x in the 
ase of problem 2.1. Using the notation p(x) = (�x2; x1)0 �w(1)=Rand g = (0;�w(1))0; we rewrite the Eqs. (2.1) as _x = p(x)'+ v + g: First, supposethat the front Fi�1 is a smooth 
urve. We distinguish points of lo
al 
onvexityand points of lo
al 
on
avity. In Fig. 4, d is a point of lo
al 
onvexity, and e isa point of lo
al 
on
avity. Let x� be a point of lo
al 
onvexity on Fi�1 and ` bethe normal ve
tor to the front at x� dire
ted outside the set W ((i � 1)�;M): Put'Æ = argminf`0p(x�)' : j'j � 1g and vÆ = argmaxf`0v : v 2 Q(x�)g: We 
all 'Æ
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+� d eFig. 4. Lo
al 
onvexity and 
on
avity.
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Fig. 5. Nonuniqueness of extremal 
ontrols.and vÆ the extremal 
ontrols. Similarly, for the points of lo
al 
onvexity, the innernormal ve
tor to the set W ((i � 1)�;M) at x� is 
onsidered, and the extremal
ontrols 'Æ = argmaxf`0p(x�)' : j'j � 1g and vÆ = argminf`0v : v 2 Q(x�)g areintrodu
ed. A
tually, the distin
tion of outer and inner normals for 
ases of lo
al
onvexity and 
on
avity is 
onvenient when fronts are treated as polygonal lines.If the ve
tor x� is 
ollinear to `; then any 
ontrol ' 2 [�1; 1℄ is extremal. IfQ(x�) is a polygon in the plane, and ` is 
ollinear to some normal ve
tor to anedge [q1; q2℄ of Q(x�); then any 
ontrol q 2 [q1; q2℄ is extremal.Using the extremal 
ontrols, one 
omputes the extremal traje
tories x(�) =x� � � (p(x�)'Æ + vÆ + g); � 2 (0;�℄, started from the front points, in reversetime. The ends of these traje
tories at � = � are used to form the next frontFi: If the extremal 
ontrol 'Æ is not unique at some point x� 2 Fi�1, then thesegment �(x�) = fx� �� (p(x�)'Æ + vÆ + g) : 'Æ 2 [�1; 1℄g is 
onsidered insteadof the single point. Similarly, if the extremal 
ontrol vÆ is not unique, the segment�(x�) = fx� �� (p(x�)'Æ + vÆ + g) : vÆ 2 [q1; q2℄g is 
onsidered.If x� is a point of lo
al 
onvexity, and the extremal 
ontrol 'Æ is not unique, oneobtains a lo
al pi
ture like that shown in Fig. 5(a) after 
omputing the extremaltraje
tories from the point x�: Here, an additional segment �(x�) appears on thenew front Fi: If the extremal 
ontrol vÆ is not unique, a lo
al pi
ture similar to thatshown in Fig. 5(b) is obtained. The \swallow tail " �1��2 does not belong to thenew front Fi; and it is taken away. For points of lo
al 
on
avity, there is an inversesituation: if the extremal 
ontrol 'Æ is not unique, a swallow tail that should be
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Fig. 6. Computation of fronts.removed o

urs [Fig. 5(
)℄; if the extremal 
ontrol vÆ is not unique, an additionalsegment �(x�) appears on the new front Fi [Fig. 5(d)℄. If both 'Æ and vÆ are non-unique, an insertion or a swallow tail o

urs depending on whi
h of segments �(x�)or �(x�) is greater.In the 
ourse of numeri
al 
omputations, we operate with polygonal lines insteadof smooth 
urves. Let the front Fi�1 be 
omputed. One 
an divide it into regularparts so that the extremal traje
tories emanating from the points of one part donot interse
t for � 2 (0;�℄. Thus, ea
h regular part generates a regular �eld ofextremal traje
tories. The ends of these traje
tories form an ordered 
olle
tion ofpoints. Being 
onne
ted, these points give a polygonal line, whi
h is 
alled these
ondary ar
. The new front Fi is obtained by pro
essing the regular se
ondaryar
s, the pro
essing being redu
ed to the interse
tion of se
ondary ar
s. In Fig. 6,the front Fi�1 
onsists of two regular parts: [z1 � � � z!℄ and [z! � � � zr℄: The endsof the extremal traje
tories 
omputed at � = � give two se
ondary ar
s, namely[�1�2 � � � �s℄ and [�s+1 � � � �m℄: The front Fi = [�1�2 � � � �� � � � �m℄ is obtained afterremoving the swallow tail �s���s+1:Unfortunately, very often it is not suÆ
ient to interse
t the neighboring se
-ondary ar
s only. Figure 7 gives an example where the se
ondary ar
s S1; S2 and S3are 
omputed sequentially, but the next front is obtained due to the interse
tionof S1 and S3.The de
omposition of the front Fi�1 into regular parts is being done when pro-
essing its verti
es. Two normal ve
tors to the links [a; b℄ and [b; 
℄ of the polygonalline are 
onsidered at ea
h vertex b (Fig. 8). At the endpoints of the front, themissing extreme normals are 
omputed from spe
ial relations [see Patsko and Tur-ova (1995)℄. The algorithm treats all possible variants of disposition of the normalve
tors `[ab℄ and `[b
℄ to the edges of Fi�1; the normals to the edges of Q(b); and thenormals to the segment fp(b)' : ' 2 [�1; 1℄g: The ve
tors b (from the origin to thepoint b) and �b are used as the normal ve
tors to the last segment. In Fig. 8, for
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Fi�1

S1 S2S3Fig. 7. Se
ondary ar
s: 
ompli
ated 
ase of disposition.
K �a b 
� �1 �2�3�4 
�`[ab℄ `[b
℄

K �`[ab℄ `[b
℄Ob 6Æn1 n206 Æn1 n2Q(b)q1 q2 q3Fig. 8. Example of lo
al 
onstru
tions.instan
e, the ve
tor b is between the ve
tors `[ab℄ and `[b
℄; and the normals n1 andn2 to the set Q(b) are between the ve
tors b and `[b
℄: Sin
e b is the point of lo
al
onvexity, the lo
ation of normals to the set Q(b) between the ve
tors `[ab℄ and `[b
℄means that b is one of the de
omposition points that separate the front Fi�1 intoregular parts. The ends of the extremal traje
tories 
omputed at � = � give a lo
alpi
ture shown in the left half of Fig. 8. Here, four extremal traje
tories emerge fromthe point b: Their ends are �1; �2; �3 and �4: The segment [�1; �2℄ appears due tononuniqueness of the extremal 
ontrol 'Æ for the ve
tor b: The segments [�2; �3℄and [�3; �4℄ arise due to nonuniqueness of the extremal 
ontrol vÆ for the ve
tors n1and n2: After removing the swallow tail �2��4; the polygonal line ��1�
 be
omesa fragment of the next front Fi:Some additional details of su
h lo
al 
onstru
tions are given in Patsko and Tur-ova (1997). The main di�eren
e from the 
ase of the linear dynami
s [see Patskoand Turova (1997)℄ is that the extremal 
ontrol of player P 
an 
hange its valuenot only at the front's verti
es but also at some interior points of the front's links.
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onsidered, su
h a swit
hing may o

ur only on
e for ea
h front link.Let us explain the last assertion. LetK be a straight line and ` its normal ve
tor.Sin
e the restri
tion of the s
alar fun
tion `0p(x) to K is a linear fun
tion in x; theexpression `0p(x) 
an 
hange its sign only on
e for x 2 K: Therefore, the extremal
ontrol of player P; whi
h is determined by the formula argminf`0p(x)' : j'j � 1g;
an swit
h only on
e if x runs throughK: The swit
hing happens at the point �x 2 Kfor whi
h the ve
tor �x is orthogonal to K: If 0 2 K, then �x = 0.In order to take into a

ount the dependen
e of the 
onstraint of player E on x;other additional division points on the front links may also be introdu
ed.In the 
ase of surveillan
e-evasion game from Se
. 2.3, the players 
hange theirroles: the extremal 
ontrols of the pursuer P and the evader E are determined viathe relations 'Æ = argmaxf`0p(x�)' : j'j � 1g and vÆ = argminf`0v : v 2 Qg;for every point x� of lo
al 
onvexity and outer normal ` to the front at x�: Forthe points of lo
al 
on
avity, the extremal 
ontrols of P and E are de�ned by theformulae 'Æ = argminf`0p(x�)' : j'j � 1g and vÆ = argmaxf`0v : v 2 Qg; where `is an inner normal to the front at x�. So, the lo
al 
onstru
tions des
ribed earlierfor the points of lo
al 
onvexity are now true for the points of lo
al 
on
avity, andvi
e versa.4. Semipermeable Curves in Di�erential Games with the Homi
idalChau�eur Dynami
sThis se
tion gives the results of some analysis of families of smooth semipermeable
urves in di�erential games with homi
idal 
hau�eur dynami
s. The semipermeable
urves 
an be helpful for 
he
king the 
omputation of level sets of the value fun
tion.The families of semipermeable 
urves are determined from only the dynami
s ofthe system and the bounds on the 
ontrols of the players.We explain now what semipermeable 
urves mean [see also Isaa
s (1965)℄. LetH(`; x) = minj'j�1 maxv2Q(x) `0f(x; '; v)= maxv2Q(x) minj'j�1 `0f(x; '; v); x 2 R2; ` 2 R2 (4.1)be the Hamiltonian of the game. Here f(x; '; v) = p(x)' + v + g: Fix x 2 R2and 
onsider ` su
h that H(`; x) = 0: Letting '� = argminf`0p(x)' : j'j � 1gand v� = argmaxf`0v : v 2 Q(x)g, it follows that `0f(x; '�; v) � 0 holds for anyv 2 Q(x), and `0f(x; '; v�) � 0 holds for any ' 2 [�1; 1℄. This means thatthe dire
tion f(x; '�; v�); whi
h is orthogonal to `; separates the ve
togramsU(v�) = ff(x; '; v�): ' 2 [�1; 1℄g and V ('�) = ff(x; '�; v): v 2 Q(x)g of playersP and E as in Fig. 9. Su
h a dire
tion is 
alled semipermeable. A smooth 
urve is
alled a semipermeable 
urve if the tangent ve
tor at any point of this 
urve is asemipermeable dire
tion.The number of semipermeable dire
tions depends on the form of the fun
tion`! H(`; x) at the point x: In the 
ase 
onsidered, the fun
tion H(�; x) is 
omposed
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onvex fun
tions:H(`; x) =8<: maxv2Q(x) `0v + `0p(x) + `0g if `0p(x) < 0;maxv2Q(x) `0v � `0p(x) + `0g if `0p(x) � 0:The semipermeable dire
tions are derived from the roots of the equationH(`; x)= 0.We will distinguish the roots \�" to \+" and the roots \+" to \�". When 
las-sifying these roots, we suppose that ` 2 E ; where E is the boundary of a 
onvexpolygon 
ontaining the origin. We say that `� is a root � to + if H(`�; x) = 0, andif H(`; x) < 0 (H(`; x) > 0) for ` < `� (` > `�) that are suÆ
iently 
lose to `�,where the notation ` < `� means that the dire
tion of the ve
tor ` 
an be obtainedfrom the dire
tion of the ve
tor `� using a 
ounter
lo
kwise rotation through anangle not ex
eeding �. The roots � to + and the roots + to � are 
alled roots ofthe �rst and se
ond type, respe
tively.
� W ~+9 � `U(v�)

V ('�)
+ �

x
f(x; '�; v�) R	

Fig. 9. Semipermeable dire
tion.
0 gp(x)�p(x)

`(2);1
`(1);2

`(1);1
`(2);2Fig. 10. Appearan
e of four roots.
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tion in Di�erential Games 77We denote roots of the �rst type by `(1);i(x) and roots of the se
ond typeby `(2);i(x): The right index takes the value 1 or 2, and indi
ates the half-planef` 2 R2 : `0p(x) < 0g or f` 2 R2 : `0p(x) � 0g. Figure 10 explains the appearan
eof four roots in terms of ve
tograms. The upper and lower 
ir
les are the ve
togramsof player E for ' = 1 and ' = �1; respe
tively.Due to the above mentioned property of the pie
ewise 
onvexity of the fun
tionH(�; x), the equation H(`; x) = 0 
an have at most two roots of ea
h type for anygiven x.We now des
ribe how the families of smooth semipermeable 
urves 
an be 
on-stru
ted.4.1. Constraint Q on the 
ontrol of player E does not depend on xAssume that the 
onstraint Q does not depend on x that is Q(x) = Q: DenoteA� = f(x1; x2) : x1 = v2Rw(1) �R; x2 = � v1Rw(1) ; (v1; v2)0 2 Qg; (4.2)B� = f(x1; x2) : x1 = � v2Rw(1) +R; x2 = v1Rw(1) ; (v1; v2)0 2 Qg: (4.3)The set B� is symmetri
 to the set A� with respe
t to the origin. Let C� = A�TB�:1. Let us show for all x =2 C� that the equation H(`; x) = 0 has at least oneroot of the �rst type and one root of the se
ond type. To prove this, it is suÆ
ientto verify that, for any x; there exist ve
tors ` and ` su
h that H(`; x) < 0 andH(`; x) > 0.Let x =2 A�: Then there exists a ve
tor è su
h that è0x > è0z for any z 2 A�.That is �è0x+ maxz2A� è0z < 0:Denote by x the nearest to x point of A�: The ve
tor x� x 
an be 
onsidered as è:Assume ` = ��è2R=w(1); è1R=w(1)�0 : We haveH(`; x) � `0�w(1)x2R ; �w(1)x1R �0 + `0g +maxv2Q `0v= �è2x2 � è1x1 � è1R+maxv2Q  �è2Rw(1) v1 + è1Rw(1) v2!= �è0x+maxv2Q è0� v2Rw(1) �R; �v1Rw(1) �0 = �è0x+maxz2A� è0z < 0:Similarly, one 
an show for x =2 B� that there exists a ve
tor ` su
h thatH(`; x) < 0: Therefore, if x =2 C�; then there exists a ve
tor ` su
h thatH(`; x) < 0:Consider ` 6= 0 su
h that `0p(x) = 0 and `0g � 0. With the assumption 0 2 intQ;one derives H(`; x) = maxv2Q `0v + `0g > 0:This 
ompletes the proof.



78 V. S. Patsko & V. L. TurovaLet x 2 intC�:We show that H(`; x) > 0 for all ` 6= 0: Take ` 6= 0: Suppose thatminf`0p(x)' : ' 2 [�1; 1℄g o

urs for ' = �1 (' = 1): It follows from the de�nitionof the set A� (B�) that for x 2 intA� (x 2 intB�), there exists a ve
tor v� 2 intQsu
h that f(x; �1; v�) = 0 (f(x; 1; v�) = 0): Hen
e, H(`; x) > 0: Therefore,roots of the �rst and se
ond type do not exist for x 2 intC�. Due to 
ontinuityof H , stri
t roots do not exist for x 2 �C� too.2. Suppose C� = ;: Consider 
ones spanned onto the sets A� and B� with theapex at the origin. Denote these 
ones by 
oneA� and 
oneB�, respe
tively. Thepart of 
oneA� after deleting the setf(x1; x2) : x1 = v2Rw(1)' �R='; x2 = � v1Rw(1)'; 1 < ' <1; (v1; v2)0 2 Qgis denoted by A: Similarly, the set B as the part of 
oneB� is introdu
ed.One 
an �nd the domains of the fun
tions `(j);i(�); j = 1; 2; i = 1; 2: Thedomains are identi
al for problems 2.1 and 2.3 if the set Q is the same.Figure 11 presents the setsA andB and the domains of the fun
tions `(j);i(�); j =1; 2; i = 1; 2; for the 
ase where the set Q is a polygonal approximation of a 
ir
leof some radius w(2) with the 
entre at the origin. The boundaries of A and B aredrawn with the thi
k lines. There exist two roots of the �rst type and two roots ofthe se
ond type at ea
h internal point of the sets A and B: For any point in theexterior of A and B; there exist one root of the �rst type and one root of the se
ondtype.The sets analogous to that shown in Fig. 11 are used in Isaa
s (1965), Merz(1971), Lewin and Breakwell (1975), Breakwell (1977) and Lewin and Olsder (1979)to 
onstru
t semipermeable 
urves. Here, the modi�
ation 
onsists in that theroots of the �rst and se
ond types are being distinguished and the 
orrespondingsemipermeable 
urves of the �rst and se
ond types are 
onsidered. The fun
tion`(j);i(�) is Lips
hitz 
ontinuous on any 
losed bounded subset of the interior of itsdomain. One 
an 
onsider the two-dimensional di�erential equationdx=dt = �`(j);i(x); (4.4)
0`(1);1 `(2);2

`(2);1 `(1);2`(1);1; `(1);2`(2);1; `(2);2A B`(1);1; `(1);2`(2);1; `(2);2
Fig. 11. Domains of `(j);i. Set Q does not depend on x; C� = ;:
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Fig. 12. Families of semipermeable 
urves. Set Q does not depend on x; C� = ;:where � is the matrix of rotation through the angle �=2; the rotation being 
lo
kwiseor 
ounter
lo
kwise if j = 1 or j = 2, respe
tively. Sin
e the tangent ve
tor at ea
hpoint of the traje
tory de�ned by this equation is a semipermeable dire
tion, thetraje
tories are semipermeable 
urves. Therefore player P 
an keep the state ve
torx on one side of the 
urve (positive side), and player E 
an keep x on the other(negative) side. Further, Eq. (4.4) spe
i�es a family �(j);i of smooth semipermeable
urves.The families �(j);i; j = 1; 2, i = 1; 2; for the games from Se
s. 2.1 and 2.3 inthe 
ase C� = ; are depi
ted in Fig. 12. Ea
h smooth semipermeable 
urve isa traje
tory of system (2.1) for 
ontrols of the players that deliver minimum andmaximum in (4.1). The arrows show the dire
tion of motion in reverse time. Notethat all the pi
tures 
an be obtained from one pi
ture by re
e
tions in the x1- andx2-axes.3. Let now C� 6= ;: There are no roots in the set C�; there are four roots in theset R2 n (A�SB�); and there are two roots (one root of the �rst type and one rootof the se
ond type) in the rest part of the plane that is in (A�SB�)nC�: Figure 13shows the domains of the fun
tions `(j);i(�) for this 
ase. The set Q is a 
ir
le ofsome radius w(2) > w(1) with the 
entre at the origin. The digits 4, 2 and 0 statethe number of roots.



80 V. S. Patsko & V. L. Turova`(1);1; `(1);2`(2);1; `(2);24 4`(1);1; `(2);12 `(1);2; `(2);22C�A� B�0Fig. 13. Domains of `(j);i(�): Set Q does not depend on x; C� 6= ;:
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Fig. 14. Family of semipermeable 
urves for the root `(1);1: Set Q does not depend on x; C� 6= ;:Using (4.4), one 
an produ
e the families �(j);i for the 
ase where C� 6= ;: Fig-ure 14 presents the family �(1);1: The initial points for emitting the semipermeable
urves are uniformly distributed over the 
ir
umferen
e of radius 4 with the 
entreat the origin. The families �(1);2; �(2);1 and �(2);2 
an be obtained from �(1);1 byre
e
tions in the x1- and x2-axes. The 
urves of families belonging to the sametype 
an be sewed so that the semipermeability property is preserved for a 
om-posite [see Bernhard (1971), Patsko (1973) and Breakwell (1977)℄ 
urve obtained.Su
h a sewing for semipermeable 
urves of the �rst (se
ond) type is only possibleif the sewing point belongs to 
ertain parts of the boundaries of the sets where thefamilies �(1);1 and �(1);2 ( �(2);1 and �(2);2 ) are de�ned. The 
omposite 
urve ofthe �rst or se
ond type 
an be smooth in some 
ases. Very often, the boundary ofthe solvability set is formed by 
omposite 
urves [see, for example, Patsko (1973,1975), Lewin and Olsder (1979), Turova (1985) and Patsko and Turova (1995)℄.



Level Sets of the Value Fun
tion in Di�erential Games 81The following important property holds true for any point x 2 C� = A�TB�:for any ' 2 [�1; 1℄ there exists v 2 Q su
h that f(x; '; v) = 0:Therefore, in the region C�; player E 
an 
ounter any 
ontrol of player P , so thestate remains immovable all the time. Further, if a point x with the above propertydoes not belong to the terminal set M , then M 
annot be rea
hed from x: We 
allregions of su
h points the superiority sets of player E.4.2. Constraint Q on the 
ontrol of player E depends on xUsing the form of the domains of `(j);i(�) from Se
. 4.1, one 
an 
onstru
t thedomains for problem 2.2 with Q(x) = k(x)Q; where k(x) = minfjxj; sg=s; s > 0:Let us des
ribe s
hemati
ally how it 
an be done. We have Q(x) = Q outsidethe 
ir
le of radius s with the 
entre at the origin. Inside the 
ir
le of radius s; the
oeÆ
ient k(x) is proportional to jxj:First note that k(x) = 
onst for the points x of any 
ir
umferen
e of some �xedradius with the 
entre at (0; 0): It holds k(x) = 1 outside the 
ir
le of radius s: Takea 
ir
umferen
e 
(r) of radius r with the 
entre at (0; 0): Set k(r) = minfr; sg=sand Q(r) = k(r)Q:Form the sets A�(r) and B�(r) substituting the set Q(r) instead of Q in formulae(4.2) and (4.3) for A� and B�: Let C�(r) = A�(r)TB�(r): Using A�(r) and B�(r);
onstru
t domains of `(j);i(�); the 
ases C�(r) = ; and C�(r) 6= ; being distinguished.Put the 
ir
umferen
e 
(r) onto the 
onstru
ted domains. As a result, a divisionof the 
ir
umferen
e onto ar
s is obtained. The number and the type of roots arethe same for all points of ea
h ar
. This te
hnique is applied for every r in [0; s℄,and identi
ally named division points are 
onne
ted. Thus the 
ir
le of radius s isdivided into parts a

ording to the kinds of roots. Outside this 
ir
le, the dividinglines 
oin
ide with the lines 
onstru
ted for the 
ase when Q does not depend on x.We now explain the des
ribed pro
edure for the 
ase when Q is a 
ir
le ofradius we with the 
entre at the origin. In this 
ase, Q(r) is the 
ir
le of radius
ab
d(a) (b)

e

f
Fig. 15. Constru
tion of domains of fun
tions `(j);i(�): (a) w(2)(r) � w(1) and (b) w(2)(r) > w(1).
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4 4
2

2
2 2
`(1);1 `(2);2
`(2);1 `(1);2

`(1);1; `(1);2`(2);1; `(2);2A B`(1);1; `(1);2`(2);1; `(2);2
Fig. 16. Domains of `(j);i(�): Set Q depends on x; we = 0:8:
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Fig. 17. Family of semipermeable 
urves for the root `(1);1: Set Q depends on x; we = 0:8:
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tion in Di�erential Games 83w(2)(r) = minfr; sgwe=s: The 
ondition C�(r) = ; means that w(2)(r) < w(1); andthe 
ondition C�(r) 6= ; is equivalent to the relation w(2)(r) � w(1): If w(2)(r) �w(1), we put the points x 2 
(r) onto the domains of Fig. 11 
onstru
ted forw(2) = w(2)(r). Otherwise, if w(2)(r) > w(1), we put these points onto the domainsof Fig. 13. In Fig. 15(a), the division points a; b; 
 and d, and those symmetri
 tothem in the left half-plane, are shown, 
(r) being the dotted line. In Fig. 15(b),the division points e and f , and those symmetri
 to them, are depi
ted.Figures 16, 18 and 20 were 
onstru
ted in this way for the parameters w(1) = 1;R = 0:8; s = 0:75 and we = 0:8; 1:8 and 2. In Fig. 16, the domains of the fun
tions
4 42 20

04
CU
CLFig. 18. Superiority sets CU and CL of player E: Set Q depends on x; we = 1:8:
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Fig. 19. Family of semipermeable 
urves for the root `(1);1: Set Q depends on x; we = 1:8:



84 V. S. Patsko & V. L. Turova`(j);i(�) are shown, and also the sets that are analogous to A and B in Fig. 11 aremarked. In Fig. 18, two symmetri
 superiority sets of player E arise, the upper setbeing denoted by CU and the lower set by CL. If we in
rease we; the sets CU andCL expand and form a doubly 
onne
ted region that is denoted by C� in Fig. 20.The number of roots of the equation H(`; x) = 0 is also given in Figs. 16, 18 and 20.Ar
s whi
h separate the domains of the fun
tions `(j);i (and are similar to that inthe 
entral part of Fig. 16) are not in
luded. In Figs. 17, 19 and 21, the family �(1);1of semipermeable 
urves for the values of parameters 
orresponding to Figs. 16, 18and 20 is shown.
4 42 22 2A� C� B�

04Fig. 20. Superiority set C� of player E: Set Q depends on x; we = 2:
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Fig. 21. Family of semipermeable 
urves for the root `(1);1: Set Q depends on x; we = 2:



Level Sets of the Value Fun
tion in Di�erential Games 855. Formation of Holes in Solvability Sets due to Superiority SetsThe role of superiority sets in the appearan
e of holes within the solvability setswill be explained in this se
tion. For the surveillan
e-evasion game, the existen
e ofsuperiority sets of player E 
annot be a 
ause for the arising of holes be
ause the ob-je
tive of E is to bring the state to the terminal setM: Therefore the 
onsiderationsof this se
tion are related to problems 2.1 and 2.2.We will suppose here that the set Q is a 
ir
le of radius we with the 
entre atthe origin.As noted above, there 
an be one doubly 
onne
ted superiority set C� of playerE, or two simply 
onne
ted sets CU and CL; or the superiority set 
an be empty.1. Let D be a 
losed set. Assume that the obje
tive of player E is to bring thestate of the system to the set D: Denote by D̂ the maximal solvability set (vi
torydomain) of player E: It follows from the de�nition of D̂ that E 
an bring the stateof the system to D from any point x 2 D̂; but player P 
an prevent the state ofthe system from approa
hing the set D for any point x 62 D̂: The boundary of D̂ is
omposed of smooth semipermeable 
urves of the families �(j);i: The sewing pointspossess the semipermeability property [see Cardaliaguet (1997)℄. In some 
ases, apart of the boundary of D̂ 
an 
oin
ide with a part of the boundary of D:Below, the set C� or one of the sets CU and CL is used as the set D: Sin
e inthis 
ase, D is a superiority set of E, it possesses the property of v-stability [seeKrasovskii and Subbotin (1974, 1988) for the de�nition℄ or, in other terms, theproperty of viability for E [see Aubin (1990) and Cardaliaguet et al. (1995)℄, andthe set D̂ is v-stable too. This means that player E 
an hold the traje
tories of thesystem in D̂ for in�nite time. Hen
e, if D̂TM = ;, then the time for a
hievingthe terminal set M in the main problem is in�nite for any point x in D̂: For thisreason, level lines of the value fun
tion 
annot \penetrate" into the set D̂:

(a) (b)
p(1);1 p(2);2

p(2);1 p(1);2CUĈU CL
ĈLp(1);1 p(2);2

Fig. 22. Constru
tion of the sets ĈU and ĈL on the base of the superiority sets CU and CL:
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p(1);1 p(2);2

(a)
Ĉ�C� Ĉ�

C�
(b)

p(1);1 p(2);2
Fig. 23. Stru
ture of sets Ĉ�: (a) Q depends on x and (b) Q does not depend on x:Due to the simple geometry of the sets D of the problem 
onsidered, the setsD̂ 
an be obtained easily using the families of semipermeable 
urves. For example,Fig. 22(a) presents the 
on�guration of ĈU . The values of parameters 
orrespondto Figs. 18 and 19. The sewing point of the 
urves p(2);2 and p(1);2; and symmetri
to it sewing point of the 
urves p(1);1 and p(2);1; lie on the boundary of CU : InFig. 22(b), an example of the set ĈL is given. The same values of parameters as forFig. 22(a) are used.Figure 23(a) shows the set D̂ = Ĉ� for the 
ase when the sets CU and CL aremerged in the set C�: A similar stru
ture of the set D̂ is obtained if Q does notdepend on x [see Fig. 23(b)℄.Sin
e level lines of the value fun
tion 
annot penetrate into the set D̂ in the 
aseD̂TM = ;; one 
an try to generate examples with holes in solvability sets usingthe knowledge of the geometry of the sets D̂: The 
onstru
tion of su
h examples isonly possible on the base of a set CU : We will show that only sets ĈU ; but not setsĈL or Ĉ� 
an o

ur as the holes.2. Let us explain why a set ĈL 
annot o

ur as the hole. For the set CL, a
olle
tion of expanding v-stable sets 
an be easily obtained. Figure 24(a) showssu
h a 
olle
tion 
omputed for the set CL from Figs. 18, 19 and 22(b). The �rst setof the 
olle
tion is ĈL: The boundaries of the sets are formed by the semipermeable
urves p(1);1 and p(2);2 whi
h are symmetri
 with respe
t to the axis x2:Figure 24(b) shows the semipermeable 
urves that form the boundary of someset S from the above 
olle
tion. The 
urve p(1);1 
orresponds to the 
ontrol ' = 1;but the 
urve p(2);2 
orresponds to the 
ontrol ' = �1: The sign \+" (\�") marksthose sides of semipermeable 
urves that player P (E) keeps. The 
urves p(1);1and p(2);2 are fa
ed with negative sides at the interse
tion point a: The property ofv-stability means the following: for any x 2 �S and any ' 2 [�1; 1℄ there existsv 2 Q(x) su
h that the ve
tor f(x; '; v) is dire
ted inside the set S or it is tangent
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ĈL
(a) (b)

Sap(1);1 p(2);2�+�+~̀
Fig. 24. (a) Colle
tion of expanding v-stable sets for the set CL: (b) Explanation of v-stability.to the boundary of S at x: For any point x 2 �S ex
luding the point a; everyv 2 Q(x) that gives the maximum in (2.1) would be appropriate. A normal ve
torto the semipermeable 
urve in the negative side dire
tion is 
onsidered as ` when
omputing the maximum in (2.1). For the point a; the 
hoi
e of an appropriate vdepends on ':Let us assume that there exists a hole ĈL whi
h is lo
ated stri
tly inside thesolvability set. It follows from this assumption that: 1) ĈLTM = ;; 2) for anyboundary point x of ĈL; there exist points of the fronts that are arbitrarily 
loseto x: Consider a v-stable set �S from the expanding 
olle
tion generated by the setCL and su
h that �S and M have 
ommon points on the boundaries of �S and Monly. Take a point x on a front stri
tly inside the set �S: Su
h a point exists be
ausethe set ĈL belongs to the interior of the set �S and the fronts 
ome arbitrarily 
loseto the set ĈL: Then, player E 
an keep the traje
tories of the system within a seteS; whi
h is a subset of �S and 
ontains the point x on its boundary, for in�nite time.This 
ontradi
ts to the fa
t that x lies on the front and, therefore, player P bringsthe system to M for a �nite time.Similar arguments are true for sets Ĉ� arising in the a
ousti
 or 
lassi
al game.3. Let us now 
onsider the situation with the set ĈU : We show that the set CU
annot generate an expanding 
olle
tion of v-stable sets.Denote by r[ = w(1)s=we the minimal r for whi
h C�(r) 6= ;: Consider the 
ir
leF (er) of radius er = r[=2 with the 
entre at the origin. We havew(1) � w(2)(jxj) � w(1) � w(2)(er) = w(1)2 ; x 2 F (er): (5.1)Let �(r) = �R+ w(2)(r)Rw(1) ; r � 0: (5.2)Sin
e the set CU is stri
tly above the axis x1, then, for any r � 0; the set C�(r)does not 
ontain the points of interse
tion of the 
ir
umferen
e 
(r) of radius r and
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entre at the origin with the axis x1. Hen
er > �(r): (5.3)Let x#(r; �) and x}(r; �) are the right and left interse
tion points of thestraight line x2 = � with the 
ir
umferen
e 
(r); 0 � � � er; r � er: Using (5.2)and (5.3), 
hoose positive e� and e�, e� � er, so thatx#1 (r; �) � e� + �(r); r � er; 0 � � � e�: (5.4)We obtain simultaneouslyx}1 (r; �) � �e� � �(r); r � er; 0 � � � e�: (5.5)Denote by X(�) = fx : 0 < x2 � �g; � � e�; a horizontal strip of the width �over the axis x1.Using (5.4), we obtain x1 � e� + �(jxj) for the points x 2 X(e�) on the right ofthe 
ir
le F (er): Hen
e, it holds_x2j'=�1 = �x1w(1)R + v2 � w(1)� �e�w(1)R � w(2)(jxj) + w(1) + v2 � w(1)� �e�w(1)R (5.6)for any v 2 Q(x) and ' = �1:Similarly, using (5.5), we get_x2j'=1 = x1w(1)R + v2 � w(1) � �e�w(1)R (5.7)for x 2 X(e�) on the left of the 
ir
le F (er); any v 2 Q(x) and ' = 1.If a point x 2 X(e�) belongs to the 
ir
le F (er) and satis�es the inequalityx1 � �(er)=2 = �R=4; then we obtain_x2j'=�1 = �x1w(1)R + v2 � w(1) � 14w(1) + v2 � w(1) � �14w(1) (5.8)for any v 2 Q(x) and ' = �1: It was taken into a

ount here that, using (5.1), therelation jv2j � w(2)(jxj) � w(2)(er) = w(1)=2 holds for x 2 F (er).Similarly, if a point x 2 X(e�) belongs to the 
ir
le F (er) and satis�es theinequality x1 � R=4; then for any v 2 Q(x) and ' = 1; we get_x2j'=1 = x1w(1)R + v2 � w(1) � �14w(1): (5.9)Let e
 = minfe�w(1)R ; 14w(1)g:
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tion in Di�erential Games 89Take positive � � minfe�; er=2g su
h that�e
 we � minfR4 ; er2g: (5.10)Put ' � �1 for the states x0 2 X(�) with x01 � 0: Taking into a

ount (5.10)and the estimate _x1 = w(1)R x2 + v1 � v1 � �wefor x2 � 0; we obtain that any traje
tory emanated from the point x0 remains onthe right side from the verti
al straight line x1 = maxf�R=4; �er=2g within thetime �=e
: Using (5.6) and (5.8), we get from here that the traje
tory arrives at theaxis x1 within this time.Similarly, setting ' = 1 and using (5.7), (5.9) and (5.10), one obtains that anytraje
tory emanated from the point x0 2 X(�); x10 � 0; arrives at the axis x1 withinthe time �=e
 remaining on the left side from the straight line x1 = minfR=4; er=2g.Thus player P 
an bring traje
tories to the axis x1 from any initial point xthat belongs to the strip X(�): It follows from this property that ĈU TX(�) = ;:Moreover, there is no any 
olle
tion of v-stable sets that monotoni
ally expands fromthe set ĈU and �lls out the whole plane. Indeed, let us suppose the opposite. Denoteby �S the smallest of v-stable sets that has 
ommon points with X(�). Then playerE; using the dis
rimination of player P; 
an keep traje
tories in �S for in�nite time.On the other hand, player P; applying a 
onstant 
ontrol, 
an bring traje
tories tothe axis x1 from any point of the set �STX(�) within a �nite time that is he 
anbring out traje
tories from the v-stable set �S: We 
ome to a 
ontradi
tion.The 
onsiderations of this se
tion make 
lear that it is impossible to obtainexamples with holes in the solvability sets for the 
lassi
al game. For this reason,the a
ousti
 game is of parti
ular interest.6. Analysis of Computation ResultsWe 
ompute the level sets of the value fun
tion. The optimal time for a given statex is the minimal time � subje
t to x 2 W (�;M):We do not have a priori estimates of the a

ura
y of the algorithm. The 
or-re
tness of 
omputations is veri�ed via 
omparison of 
omputation results with thequalitative results of Merz (1971), Lewin (1979) and Cardaliaguet (1995). Addi-tionally, the 
orre
tness of the 
onstru
tion of barriers is 
he
ked and the front'sbehavior after the termination of barriers is inspe
ted. An analyti
al des
ription offronts is absent for the examples 
onsidered.In the following Se
s. 6.1 to 6.3, the results of 
omputing the sets W (�;M); � =i�; for the problems from Se
s. 2.1 to 2.3 are dis
ussed. The 
omputation step �in the examples below is sele
ted experimentally. For some examples of Se
. 6.1,a smaller time step than the one for Se
s. 6.2 and 6.3 is required to �nd all �nedetails of the evolution of the fronts. The time step depends also on the size of theterminal set M and on the length of the reverse time interval 
onsidered.



90 V. S. Patsko & V. L. Turova6.1. Level sets of the value fun
tion in the homi
idal 
hau�eur gameIn Fig. 25, the 
omputation results for the following values of parameters are pre-sented: w(1) = 3; w(2) = 1 and R = 3: The set Q is a 25-polygon ins
ribed into the
ir
le of radius w(2) with the 
entre at (0; 0): The terminal set M is a 15-polygonapproximating the unit 
ir
le with the 
entre at the origin. The step � is 0:01:Every 10th front is plotted. The fronts are symmetri
 with respe
t to the x2-axis.The left and right barrier lines terminate on the lower boundary of the sets A andB; respe
tively. After that, the left and right ends of the front begin to bend aroundthe left and right barrier lines, and two symmetri
 
orner points arise on the front.These 
orner points be
ome more and more 
lose, and at � = 8:42, a self-interse
tionof the front o

urs. As a result, the front is divided into two parts: the internal partand the external one. The 
omputations are 
arried out from ea
h part separately.The internal part of the front propagates upwards sliding with its ends along the
orresponding barriers. At � = 10:6; it 
ollides with the terminal set,and two symmetri
 gaps whi
h are �lled out at � = 11:3 arise. The external partof the front propagates outwards and 
an �ll out the whole plane with the time(the last external front in the pi
ture 
orresponds to � = 9). Therefore, for ea
h
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Fig. 25. Level sets of the homi
idal 
hau�eur game for w(1) = 3; w(2) = 1 and R = 3.
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Fig. 26. The graph of the value fun
tion for w(1) = 3; w(2) = 1 and R = 3.point of the plane, the minimal guaranteed time of approa
hing the set M is �nite.For the points where the value fun
tion 
oin
ides with the fun
tion of programmingmaxmin, the optimal guaranteed time 
an be 
omputed analyti
ally. Our resultsare in a good agreement with the values given for some parti
ular points by Raivioand Ehtamo (2000).In Fig. 26, a three-dimensional graph of the value fun
tion of Fig. 25 exampleis presented. The axes in the horizontal plane are x1 and x2; and the verti
al axismeasures the value fun
tion. The pi
ture shows the value fun
tion for the regionof (x1; x2) where the fronts are 
omputed. The programs for the visualization ofsu
h graphs were developed by Averbukh and Pykhteev [see Averbukh et al. (1999,2000)℄.For two examples shown in Figs. 27 and 31, the following values of parametersof the problem are used: w(1) = 2; w(2) = 0:6; R = 0:2: The set Q is a 25-polygonins
ribed into the 
ir
le of radius w(2) with the 
entre at (0; 0): The set M is aregular polygon ins
ribed into the 
ir
le of radius 0:015: The 
entre of the 
ir
le is(0:2; 0:3) and (0;�0:45) for Figs. 27 and 31, respe
tively. The step � is 0:001: Thesets W (8k�;M); k = 1; 2; :::; are depi
ted.Let us explain the 
onstru
tions presented in Fig. 27. The right barrier lineterminates on the lower boundary of the auxiliary set B. The front begins tobend around this barrier line. After some time, the left barrier line ends on thelower boundary of the set A; and the left part of the front bends around the leftbarrier. The left and right parts of the front go toward ea
h other until the �rst
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Fig. 27. Compli
ated stru
ture of level sets in the \region of turn." The terminal set is a small
ir
le in the �rst quadrant; w(1) = 2; w(2) = 0:6 and R = 0:2:
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-0.6 -0.4 -0.2 0 0.2Fig. 28. Enlarged fragment of Fig. 27.self-interse
tion of the front o

urs at � = 0:725: The front is divided into two parts(internal and external). For � > 0:725; only internal fronts that propagate into the\region of turn" are drawn. Here, a very 
ompli
ated stru
ture of fronts arises.
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x1 x2Fig. 29. The graph of the value fun
tion for level sets in Fig. 27.

x1
Fig. 30. The graph of the value fun
tion from another point of view.
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ond self-interse
tion of the front whi
h is drawn with thethi
k dashed line produ
es two gaps that are �lled out afterwards separately. Thenext front 
onsists of three parts: one exterior part (whi
h is not shown), and twointerior parts (two loops inside the dashed 
ontour). The greatest value of � in theregion of turn is 0:95: This 
orresponds to the time when the fronts 
omplete �llingthe gap on the left hand side of the axis x2: The gap with the 
entre on the axis x2is �lled at � = 0:948: As a result, the sets W (�;M) for 0:904 < � < 0:948 are triply
onne
ted. Figure 28 shows an enlarged fragment of Fig. 27.Figures 29 and 30 show three-dimensional graphs of the value fun
tion 
orre-sponding to the level sets of Fig. 27. Two di�erent points of view were used. InFig. 30, level lines of the value fun
tion are additionally plotted onto the graph.In Fig. 31, the fronts are symmetri
 with respe
t to the x2-axis. The self-interse
tion of the front o

urs at � = 0:355: The gap that arises after � = 0:355;and whose 
entre has 
oordinates (0; 0:22); is �lled out with level lines separately.Filling out the gap �nishes at � = 0:38: The sets W (�;M) for 0:355 < � < 0:38are doubly 
onne
ted. At � = 0:766; the front 
ollides with the barrier lines. Twosymmetri
 gaps arise. The stru
ture of the fronts within the right gap is shownin an enlarged s
ale in Fig. 32(a). Filling out the gap ends at � = 0:85: The setsW (�;M); 0:766 < � < 0:85; are triply 
onne
ted. The 
omputations are 
arried outup to � = 0:872. The value fun
tion is dis
ontinuous on two symmetri
 barrier
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Fig. 31. Level sets of the value fun
tion for w(1) = 2; w(2) = 0:6; R = 0:2 and the terminal setwith the 
entre on x2-axis.
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0.33 0.355 0.38Fig. 32. Enlarged fragments of Fig. 31.lines that emerge tangentially from the boundary of M and terminate on the upperboundaries of the auxiliary sets A and B: In regions of the a

umulation of fronts,the value fun
tion 
hanges very rapidly but it is 
ontinuous. Figure 32(b) shows anenlargement of the a

umulation region within the re
tangle in Fig. 32(a).Let us explain more pre
isely what happens when fronts begin to bend aroundthe a

umulation region. After the front 
omes onto the lower boundary of theset B; a new 
orner point k(�) arises on the front [see Fig. 33(a)℄. The point k(�)moves up as � in
reases. The point b(�) of the front moves down along the outerside of the barrier line dg at a low rate. The part of the front between points b(�)and k(�) propagates to the outside very slowly. The length of the 
urve b(�)k(�)be
omes smaller as � in
reases. The part of the front between points k(�) and 
(�)moves enough rapidly to the left, and the front 
ollides with the barrier line dg at� = 0:766:It is useful to 
ompare this evolution of fronts with the one in Fig. 27 where theends of the front move down along the 
orresponding barrier lines and then bendaround them. Figure 33(b) shows the bending of the right barrier line. Here thepoint k(�) is the endpoint of the front. It moves up along the outer side of thebarrier line fe:For the example in Fig. 34, the following values of parameters are used: w(1) = 2and R = 0:2: The terminal set M is a regular 25-polygon ins
ribed into the 
ir
leof the radius 0.015 with the 
entre at (0:2;�0:4): The set Q is thetriangle with the verti
es (�0:96; 0:8), (0:96; 0:8) and (0;�4:8): The step � is 0:001:The sets W (20k�;M); k = 1; 2; :::; are depi
ted. In this example, the left barrier
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(�)Fig. 33. The evolution of fronts in regions of 
ontinuous and dis
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Fig. 34. Level sets of the value fun
tion for w(1) = 2; R = 0:2 and a triangular 
onstraint Qof player E:
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0 0.1 0.2Fig. 35. Enlarged fragments of Fig. 34.line �nishes on the lower part of the boundary of set A; and the right barrier line�nishes on the upper part of the boundary of set B: The stru
ture of fronts nearthe end of the right barrier line is shown in Fig. 35(a). The a

umulation of frontsmeans very rapid 
hanging of the value fun
tion. The twisted part of the left barrierline is depi
ted in Fig. 35(b).In all examples presented in this se
tion, the barriers �nish on the boundariesof the auxiliary sets A and B: This is 
onsistent with the fa
t that every barrierline is a smooth semipermeable 
urve of one of the families des
ribed in Se
. 4,or it is 
omposed of su
h smooth semipermeable 
urves. All barriers 
onstru
tedapproximate 
orresponding semipermeable 
urves very well.The 
orre
tness of the 
omputation of level sets of the value fun
tion 
an beadditionally veri�ed using the information about the solvability set of the game ofkind. Very often the solvability set is determined by a system of semipermeable
urves of the �rst and se
ond type whi
h is generated by the terminal set. Weexplain using the example from Fig. 34 how su
h a system 
an be 
onstru
ted.The semipermeable 
urves p(2);1 2 �(2);1 and p(1);2 2 �(1);2 emanated in re-verse time from the endpoints of the usable part of M do not interse
t ea
h otherbefore they terminate on the boundaries of the 
orresponding domains (Fig. 36).The join of p(2);1 and p(2);2 at the point b is smooth. This provides the semiper-meability property of the 
omposite semipermeable 
urve p(2);1S p(2);2 at b: The
urve p(2);1S p(2);2 does not interse
t p(1);2: Though the join of the ar
 as � p(1);2and the 
urve p(1);1 is not smooth, the semipermeability property is ful�lled [seePatsko (1973, 1975), Turova (1985) and Patsko and Turova (1995) for analogoussituations℄ at the jun
tion point s: Thus the 
urve asr is a 
omposite semipermeable
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Fig. 36. The system of semipermeable 
urves for the example with the triangle set Q.
urve of the �rst type. The 
omposite semipermeable 
urves of the �rst and se
ondtypes do not interse
t ea
h other. Further semipermeable 
urves are not being pro-du
ed. One 
an prove using the des
ribed mutual disposition of the semipermeable
urves that the solvability set of the game of kind is the whole plane. Numeri
al
omputation of the level sets of the value fun
tion 
on�rms this fa
t.One 
an see that the 
urve p(2);1S p(2);2 is the left barrier line in Fig. 34. The
urve p(1);2 is the right barrier. It is interesting to observe that the 
urve p(1);1is not a barrier. The value fun
tion is 
ontinuous a
ross this 
urve. Sin
e asris a 
omposite semipermeable 
urve, the fronts 
an not penetrate the 
urve p(1);1from above. Therefore, the ar
s of the fronts that form the a

umulation region inFig. 35(a) should remain above the 
urve p(1);1: The ful�llment of this property for
omputed fronts 
an be 
onsidered as an additional 
on�rmation of the algorithmvalidity.A similar lo
ation of the a

umulation region of fronts 
an be established forthe example in Fig. 31.6.2. Level sets of the value fun
tion in the a
ousti
 gameThe examples of this se
tion 
orrespond to the following values of parameters:w(1) = 1; R = 0:8 and s = 0:75: The terminal setM is the re
tangle f(x1; x2)2 R2 :�3:5 � x1 � 3:5; �0:2 � x2 � 0g: The set Q is a 
ir
le of radius we: The 
on-straint Q(x) is a 
ir
le of radius minfjxj; sgwe=s whi
h is approximated by a poly-gon. Below, the dependen
e of the solution of the a
ousti
 game on the parameterwe is demonstrated.In Fig. 37, the initial 
omputations for we = 0:4 are shown. The step � is 0:005:The usable part of the terminal set M 
onsists of three segments: the upper side ofM and two segments on the lower side. The upper fronts that o

ur until � = 0:29
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tion in Di�erential Games 99are bounded on the left and right by barrier lines. At � = 0:29; these barrier linesmeet the upper boundaries of the sets A and B; so they terminate.
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Fig. 37. Level sets for we = 0:4; 200 upper and lower fronts, every 10th front is plotted.
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Fig. 38. The stru
ture of fronts near the barrier line.



100 V. S. Patsko & V. L. TurovaThe value fun
tion is dis
ontinuous a
ross the barrier lines. For � > 0:29, the frontsbegin to envelop the barrier lines, and left and right 
orner points on the upperfront arise. The propagation of the front beyond the barrier lines from these 
ornerpoints is at a very low rate. An enlargement of this development of the fronts onthe right hand side is presented in Fig. 38.
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Fig. 39. Level sets for we = 0:4; 320 upper fronts, 660 lower fronts.
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umulation of fronts near the point a:
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tion in Di�erential Games 101The 
ontinuation of the 
omputation is shown in Fig. 39. The upper and lowerfronts are 
al
ulated until � = 1:6 and � = 3:3; respe
tively. The left and rightlower fronts 
ollide at � = 1:76: Only one lower front remains after this 
ollision.The greatest value of � below M o

urs on the lower boundary of M at the point(0;�0:2):
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Fig. 41. Level sets for we = 0:95; 480 upper and lower fronts, every 10th front is plotted.
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102 V. S. Patsko & V. L. TurovaAn enlargement of the a

umulation of the lower fronts is shown in Fig. 40. Wesee that the end of the front moves along the terminal set from the end of the usablepart to the point a on the boundary of the set B: The a

umulation of fronts beginswhen they approa
h the semipermeable 
urve p(1);1 that emanates from the pointa; as shown in Fig. 37. The value fun
tion 
hanges very rapidly in the a

umulationregion, but it remains 
ontinuous.Figure 41 presents the 
omputation results for we = 0:95 and � = 0:005:Figure 42 shows an enlarged fragment of Fig. 41. As in the previous example, theupper barrier lines end at some moment of reverse time, and the fronts begin toenvelop them. The main di�eren
e from before is the formation of a loop wherethe upper fronts from the two sides of the �gure meet. In this example, the regionwithin this loop (a \lagoon") is �lled out entirely by the further development of thefronts, the �lling out being 
ompleted at � = 1:68:
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Fig. 43. Level sets for we = 1:5; 746 upper fronts, 340 lower fronts, every 10th front is plotted.
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tion in Di�erential Games 103An important feature of the lower part of Fig. 41 is that the semipermeable
urve p(1);1, emanating from the point a, interse
ts the right barrier whi
h is thesemipermeable 
urve p(2);1. This did not happen in the previous example. Thusthe right lower fronts are 
on�ned to the right side of the 
urve p(1);1. The time ofattaining the terminal set be
omes in�nite as the fronts approa
h the 
urve p(1);1.A symmetri
 situation o

urs for the left lower fronts. All the fronts are 
omputeduntil � = 2:4.The following fa
ts were found experimentally. A lagoon is generated by theupper fronts only if we � 0:65. For we 2 [0:65; 1:37), a lagoon o

urs and 
ompletely�lled by the further development of the fronts. For we 2 [1:37; 1:61℄; the fronts donot �ll the lagoon 
ompletely. For we > 1:61, the lagoon disappears.Figure 43 presents 
omputational results for we = 1:5 and � = 0:005. The leftand right parts of the upper front meet at � = 2:855. Then the 
omputation withinthe lagoon begins. The fronts do not penetrate the set ĈU , whi
h is a hole insidethe solvability set of player P , the value fun
tion being in�nite for x 2 ĈU . The
omputation is done until � = 3:73. The stru
ture of the lower fronts is similar tothat in the previous example.It is emphasized in Cardaliaguet et al. (1995, 1999) that the vi
tory domain insimilar examples with holes 
annot be obtained using semipermeable 
urves (bar-riers) emitted from the boundary of the terminal set only. Now this 
on
lusion 
an

x1 x2Fig. 44. The graph of the value fun
tion for we = 1:5:



104 V. S. Patsko & V. L. Turovabe formulated more pre
isely: the boundary of the vi
tory domain is 
omposed notonly of semipermeable 
urves issued from the boundary of the terminal set but alsoof semipermeable 
urves emitted from the boundary of the set CU :In Fig. 44, a three-dimensional graph of the value fun
tion of Fig. 43 exampleis presented.Further in
reases in the value of we extend the set ĈU . The hole is beingin
ated and be
omes \open". The boundary of the vi
tory domain transforms intoa 
onne
ted 
urve but even in this 
ase, it is 
omposed of semipermeable 
urvesemitted both from the boundary of the terminal set and boundary of the set CU :Figure 45 gives 
omputational results for we = 1:9 and � = 0:01. The upper andlower fronts are 
omputed until � = 8:42 and � = 1:6, respe
tively.The following question 
an be formulated. Does an example with the homi
idal
hau�eur dynami
s exist where a hole, whi
h is stri
tly inside the vi
tory domain,
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Fig. 45. Level sets for we = 1:9; 842 upper fronts, 160 lower fronts, every 5th front is plotted.
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oin
ide with the set ĈU? (In this paper, it is shown that su
h holes 
annot
oin
ide with the sets Ĉ� and ĈL:)6.3. Level sets of the value fun
tion in the surveillan
e-evasion gameFigures 46 to 51 present the 
omputational results for w(1) = 1:7. For all the �guresex
ept for Fig. 51, the set Q is a regular hexagon ins
ribed into the unit 
ir
le with
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Fig. 46. Level sets of the value fun
tion of the surveillan
e-evasion game for �� = 450:
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a ba0b0A BFig. 47. Level sets of the value fun
tion of the surveillan
e-evasion game for �� = 1430:



106 V. S. Patsko & V. L. Turova

(b)(a)0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Bb




a x1

x2

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

B
e

f

abFig. 48. The rise of a

umulation of fronts. (a) �� = 136:30 and (b) �� = 1300:the 
entre at the origin. The verti
es are (0; 1); (0:5; 0:87); (0:5;�0:87); (0;�1);(�0:5;�0:87) and (�0:5; 0:87): The half-angle �� of the dete
tion 
one is 450, 1430,136:30; 1300; 125:60 and 1210 for Figs. 46, 47, 48(a), 48(b), 49(a) and 49(b), re-spe
tively. A

ording to the 
lassi�
ation of the paper Lewin and Olsder (1979),Figs. 46, 47, 48(b) and 49(b) 
orrespond to 
ases I, VI, V and IV. Figures 48(a)and 49(a) 
orrespond to transient states. The step � is 0.01. Figure 46 shows thesets W (�) for � = 2�i; i = 1; 65. In Figs. 47 to 49, the sets W (�) for � = 10�i;i = 1; k; are depi
ted (k = 16; 18 and 58 for Figs. 47, 48(a) and 48(b) to 49, respe
-tively). In this se
tion, the boundaries of sets A and B are marked with dashedlines.The player E es
apes from all initial positions within the dete
tion set in Fig. 46.The 
omputations are done up to � = 1:3:In Figs. 47 to 49, the gradual 
hange of the es
ape zone depending on the value�� is shown. In Figs. 48 and 49, only the right half of every pi
ture is presented.In Fig. 47, the es
ape zone is bounded by two symmetri
 barrier lines ab
 anda0b0
 that emanate from the ends of the usable part and interse
t at point 
. Themaximal es
aping time is � = 1:6:The es
ape zone in Fig. 48(a) is similar to the one in Fig. 47. The barrier linesthat bound the es
ape set tou
h the auxiliary sets A and B in the 
usp points. Themaximal es
aping time is � = 1:8:Further de
rease in the value of �� yields Fig. 48(b). The es
ape zone is boundedby mutually symmetri
 (with respe
t to the verti
al axis) 
urves aef and a0e0f . The
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abFig. 49. The 
hange of solution from a bounded to unbounded es
ape set. (a) �� = 125:60 and(b) �� = 1210:ar
s ae and a0e0 are parts of the barrier lines ab and a0b0 that �nish on the boundaryof auxiliary sets B and A; respe
tively. The ar
 efe0 is a limit of fronts as � !1:In Fig. 49(a), the boundary of the es
ape zone is also a limit of fronts as � !1:Here, the point e [see Fig. 48(b)℄ 
oin
ides with point a:Player E 
an es
ape from any point within the dete
tion set in Fig. 49(b). Thefronts go around the endpoint b of the barrier ab: After passing the point a; the endof the front moves down the line � = �� with a 
onstant velo
ity. Thus the dete
tion
one 
an be 
ompletely �lled out with the fronts. As noted in Lewin and Olsder(1979), the es
ape zone 
oin
ides with the whole dete
tion 
one for 
ases similar tothat shown in Fig. 49(b).Note that the 
ase shown in Fig. 48(a) is a transient state from the situationwhere there is no a

umulation of fronts (the es
ape set is similar to that one inFig. 47) to the situation where an a

umulation of fronts o

urs. The 
ase shownin Fig. 49(a) is a transient state from the 
ase of the a

umulation of fronts to the
ase where the dete
tion 
one is �lled out with the fronts 
ompletely.Figure 50 presents the fronts for an asymmetri
 dete
tion set. The left in
lina-tion angle 
orresponds to 
ase IV of the 
lassi�
ation of Lewin and Olsder (1979),and the right one 
orresponds to 
ase VI.The es
ape zone in Fig. 51 is similar to the one in Fig. 47 but a 25-polygonins
ribed into the unit 
ir
le is used as set Q instead of the 6-polygon.
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aa0 bb0
Fig. 51. Fronts for a 
ir
ular 
onstraint Q of player E.Let us 
ompare the above solutions with those that 
an be obtained via solvingthe game of kind. When solving the game of kind, semipermeable 
urves are emitted[see Patsko (1973,1975), Subbotin and Patsko (1984), Turova (1985) and Patsko
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tion in Di�erential Games 109and Turova (1995)℄ in reverse time from endpoints of the usable part so that thesemipermeability property (the property of barrier) holds at these points. In thegame 
onsidered, the negative sides of the semipermeable 
urves emitted fa
e theusable part. To provide this, a 
urve of the se
ond type must emanate from theright endpoint of the usable part, and a 
urve of the �rst type must emanate fromthe left endpoint. The semipermeable 
urves with su
h properties are absent for theexample in Fig. 46. For the examples in Figs. 47 to 49 and 51, the semipermeable
urve p(2);1 of the family �(2);1 emanated in reverse time from the right endpointa of the usable part is proper. The 
urve p(2);1 is extended to the boundary of thedomain of �(2);1: In Figs. 47 to 49 and 51, the 
urve ab 
oin
ides pra
ti
ally withp(2);1:For the examples in Figs. 47 and 51, the extended 
urve 
an be smoothly 
on-tinued by a 
urve p(2);2 of the family �(2);2: After this 
ontinuation, a smooth
omposite semipermeable 
urve of the se
ond type is obtained. Let us denote it byg(2): Be
ause of the symmetry, there is a smooth 
omposite semipermeable 
urveg(1) of the �rst type that emanates from the left endpoint a0 of the usable part.The 
urves g(2) and g(1) interse
t at a point that lies on the x2-axis. This yields a
omposite barrier that bounds the solvability set of the game of kind (the es
apeset). The optimal guaranteed time for attaining the terminal set (es
aping time) is�nite for any initial point on the barrier. The above-mentioned fa
ts are 
ompletely
on�rmed by the 
omputation of the fronts shown in Figs. 47 and 51.For the examples in Figs. 48 and 49, the semipermeable 
urve p(2);1 
annot besmoothly 
ontinued beyond the endpoint. Moving along the 
urve p(2);1 from theendpoint toward the point a; one looks for a point from whi
h a semipermeable
urve p(2);2 of the family �(2);2 emanates so that the 
omposite 
urve g(2) formedby the initial part of p(2);1 and the 
urve p(2);2 would possess the semipermeabilityproperty at the sewing point. One 
an establish that su
h sewing points 
an onlylie on the boundary of the domain of �(2);2: A sewing point with the above propertyexists for the 
ases shown in Figs. 48 and 49(a).Note that the sewing point in the 
ase of Fig. 48(a) 
oin
ides with the point b(therefore the 
urve p(2);1 is 
ompletely in
luded into the 
urve g(2)), but the sewingpoint in the 
ase of Fig. 49(a) 
oin
ides with the point a (therefore no part of the
urve p(2);1 is in
luded into the 
urve g(2)). One 
an see that point e is a
tually asewing point in the 
ase shown in Fig. 48(b). There are no sewing points for the
ase of Fig. 49(b).The pie
ewise-smooth 
omposite semipermeable 
urve g(2) and symmetri
 to itwith respe
t to the x2-axis 
urve g(1) de�ne a solution to the game of kind in the
ases 
orresponding to Figs. 48 and 49(a). Parts of these 
urves till the interse
tionpoint on the axis x2 form a 
omposite barrier that determines the solvability setof the game of kind. However, in 
ontrast to the examples in Figs. 47 and 51, thees
aping time in the 
ases of Figs. 48(b) and 49(a) is in�nite for any point thatbelongs to those parts of the 
omposite barrier that are obtained using the 
urvesp(2);2 and p(1);1: This nontrivial fa
t was mentioned in Lewin and Olsder (1979),and it is 
on�rmed by the a

umulation of fronts as � ! 1 in Figs. 48(b) and49(a).
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ase 
orresponding to Fig. 49(b), the solvability set of the game of kind
oin
ides with the whole dete
tion 
one.7. Con
lusionIn the paper, di�erential games with dynami
s of the homi
idal 
hau�eur are stud-ied numeri
ally. Three variants of the problem setting are 
onsidered. Signi�
antattention is paid to the analysis of families of semipermeable 
urves. This analysisis used for the veri�
ation of the 
omputation of level sets of the value fun
tion, the
omputation being done with the algorithm developed by the authors. Examplesthat demonstrate the 
hanges in solutions depending on the values of parametersof the problem are given. Solutions both with regions of a

umulation of frontsand di�erent variants of bending the barrier lines by the fronts are presented. Thereality of multiply 
onne
ted level sets of the value fun
tion is 
on�rmed.A
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