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Examples with zero-sum linear differential games of fixed terminal time and a convex
terminal payoff function depending on two components of the phase vector are consid-
ered. Such games can have an indifferent zone with constant value function. The level
set of the value function associated with the indifferent zone is called the “critical” tube.
In the selected examples, the critical tube and the neighboring level sets exhibit “narrow
throats”. Presence of such throats requires extremely precise computations for construct-
ing the level sets. The paper presents different forms of critical tubes with narrow throats
and indicates the combinations of problem parameters that can produce them.
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1. Introduction

The solution of a two-person zero-sum differential game is given by the triplet of the
players’ optimal strategies and the value function (Isaacs, 1965). The value func-
tion, which can be represented by its level sets, is the solution of the corresponding
Hamilton-Jacobi-Isaacs partial differential equation and its knowledge allows deriv-
ing the respective optimal strategies. Solving this equation for a general zero-sum
differential game is very complicated. Fortunately, linear zero-sum differential games
yield in many cases simpler numerical and, sometimes, analytical solutions. Games
with terminal payoff and fixed terminal time belong to this category. Their solution
can be well illustrated by the ensemble of the level sets of the value function, which
are also the loci of optimal trajectories.
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The paper deals with linear differential games with fixed terminal time and a
convex terminal payoff function depending on two components of the phase vec-
tor with constrained controls. Such a game can be transformed (Krasovskii and
Subbotin (1988), pp. 89–91) to a two-dimensional “equivalent” game, for which
the solution can be visualized by the level sets of the value function and their
time-sections.

The examples considered in the paper belong to a class of problems called in
Russian mathematical literature on differential games the “generalized
L.S. Pontryagin’s test example” (Pontryagin (1972)). This class of games is char-
acterized by the eventual existence of an indifferent zone of the game space, where
the value function is constant and the optimal strategies are arbitrary. The level
set of the value function associated with the indifferent zone is called the “critical”
tube. The critical tube and the neighboring level sets exhibit “narrow throats”.
The narrow throat of the critical tube is located where the tube has, at least in one
direction, zero width, as indicated by its name. The form of the critical level set
and the neighboring ones near the throat can be rather complex. Presence of such
throats requires extremely precise computations for constructing the level sets.

A numerical method for computing level sets of the value function in linear dif-
ferential games with fixed terminal time (Isakova et al. (1984), Patsko (1996)) was
developed at the Institute of Mathematics and Mechanics (Russian Academy of Sci-
ences, Ekaterinburg, Russia). Simultaneously, specialized visualizational programs
were created (Averbukh et al. (1999)). The existing software allows illustrating the
different forms of critical tubes with narrow throats and analyzing their dependence
on the problem parameters.

There are several publications describing other numerical methods for construct-
ing level sets of the value function in linear differential games with fixed termi-
nal time (Ushakov (1981), Subbotin and Patsko (1984), Taras’ev et al. (1988),
Grigorenko et al. (1993), Bardi and Dolcetta (1997), Kurzhanski and Valyi (1997),
Cardaliaguet et al. (1999), Polovinkin et al. (2001)). The examples presented in this
paper can be used for testing the accuracy and efficiency of such methods.

The structure of the paper is the following. In the next section, the formulation
of zero-sum linear differential games with fixed terminal time is presented, including
the form of the generalized L.S.Pontryagin’s test example and the description of the
transformation of the original game to a reduced order equivalent game. In Sec. 3,
the analytical solution of the equivalent game is presented and the eventual exis-
tence of a narrow throat is explained by a simple example. In Sec. 4, the numerical
method used for constructing the level set of the value function is outlined. In Sub-
sec. 5.1, an air-to-air interception problem is formulated as a linear pursuit-evasion
game with fixed terminal time and bounded controls. Subsections 5.2 and 5.3
present results of a numerical investigation of the value function level sets for two
variants of the game parameters. Subsection 5.3 also shows an example of the game,
for which the numerical computations failed. The lessons learned from the investi-
gations are discussed in Sec. 6, followed by some concluding remarks.
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2. Linear Differential Games with Fixed Terminal Time

The standard form of linear differential games with bounded controls, fixed terminal
time T is

ż = A(t)z + B(t)u + C(t)v, t ∈ [t0, T ], z ∈ Rn, u ∈ P, v ∈ Q. (2.1)

One of the simplest cases is a zero-sum game with convex terminal payoff function
depending on two components zi, zj of the state vector z:

J = ϕ
(
zi(T ), zj(T )

)
.

This function is minimized by the first player (with control u) and maximized by
the second (with control v).

Let Φ(T, t) be the fundamental Cauchy (transition) matrix of the original homo-
geneous system of (2.1). Let the symbol K denote a constant rectangular 2 × n

matrix extracting the i-th and j-th rows from an n × n matrix.
By using the transformation (Krasovskii and Subbotin (1988), pp. 89–91)

ξ(t) = KΦ(T, t)z(t), (2.2)

the standard form (2.1) of the original game can be reduced to a two-dimensional
“equivalent” differential game. The term “equivalent” means that if the states ξ

and z satisfy (2.2), the value V(t, ξ) of the value function V of the new game is
equal to the value V (t, z) of the value function V of the original game. Moreover,
the optimal strategies of the new game are also identical to the optimal strategies
of the original game.

The dynamics of the equivalent two-dimensional game is independent of the
state vector ξ:

ξ̇ = D(t)u + E(t)v, t ∈ [t0, T ], ξ ∈ R2, u ∈ P, v ∈ Q,

D(t) = KΦ(T, t)B(t), E(t) = KΦ(T, t)C(t)
(2.3)

with the payoff function
J = ϕ

(
ξ1(T ), ξ2(T )

)
.

Let us call the sets P(t) = D(t)P and Q(t) = E(t)Q the vectograms of the
first and second players at the instant t. The vectogram P(t) (Q(t)) describes the
collection of all possible contributions of the first (second) player to the speed ξ̇ of
the equivalent system. Comparison of the sets P(t) and Q(t) indicates the advantage
of one player with respect to the other at different directions. Very often, it is useful
to see the tubes of the set −P(t) and −Q(t) enrolled in the backward time. Let us
call these tubes the tubes of vectograms of the first and second player and denote
them by P and Q respectively.

There is a subclass of linear pursuit-evasion games, which is called the
“L.S.Pontryagin’s generalized test example” in Russian literature on differential
games. Games from this class are of the following type

x(k) + ak−1x
(k−1) + · · · + a1ẋ + a0x = u, u ∈ P,

y(s) + bs−1y
(s−1) + · · · + b1ẏ + b0y = v, v ∈ Q.

(2.4)
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Here, x and y are the position coordinates of two objects in Euclidian space, and
u and v are their controls, constrained to respective compact sets. The coefficients
in the equations are assumed constant. The game terminates at a given prescribed
time T .

The game has a terminal payoff function depending on the distance between the
two players at T :

J = ϕ(x(T ), y(T )) = |x(T ) − y(T )|. (2.5)

If the vectors x and y are only two dimensional, the change of variables

z1 = x1 − y1, z2k+1 = y1,

z2 = x2 − y2, z2k+2 = y2,

z3 = ẋ1, z2k+3 = ẏ1,

z4 = ẋ2, z2k+4 = ẏ2,

z5 = ẍ1, z2k+5 = ÿ1,

z6 = ẍ2, z2k+6 = ÿ2,
...

...
z2k−1 = x

(k−1)
1 , z2(k+s)−1 = y

(s−1)
1 ,

z2k = x
(k−1)
2 , z2(k+s) = y

(s−1)
2

transforms the system (2.4) to the standard form (2.1) with constant matrices A,
B, C and the payoff function

J = ϕ(z1(T ), z2(T )) =
√

z2
1(T ) + z2

2(T ). (2.6)

For some particular cases, some more convenient variable exchange can exist.
In the case when the original game dynamics is of the (2.4) type, the matri-

ces D(t) and E(t) of the equivalent game have the form D(t) = ζ(t) · I2, E(t) =
η(t) · I2, where I2 is the 2 × 2 unit matrix, and ζ(t) and η(t) are scalar func-
tions of time. So, for this class of games, the players’ vectograms are computed
as P(t) = ζ(t)P and Q(t) = η(t)P .

3. Solving the Equivalent Game

The first step in the solution of the equivalent game according to the Isaacs method
is by using the necessary conditions of game optimality. The Hamiltonian function
of the game is

H(ξ, λ, t, u, v) = λ′[D(t)u + E(t)v],

where λ(t) represents (along optimal candidate trajectories) the gradient of the
payoff function and has to satisfy the adjoint equation

λ̇ = −∂H(ξ, λ, t, u, v)
∂ξ

= 0 (3.7)
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and the corresponding transversality condition

λ(T ) = gradJ. (3.8)

Relations (3.7) and (3.8) yield

λ(t) = λ(T ) = α∗, (3.9)

where α∗ is a constant vector on each optimal trajectory.
The candidate optimal strategy pair u∗ and v∗ can now be determined by

u∗(t) = argmin
u∈P

max
v∈Q

H(ξ, λ(t), t, u, v) = argmin
u∈P

λ′(t)D(t)u = argmin
u∈P

α∗′D(t)u,

v∗(t) = argmax
v∈Q

min
u∈P

H(ξ, λ(t), t, u, v) = argmax
v∈Q

λ′(t)E(t)v = arg max
v∈Q

α∗′E(t)v,

(3.10)

where the explicit expressions depend on the control constraints of the game.
Since α∗ is a constant vector, the equations of the candidate optimal trajecto-
ries can be directly integrated backwards in time from any point at the terminal
time T .

Each level set of the value function is generated by the family of such candi-
date optimal trajectories, all starting (in reverse time) at different points on the
boundary of a level set of the payoff function at the terminal time T . If the ensem-
ble of candidate optimal trajectories, generated by backwards integration in time,
succeed to fill the entire equivalent game space without intersecting each other, the
sufficiency conditions of game optimality (Isaacs (1965)) are satisfied by (3.10). In
this case, we can obtain level sets of the value function and the value function itself.

Unfortunately, singularities in differential games are rather a rule, not an excep-
tion. In most cases, completely “regular” solutions do not exist for two reasons. The
candidate optimal trajectories frequently intersect and create singular surfaces of
the game space, where at least one component of λ(t) is discontinuous. This means
that the solution (3.9) is not valid any more. If the game space cannot be filled
by regular candidate optimal trajectories, the empty regions also involve some sin-
gularities. Some of the empty regions become “indifferent” zones, where the value
function is constant and the optimal strategies are arbitrary.

Let us illustrate this situation with a simple example. Assume that the payoff
function is of the (2.6) type. Then its level sets are circles and the solution of the
adjoint system is defined by formula

λ(t) = λ(T ) = α∗ =
ξ(T )
|ξ(T )| .

Also suppose that the control constraints are circular (with radii umax and vmax

respectively). In this case, the game solution will be identical in every plane of
arbitrary direction (for example, in the plane ξ2 = 0). Therefore, in the sequel a
planar case is considered, as shown in Figs. 1, 2.
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(a) (b)

Fig. 1. Behavior of the optimal trajectories: (a) Γ(t) > 0, (b) Γ(t) < 0. Arrows show the direction
of motions (in real time).

Fig. 2. Presence of a throat and an indifferent zone in the problem with circular vectograms.

The candidate optimal strategies (3.10) in this case become

u∗
1 = −umax sign{ζ(t)} sign{ξ1(T )}, v∗1 = vmax sign{η(t)} sign{ξ1(T )}.

The trajectory dynamics in the plane ξ2 = 0 can be written as

ξ̇∗1 = ζ(t)u∗
1 + η(t) v∗1 = −umax |ζ(t)| sign{ξ1(T )} + vmax |η(t)| sign{ξ1(T )}

= (−umax |ζ(t)| + vmax |η(t)|)sign{ξ1(T )} = Γ(t) sign{ξ1(T )}.
Thus, candidate optimal trajectories in each half plane differ from each other by a
shift along the axis ξ1 depending on the initial point ξ1(T ).

If Γ(t) is positive for all t < T , then the two families (upper and lower) of
candidate optimal trajectories, generated by backwards integration, will intersect.
A candidate optimal trajectory that reaches (backwards) the time axis ceases to
be optimal. Thus, its backwards integration cannot continue. The time axis is a
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“dispersal” line of the game dominated by the maximizing player. In this case,
both halves of the equivalent game space are filled (see Fig. 1a).

If Γ(t) is negative for all t < T , then the pair of candidate optimal trajectories,
generated by backwards integration from the point ξ1(T ) = 0, serves as the bound-
aries of an “indifferent” zone, expanding backwards to any initial time. The value
of the game in this region is zero, so, this indifferent zone is also the “capture zone”
of the game (see Fig. 1b).

Let Γ(t) be positive at the neighborhood of T and change its sign once in the
interval t0 < t < T from negative to positive (in direct time). Then a pair of optimal
trajectories corresponding to a value J̄ = |ξ̄| of the payoff function will reach the
time axis tangentially at t = tc (see Fig. 2) where Γ(tc) = 0. The pair of two such
symmetric trajectories (from the upper and lower semiplanes) generates a level set
of the value function of the game, which we shall call the “critical level set”. The
region in the neighborhood of the point of tangency is called the “throat” and the
instant associated with it can be named as “instant of degeneration of the critical
level set”.

On the left from the tangency point, an empty zone appears. All optimal trajec-
tories starting in this zone between the critical trajectories associated with t < tc,
can leave it (in direct time) only at the point ξ1(tc) = 0. From this point, fur-
ther motion with tc ≤ t ≤ T must continue along one of the critical trajectories
yielding the same cost J̄ . Therefore, the optimal strategies in the entire region are
arbitrary and the value function of the game is constant equal to J̄ . So, this par-
ticular singular region of the game is an “indifferent zone”. The point associated
with “instant of degeneration of the level set” is a singular dispersal point and the
section tc < t < T of the t-axis is a dispersal line of the game, both dominated by
the maximizing player.

In the general case, Γ(t) can change sign more than once and this can lead to
the existence of several throats of one level set or several indifferent zones generated
by different level sets.

The first non-trivial example of a linear game with an indifferent zone was solved
in (Pashkov (1971)). In this work, the problem “a boy and a crocodile” (Pontryagin
and Mischenko (1969)), which played an important role in the differential game
theory, was studied as a fixed terminal time game. Later, examples with indifferent
zones were observed in missile guidance problems formulated as zero-sum pursuit-
evasion games using different linearized models of the engagement (Gutman and
Leitmann (1976), Gutman (1979), Shinar and Gutman (1980), Shinar (1981), Shinar
et al. (1984), Melikyan and Shinar (2000)).

In the case of circular control constraints, all time sections of the level sets
of the value function are circular and the narrow throat is also circular around a
point in the time axis. However, if the circular symmetry is disturbed, for example
by elliptical control constraints, the time sections of the level sets near the throat
become elongated in some direction, which can change during the time. In such case,
the time sections of the critical tube can be of a very complicated structure and the
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construction of the level sets of the value function becomes a very complex task that
requires extremely precise numerical methods. The complexity of the form of the
critical level set and its neighbors is illustrated in several examples in the sequel.

4. Backward Procedure for Constructing Level Sets

Now, let us describe the algorithm (Isakova et al. (1984)) for constructing level sets
of the value function (maximal stable bridges) of games of the type (2.1), (2.3). All
constructions are made in the equivalent coordinates with the transformation to
the equivalent game being done numerically in an automatic way. The procedures
created are of the backward type and can be treated as the dynamic programming
principle applied to differential games.

To do the numerical construction, let us take a sequence of instants t0 < t1 <

t2 < · · · < tN−1 < tN = T in the time interval [t0, T ] of the game. Uniformity of the
grid is unessential. For a given constant c, the result of the procedure is a collection
of sets, each corresponding to a chosen fixed time instant ti and approximating
the time section Wc(ti) of the level set Wc =

{
(t, ξ) : V(t, ξ) ≤ c

}
of the value

function V of the game (2.3) at these instants. The symbol Wc(ti) will denote the
set approximating the original time section Wc(ti).

Change the dynamics of the game (2.3) by a piecewise-constant dynamics

ξ̇ = D(t)u + E(t)v, D(t) = D(ti), E(t) = E(ti), t ∈ [ti, ti+1). (4.11)

Instead of the original constraints P and Q for the controls of the players, let us
consider their polyhedral approximations P and Q. Let ϕ̂ be the approximating
payoff function. It is defined so that for any number c, its level set Mc =

{
ξ :

ϕ̂(ξ) ≤ c
}

is a convex polygon close in Hausdorff metrics to the level set Mc of the
original payoff function.

The approximating game (4.11) is chosen such that in each step [ti, ti+1] of the
backward procedure we deal with a game with simple motions (Isaacs (1965)) and
polyhedral convex constraints for the players’ controls. At the first step [tN−1, tN ] =
[tN−1, T ], a solvability set Wc(tN−1) for a game of homing with target set Wc(tN ) =
Mc is constructed. Here, the first player tries to guide the system to the set Wc(tN )
at the instant tN , and the second one opposes this. Continuing in the same way,
a set Wc(tN−2) is constructed on the base of Wc(tN−1), and so on. As a result,
we obtain a collection of convex polygons Wc(ti) approximating (Ponomarev and
Rozov (1978), Botkin (1982), Polovinkin et al. (2001)) the sections Wc(ti) of the
original level set Wc of the value function of the game (2.3) in Hausdorff met-
rics. An algorithm for a posteriori estimating the numerical construction error is
developed (Botkin and Zarkh (1984)).

The procedure of moving from the section Wc(ti+1) to the next one Wc(ti) is
described in terms of support functions of the sets under consideration. Recall that
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the value ρ(l, A) of the support function of a convex bounded closed set A on the
vector l is calculated by formula

ρ(l, A) = max
a∈A

l′a,

where the prime denotes transposition.
The support function l �→ ρ

(
l,Wc(ti)

)
of the polygon Wc(ti) coincides

(Pschenichnyi and Sagaidak (1970)) with convex hull of the function

γ(l, ti) = max
ξ∈Wc(ti+1)

l′y + ∆ max
u∈P

l′(−D(ti)u) + ∆ min
v∈Q

l′(−E(ti)v)

= ρ(l,Wc(ti+1)) + ∆ρ(l,−D(ti)P) − ∆ρ(l, E(ti)Q). (4.12)

The function γ(·, ti) is positively homogeneous and piecewise-linear (because
the support functions of the polygons Wc(ti+1), −D(ti)P and E(ti)Q are of this
type). The property of local convexity can be violated only on the boundary of the
linearity cones of the function ρ(·, E(ti)Q), that is, on the boundary of the cones
generated by normals to the neighboring edges of the polygon E(ti)Q. This fact
is useful for developing fast and effective convexification algorithms (Isakova et al.
(1984), Patsko (1996)).

As a result of the backward procedure in the interval [t0, T ], one obtains a
collection of the sets Wc(ti) for a value of the parameter c. The collection is used
by a visualizational software to construct a solid tube to be drawn. Let us denote
this tube by Wc. This object is not an exact level set of the value function for the
approximating game (4.11), but is very close to it.

5. Pursuit-Evasion Games with Elliptical Constraints

5.1. Air-to-air interception and the corresponding

differential game

In the works Shinar et al. (1984), Shinar and Zarkh (1996), and Melikyan and
Shinar (2000), three-dimensional air-to-air interception problems were formulated
as pursuit-evasion games. The pursuer is the interceptor missile, while the evader
is a maneuverable aerial target (an aircraft or another missile). The natural payoff
function of the game is the distance of closest approach, the miss distance, to be
minimized by the pursuer and maximized by the evader. For sake of simplicity,
point mass models with velocities of constant magnitudes VP , VE were selected.
The lateral accelerations of both players, normal to the respective velocity vectors,
have constant bounds aP and aE . The evader controls its maneuver with ideal
dynamics, while the pursuer’s maneuver dynamics is represented by a first order
transfer function with the time constant τP .

The origin of the Cartesian coordinate system is collocated with the pursuer. The
direction of the X-axis is along the initial line of sight. The XY plane is the nominal
“collision plane” determined by the initial velocity vector of the evader (VE)0 and
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Fig. 3. The system of coordinates in the problem of three-dimensional pursuit. The actual vectors
of VP (t) and VE(t) differ only slightly during the engagement from the nominal vectors (VP )col
and (VE)0, respectively.

the initial line of sight. The Z-axis completes a right handed coordinate system, as
illustrated in Fig. 3.

It is assumed the initial conditions are near to a “collision course”, defined by

VP sin(χP )col = VE sin(χE)0, (5.13)

and the actual velocity vector VP (t) of the pursuer remains close to the collision
requirement (VP )col, satisfying

sin(χP (t) − (χP )col) ≈ χP (t) − (χP )col, cos(χP (t) − (χP )col) ≈ 1. (5.14)

It is also assumed that the actual velocity vector VE(t) of the evader will remain
close enough to its initial direction satisfying

sin(χE(t) − (χE)0) ≈ χE(t) − (χE)0, cos(χE(t) − (χE)0) ≈ 1. (5.15)

Based on the small angle assumptions (5.14) and (5.15), the relative trajecto-
ries can be linearized with respect to the initial line of sight. Moreover, the relative
motion in the X direction can be considered as uniform. Thus, this coordinate
can be replaced by the time, transforming the original three-dimensional motion
to a two-dimensional motion in the YZ plane. For a given initial range, the uni-
form closing velocity determines the final time T of the engagement. Therefore, the
problem of minimizing (maximizing) the three-dimensional miss distance at a free
terminal time can be changed by the minimization (maximization) of the distance
in the YZ plane at the fixed terminal time of the nominal collision.

Since in general the velocity vectors (VP )col and (VE)0 of the players are not
aligned with the initial line of sight, the projections of the originally circular control
constraints, normal to the respective velocity vectors, become elliptical.

The equations of motion of the linearized pursuit-evasion game are

ẍ = F,

Ḟ = −(F − u)/τP ,

ÿ = v,

t ∈ [0, T ], x, y ∈ R2, u ∈ P, v ∈ Q,

ϕ(x(T ), y(T )) = |x(T ) − y(T )|, (5.16)
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where x and y are the positions of the players in the plane normal to the initial line
of sight, and u and v are their respective acceleration commands. Eliminating F in
the dynamics (5.16) and denoting α = 1/τP yield

...
x+ α ẍ = α u, ÿ = v, (5.17)

which is in the form of a typical “generalized L.S.Pontryagin’s test example”.
To reduce the dynamics (5.17) to the form (2.1), a variable change

z1 = x1 − y1, z2 = ẋ1 − ẏ1, z3 = ẍ1,

z4 = x2 − y2, z5 = ẋ2 − ẏ2, z6 = ẍ2

can be applied, leading to the following standard form of the game

ż = Az + Bu + Cv,

A =
[

A1 0
0 A1

]
, A1 =


 0 1 0

0 0 1
0 0 −1/τP


 ,

B′ = (1/τP )
[

0 0 1 0 0 0
0 0 0 0 0 1

]
,

C′ =
[

0 −1 0 0 0 0
0 0 0 0 −1 0

]
,

with constraints for the players’ controls taken as ellipses

u ∈ P =
{

u : u′
[

1/ cos2(χP )col 0
0 1

]
u ≤ a2

P

}
,

v ∈ Q =
{

v : v′
[

1/ cos2(χE)0 0
0 1

]
v ≤ a2

E

}
,

and the payoff function

ϕ
(
z1(T ), z4(T )

)
=

√
z2
1(T ) + z2

4(T ).

The transformation (2.2) to the equivalent game yields

ξ̇ = D(t)u + E(t)v, t ∈ [0, T ], ξ ∈ R2, u ∈ P, v ∈ Q, ϕ(ξ(T )) = |ξ(T )|,
where

D(t) = ζ(t) · I2, ζ(t) = (T − t) + τP e−(T−t)/τP − τP , (5.18a)

E(t) = η(t) · I2, η(t) = −(T − t) (5.18b)

and I2 is the 2 × 2 unit matrix.
In order that achieving a small miss distance be feasible, in all realistic pursuit-

evasion examples the pursuer must have some advantage in maximum lateral
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acceleration in every direction. This means that the control constraint set P of
the pursuer has to cover completely the control constraint set Q of the evader. In
other words, the inequalities

aP /aE > 1, aP | cos(χP )col| > aE | cos(χE)0|, (5.19)

describing the relations of the semiaxes of the ellipses P and Q, have to be valid.
Such an advantage allows reducing an initial launching error and overcoming long
duration constant evader maneuvers. However, due to the first order dynamics of the
pursuer’s control function and the ideal dynamics of the evader, zero miss distance
cannot be achieved against an optimally maneuvering evader.

In Shinar et al. (1984), as well as in Melikyan and Shinar (2000), the parameters
of the problem were of an interception of a manned aircraft, assuming that VP > VE .
Thus using (5.13) one obtains

| cos(χP )col| > | cos(χE)0|.

In Shinar and Zarkh (1996), an interception of a tactical ballistic missile was con-
sidered with VP < VE , leading to

| cos(χP )col| < | cos(χE)0|.

This difference influences considerably the form of the critical tube in the equivalent
game and the associated singular surfaces.

5.2. Numerical constructions in the case of a faster pursuer

Let us start with the results of numerical investigations for the case when the
pursuer’s velocity VP is greater than the velocity VE of the evader. The nominal
collision geometry for this case is shown in Fig. 4.

Relation (5.13) of the nominal collision and the relation VP > VE of the players’
velocities yield that the eccentricity of the ellipse P is smaller than the eccentricity
of the ellipse Q (see Fig. 5).

Fig. 4. The nominal collision geometry for the case of a faster pursuer.
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Fig. 5. Elliptical constraints of the players’ controls in the case of a faster pursuer. The ellipse P
is drawn by a solid line, Q is drawn by a dashed one. The eccentricity of P is smaller than the
eccentricity of Q.

In the numerical investigation the following data were chosen:

VE

VP
= 0.666,

aP

aE
= 5.0, | cos(χP )col| = 0.87, | cos(χE)0| = 0.66, τP = 1 sec.

Consequently, the elliptical control constraints are:

P =
{

u ∈ R2 :
u2

1

0.872
+

u2
2

1.002
≤ 5.02

}
, Q =

{
v ∈ R2 :

v2
1

0.662
+

v2
2

1.002
≤ 1

}
.

From here, the symbol τ denotes the backward time: τ = T − t.
This example has been computed in the interval τ ∈ [0, 2] sec of backward time.

The time step ∆ was taken equal to 0.025 sec. The circles of the level sets of the
payoff function and the ellipses P and Q of constraints for the players’ controls
were approximated by 100-gons (polygons with 100 vertices).

In Fig. 6, the vectogram tubes for this example are shown. The first player’s
tube is light gray, the second one’s is dark gray.

An enlarged part of the previous picture from another point of view can be seen
in Fig. 7. On the vectogram tube of the second player, the contours of some time
sections are shown.

Since Q(t) = E(t)Q = η(t)I2Q = η(t)Q, where η(·) is described by (5.18b),
the dark gray tube grows linearly with τ . For the tube P , we have P(t) = ζ(t)P ,
where ζ(·) is taken from (5.18a). So, initially (for small values of τ), the light gray
tube grows slower than linearly, but for large values of τ it becomes almost linear
and starts to grow faster than the tube Q does. This faster growth is provided by
inequalities (5.19).

So, for τ < τ∗, the second player (the maximizer) has a complete advantage, that
is, the vectogram Q(τ) of the second player completely covers the vectogram P(τ)
of the first player (Fig. 8a). The instant τ∗ is characterized by the fact that the
horizontal size of the ellipses P(τ∗) and Q(τ∗) are equal (Fig. 8b). In the interval
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Fig. 6. Vectogram tubes for the case of a faster pursuer.

Fig. 7. An enlarged fragment of the vectogram tubes. The first player gains advantage in hori-
zontal direction at the instant τ∗ and a complete advantage at the instant τ∗.

τ∗ < τ < τ∗, none of the players has a complete advantage: the first player is
stronger in horizontal direction, the second player is stronger in directions near to
the vertical (Fig. 8c). When τ = τ∗, the vertical sizes of the ellipses become equal
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Fig. 8. Sections of the vectogram tubes at some time instants. The vectograms of the first player
are shown by the solid lines, the dashed lines denote the vectograms of the second player.

Fig. 9. A level set close to the critical one, c = 0.141m. The instant of the most narrow place
τ∗ = 0.925 sec.

(Fig. 8d) and for τ > τ∗ the first player has complete advantage (Fig. 8e). Such a
change in the relationship of the vectograms P(τ) and Q(τ) can be explained by
the difference between the eccentricities and the sizes of the ellipses P and Q and
the form of the functions ζ(t) and η(t).

Such a shift of the advantage from the maximizing player to the minimizer
leads to creating a narrow throat. Figure 9 shows a level set close to the critical
one. This level set is computed for c = 0.141m. The narrow throat is located at
τ∗ = 0.925 sec.

A close view of the narrow throat is shown in Fig. 10. Contours of some time
sections of the level set are shown. One can see that the t-sections Wc(t) of the
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Fig. 10. An enlarged view of the level set close to the terminal instant with the contours of some
time sections.

level set near the narrow throat are elongated horizontally. This is due to the
relation of the players’ capabilities. For τ < τ∗, the second player is stronger in
the vertical direction than horizontally. Accordingly to this, the sections Wc(t) are
compressed more in the vertical direction. When τ is slightly greater than τ∗, the
first player’s advantage is stronger in the horizontal direction (Fig. 8e), which leads
to a horizontal expansion of the sections.

The following Figure 11 shows again a view of the vectogram tubes. The second
player’s vectogram is transparent. The τ -axis goes from right to left, and the axis ξ2

is directed upwards. The axis ξ1 is orthogonal to the sheet.
Using the point of view of the previous figure, a scene is given (Fig. 12) contain-

ing also the level set close to the critical one. Both vectogram tubes are transparent
now. Such an overlap demonstrates clearly the influence of the players’ vectograms
on the geometry of the level set surface. For example, one can easily see that, when
the first player gains complete advantage (at τ∗ = 0.925 sec) the narrow throat ends
(the tube of the level set starts to enlarge). In addition, it is seen that before that
instant the tube contracts due to the advantage of the second player.

The results shown here agree qualitatively with the ones obtained in an analyt-
ical investigation of the problem with a faster pursuer made in Shinar et al. (1984)
and Melikyan and Shinar (2000). In these papers, it shown that in the case of a
faster pursuer the geometry of the critical level set is the same for any combination
of parameters of the problem.



September 20, 2005 15:26 WSPC/151-IGTR 00053

On Level Sets with “Narrow Throats” in Linear Differential Games 301

Fig. 11. Superposition of the vectogram tubes. The second player’s tube is transparent.

Fig. 12. Superposition of the vectogram tubes and the level set close to the critical one. The
players’ vectogram tubes are transparent.

5.3. Numerical constructions in the case of a slower pursuer

In this subsection, the results with a slower pursuer VP < VE are presented. The
nominal collision geometry for this case is shown in Fig. 3. The eccentricity of the
ellipse P is greater than the eccentricity of the ellipse Q (see Fig. 13).
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Fig. 13. Elliptical control constraints of the players in the case of a slower pursuer. The ellipse P
is drawn by a solid line, Q is drawn by a dashed one. The eccentricity of P is greater than the
eccentricity of Q.

Based on the data of the original problem

VE

VP
= 1.054,

aP

aE
= 1.3, |cos(χP )col| = 0.67, |cos(χE)0| = 0.71, τP = 1 sec,

in the construction, the following data were used: α = 1/τP = 1,

P =
{

u ∈ R2 :
u2

1

0.672
+

u2
2

1.002
≤ 1.302

}
, Q =

{
v ∈ R2 :

v2
1

0.712
+

v2
2

1.002
≤ 1

}
.

This example has been computed in the interval τ ∈ [0, 7] sec with the time
step ∆ = 0.01 sec. The circles of the level sets of the payoff function and the ellipses
of the players’ control constraints, P and Q, were approximated by 100-gons.

Like in the example of the previous subsection, there is a narrow throat also here.
Figure 14 shows a general view of the level set Wc computed for the parameter c =
1.546m, which is slightly greater than the critical one. But unlike the example
described in Subsec. 5.2, here the narrow throat has a much more complex structure:
the orientation of the t-sections’ elongation changes very tricky near the throat. An
enlarged view of the throat is shown in Fig. 15.

Let us use the players’ vectogram tubes for this problem to explain the shape
of the level set. The vectogram tubes are shown in Fig. 16. The tube of vectograms
of the first player (P) is drawn in red, and the tube of the second player (Q) is in
green. Here also, the tube Q grows linearly with τ , whereas the tube P grows slower
than linearly at small values of τ and becomes almost linear later. Eventually, for
large values of τ , it will grow faster than the tube Q, because (5.19).

Since the ellipses P and Q have different eccentricities, the first player’s ellipse
P(τ) starts to cover the ellipse Q(τ) of the second player in different directions at



September 20, 2005 15:26 WSPC/151-IGTR 00053

On Level Sets with “Narrow Throats” in Linear Differential Games 303

Fig. 14. General view of the level set of the value function with a narrow throat.

Fig. 15. Enlarged view of the narrow throat.

different instants. So, for τ < τ∗ = 4.18 sec, the ellipse Q(τ) includes the ellipse P(τ)
completely (see Fig. 17a). At τ = τ∗, the first player’s ellipse reaches the ellipse
of the second player in the vertical direction (see Fig. 17b). In the interval τ∗ <

τ < τ∗, the ellipse P(τ) covers more and more the ellipse Q(τ). Finally, at τ =
τ∗ = 5.3 sec the set P(τ) covers the set Q(τ) even in the horizontal direction (see
Fig. 17c). And for τ > τ∗, P(τ) covers Q(τ) completely (see Fig. 17d).
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Fig. 16. General view of the vectogram tubes of the first (1) and second (2) players. The vec-
togram tube of the second player is transparent, showing contours of some sections.

Fig. 17. Sections of the vectogram tubes at some time instants. The vectograms of the first player
are shown by the red lines, the green lines denote the vectograms of the second player.

The relationship between the players’ vectograms leads to an intricate changing
of the level set’s t-sections near the narrow throat, as it can be seen in Figs. 14, 15,
and 18. The latter shows groups of sections in different intervals of τ to demonstrate
the different phases of the sections’ changing.

For τ < τ∗, the second player has complete advantage over the first one. Since
in backward time the second player tries to contract the sections of the level sets
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Fig. 18. Groups of time sections of a level set close to the critical tube in some intervals of the
backward time: (a) τ ∈ [0, 3.8] sec; (b) τ ∈ [τ∗, τ̃ ]; (c) τ ∈ [τ̃ , τ∗]; (d) τ ∈ [5.41, 7.0] sec.

as much as possible, the t-sections of the tube Wc are reduced in the interval 0 <

τ < τ∗. In Fig. 18a, the sections are shown in the interval τ ∈ [0, 3.8] sec. Since
the second player’s advantage is greater in the vertical direction, the tube starts
to contract more in the vertical direction than in the horizontal one. Therefore,
at τ = τ∗ the t-section of the level set is elongated horizontally.

In the interval τ∗ < τ < τ∗, the first player gains advantage gradually, starting
in the vertical direction, while the second player keeps its horizontal advantage.
For this reason the t-sections of the level set start expanding vertically, while they
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Fig. 19. Decreasing the time sections in vertical direction due to horizontal contraction.

continuing being reduced in the horizontal direction. This interval can be subdivided
into two parts.

Between τ∗ and τ̃ = 4.95 sec the time sections have the shape of “curvilinear
rectangles” as it can be seen in Fig. 18b. Their form is gradually changing from a
horizontal elongation to a vertical one.

At τ̃ the horizontal arcs disappear, and the t-sections start having a vertical lens
shape. Simultaneously, the vertical expansion becomes a contraction despite of the
vertical advantage of the first player (Fig. 18c), because the horizontal contraction
enforces a contraction due to the lens shape as explained in Fig. 19. The side arcs
of the previous section Wc(τi) enlarge vertically under action of the first player and
become closer to each other horizontally under action of the second one. The next
section Wc(τi+1) is bounded by the intersection of the arcs.

Finally, at τ = τ∗, when the first player gains a complete advantage, one obtains
the narrowest section of the throat (Figs. 15 and 18c) with vertical elongation.
For τ > τ∗ the first player keeps the complete advantage and the t-sections start
to expand in all directions monotonically. The rate of expansion is, however, non
uniform, but the direction of elongation remains vertical (see Fig. 18d).

The following two figures show the critical level set in comparison with level sets
close to it. Figure 20 shows the critical tube (drawn in transparent yellow) and the
tube computed for the value of c = 1.48m of the payoff function, which is less than
the critical one. This tube is finite in time and drawn in red. In Fig. 21, the critical
level set (in red) and the one computed for c = 1.67m (in transparent yellow)
are presented. One can see that the latter has smooth boundary. These figures
demonstrate that the majority of peculiarities of the value function are found near
the narrow throat, emphasizing the necessity of extremely accurate computations
near the throat.

Note that the unique features of the narrow throat, described in this subsec-
tion, appear also for other linearized pursuit-evasion game examples (of the same
mathematical model) with a slower pursuer. Of course, by varying the parameters
of the game, the duration of the narrow throat and the size of the t-sections near
the throat will change.
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Fig. 20. The level set with narrow throat for the parameter c = 1.546m (yellow transparent)
and the level set for a less value of the parameter c = 1.48 m (red).

Fig. 21. The level set with narrow throat for the parameter c = 1.546 m (red) and the level set
for a greater value of the parameter c = 1.67m (yellow transparent).

In the paper Shinar and Zarkh (1996), in particular, an example with the fol-
lowing parameters

VE

VP
= 1.03,

aP

aE
= 1.3,

|cos(χP )col| = 0.98, |cos(χE)0| = 0.9812, τP = 1 sec
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was analyzed, leading to α = 1/τP = 1,

P =
{

u ∈ R2 :
u2

1

0.982
+

u2
2

1.02
≤ 1.32

}
, Q =

{
v ∈ R2 :

v2
1

0.98122
+

v2
2

1.02
≤ 1

}
.

The tube of the critical level set in this example was associated with the value
of c = 1.534m.

The attempt to reconstruct numerically this level set by the algorithm of Sec. 4
was unsuccessful. Although in general, the tube was reproduced, the shape of
t-sections near the narrow throat was incorrect.

One of the reasons of the failure was that in this example the time duration
of the narrow throat turned out to be extremely short. In order to reconstruct
the shape adequately, computations should have been carried out (at least, in the
interval of the throat) with a time step ∆ = 5 · 10−4 sec. Moreover, the maximal
length of the approximating polygons’ edges should have been also adjusted to this
small time step, resulting in polygons of thousands of edges. All these reasons would
have lead to an unacceptable time of computation.

The reasons for the very short duration of the narrow throat are the almost
circular control constraints and the negligible difference in their eccentricities. The
physical origin of this feature is the small difference in velocity magnitudes, as well
as the near frontal initial geometry ((χP )col = 11.5 degree, (χE)0 = 168.9 degree).

The analytical results of the paper Shinar and Zarkh (1996) shows that in the
case of a slower pursuer the geometry of the critical tube differs qualitatively for
different combinations of the parameters of the problem. The dependence of the
critical tube geometry on the parameters of the problem (and how it affects the
singular surfaces) is investigated in that paper. The example computed numerically
in this subsection corresponds to the case of the most complicated structure of the
narrow throat.

6. Summary and Concluding Remarks

The paper presents examples of a linear zero-sum differential game with bounded
controls, fixed terminal time and terminal payoff. The payoff function is convex and
depends only on two components of the state vector. This game is a mathematical
model of a pursuit-evasion problem between a guided missile and its aerial target,
where the kinematics can be linearized. The original game can be transformed to a
two-dimensional “equivalent” game, which is much more convenient for analysis.

The main contribution of the paper is the demonstration of the “narrow throat”
phenomenon the value function’s level sets. This phenomenon is closely connected
to the existence of “indifferent” zones in the equivalent game space, where the value
function is constant and the optimal controls are arbitrary. Such indifferent zones
can exist only if the players’ vectograms in the equivalent game are such that none
of them has a complete advantage during the entire game. If the control constraints
(and consequently, the vectograms) have circular symmetry, the indifferent zone
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(bounded by the “critical” level set of the value function) starts in reverse time
at a single point on the time axis and the neighborhood of the point is called the
“throat”. Depending on the number of advantage changes, there can be more than
one throats. If the circular symmetry of the control constraints is perturbed, for
example (as in the examples considered in the paper) by elliptical vectograms, the
time sections of the critical level set near the throat become elongated in some
direction. Contraction of the time sections of a level set in direct time indicates
the advantage of the minimizing player, while expansion indicates the advantage
of the maximizer. The change in the orientation of the level sets’ time sections
near the narrow throat indicates the shift of advantage in the components of their
vectograms. This last phenomenon may have a great importance in the development
of optimal evasive maneuvers from guided missiles.

The discovery and the analysis of such complex behavior could be achieved only
by an intricate and very accurate computational algorithm for construction of the
level sets of the value function, developed by the first two authors in a multi-year
effort. The analytical investigations made in the papers of the third author allowed
to check the correctness of the numerical constructions and to find an example with
some variant of input data, which could not been reproduced yet by the currently
available numerical algorithm.
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