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1. Introduction

In 1889, Andrey Andreevich Markov published a paper in “Soobscenija Charkovskogo
Matematiceskogo Obscestva” where he considered four mathematical problems related to the
design of railways. The simplest among these problems (and the first one in course of the
presentation) is described as follows. Find a minimum length curve between two points in
the plane provided that the curvature radius of the curve should not be less than a given
quantity and the tangent to the curve should have a given direction at the initial point.
In 1951, Rufus Philip Isaacs submitted his first Rand Corporation Report on differential game
theory where he stated and lined out a solution to the “homicidal chauffeur” problem. In
that problem, a “car” with a bounded turning radius and a constant magnitude of the linear
velocity tries as soon as possible to approach an avoiding the encounter “pedestrian”. At the
initial time, the direction of the car velocity is given.
In 1957, in American Journal of Mathematics, Lester Eli Dubins considered a problem in
the plane on finding among smooth curves of bounded curvature a minimum length curve
connecting two given points provided that the outgoing direction at the first point and
incoming direction at the second point are specified.
Obviously, if one takes a particular case of Isaacs’ problem with the immovable “pedestrian”,
then the “car” will minimize the length of the curve with the bounded turning radius.
The arising task coincides with the problem considered by A. A. Markov. The difference
from the problem by L. E. Dubins is in the absence of a specified direction at the incoming
point. The fixation of incoming and outgoing directions presents in the other three problems
by A. A. Markov. However, they contain additional conditions inherent to the railway
construction.
In such a way the notion of a “car” which moves only forward and has bounded turning
radius appeared.
In 1990, in Pacific Journal of Mathematics, James Alexander Reeds and Lawrence Alan Shepp
considered an optimization problem where the object with bounded turning radius and
constant magnitude of the linear velocity can instantaneously change the direction of motion
to the opposite one. In a similar way, carts move around storage rooms. Thus, the model of
the car that can move forward and backward has appeared.
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Two models (the forward moving car with bounded turning radius; the forward and
backward moving car with bounded turning radius) gave rise to numerous literature where
various optimization problems related to the transportation are studied. More sophisticated
models in which a moving object is considered in a more realistic way have arisen (controlled
wheel, bicycle, car with two chassis, car with a trailer). Optimization problems related to such
complicated tasks are extremely difficult. The simplest models serve as a “sample” showing
where the situation is easy and where it becomes complex.
One of the key notion in the mathematical control theory (Pontryagin et al., 1962), (Lee &
Markus, 1967), (Agrachev & Sachkov, 2004) is reachable set. The reachable set is a collection of
states which can be attained within the framework of the motion model under consideration.
The reachable set at given time describes a collection of states realizable at a specified time
instant. The reachable set by given time is a collection of states that can be obtained on the
whole time interval from an initial time instant to a specified one.
This paper is devoted to the investigation of reachable sets at given and by given time for
simplest models of car motion.

2. Simple models of car motion

The simplest car dynamics are described in dimensionless variables by the following system
of equations

ẋ = sin θ, ẏ = cos θ, θ̇ = u; |u| ≤ 1. (1)

The variables x, y specify the center mass position in the two-dimensional plane; θ is the angle
between the direction of the velocity vector and that of the vertical axis y measured clockwise
from the latter. The value u acts as a control input. The control u(t) specifies the instantaneous
angular velocity of the vector (ẋ(t), ẏ(t)) of linear velocity and is bounded as |u(t)| ≤ 1.
The motion trajectories in the plane x, y are curves of bounded curvature. The paper (Markov,
1889) considers four optimization problems related to curves of bounded curvature. The first
problem (Markov, 1889), p. 250, can be interpreted as a time-optimal control problem for
car dynamics (1). Also, the main theorem (Dubins, 1957), p. 515, allows an interpretation
in the context of time-optimal problem for such a car. In works on theoretical robotics
(Laumond, 1998), an object with dynamics (1) is called Dubins’ car. Model (1) is often utilized
in differential game problem formulations (Isaacs, 1951; 1965).
Next in complexity is the car model by Reeds and Shepp (Reeds & Shepp, 1990):

ẋ = w sin θ, ẏ = w cos θ, θ̇ = u; |u| ≤ 1, |w| ≤ 1. (2)

Control u changes the angular velocity, control w is responsible for instantaneous changes of
the linear velocity magnitude. In particular, the car can instantaneously change its motion
direction to the opposite one. The angle θ is the angle between the direction of the axis y and
the direction of the forward motion of the car.
It is natural to consider control dynamics where the control w is from the interval [a, 1]:

ẋ = w sin θ, ẏ = w cos θ, θ̇ = u; |u| ≤ 1, w ∈ [a, 1]. (3)

Here a ∈ [−1, 1] is the parameter of the problem. If a = 1, Dubins’ car is obtained; if a = −1,
Reeds and Shepp’s car appears.
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Finally, one can consider non-symmetric constraint u ∈ [b, 1] instead of the bound |u| ≤ 1.
Assume that the values of the parameter b satisfy the inclusion b ∈ [−1, 0). In this case,
controlled system preserves essential properties inherent to the case |u| ≤ 1 (since the value
u = 0 remains the internal point of the restriction on u).
Let us write down the dynamics of the last system as the most general one among the above
mentioned:

ẋ = w sin θ, ẏ = w cos θ, θ̇ = u; u ∈ [b, 1], w ∈ [a, 1]. (4)

Here, a and b are fixed parameters with a ∈ [−1, 1], b ∈ [−1, 0).
The model (4) is kinematic, since it does not take into account forces acting on the body. The
car is represented as a point mass. The control u determines the angular rate of the linear
velocity vector; the control w changes the magnitude of the linear velocity.
In the paper, reachable sets at given time and those ones by given time for system (4) are
studied using numerical constructions. The reachable set at time t∗ is a collection of all states
which can be obtained exactly at given time t∗. If such states are considered in the plane x, y,
then we have a two-dimensional reachable set; if the consideration takes place in space x, y, θ,
then a three-dimensional set is obtained. The peculiarity of the reachable set “by given time”
is in accounting for the states reachable not only at time t∗ but on the whole interval [0, t∗].

3. Two-dimensional reachable sets

3.1 Reachable sets at given and by given time
Let z0 = (x0, y0) be the initial geometric position and θ0 be the initial angle at time t0 = 0. The
reachable set G2(t∗; z0, θ0) at given time t∗ in the plane x, y is the set of all geometric positions
which can be reached from the starting point z0, θ0 at time t∗ by the trajectories of system (4)
using admissible piecewise continuous controls u(·), w(·).
Introducing the notation z(t∗; z0, θ0, u(·), w(·)) for the solution of differential equation (4) with
the initial point z0, θ0, one can write

G2(t∗; z0, θ0) :=
⋃

u(·),w(·)
z(t∗; z0, θ0, u(·), w(·)).

For z0 = 0, θ0 = 0, the notation G2(t∗) will be used instead of G2(t∗; 0, 0).
Since the right-hand side of system (4) does not contain variables x, y, and due to the type of
appearance of θ in the right-hand side of (4), the geometry of reachable sets does not depend
on z0, θ0. Namely,

G2(t∗; z0, θ0) = Πθ0 (G
2(t∗)) + z0.

Here, Πθ is the operator of clockwise rotation of the plane x, y by the angle θ0. Therefore, the
study of reachable sets for point-wise initial conditions can be restricted to the case z0 = 0,
θ0 = 0.
The reachable sets by given time are defined in a similar way. Let

G2(t∗; z0, θ0) :=
⋃

t∈[0,t∗ ]

G2(t; z0, θ0).

Other formulas remain the same, we only replace G2 by G2.



150 Recent Advances in Mobile Robotics

Classical and the best known is the construction of the reachable sets G2(t∗) and G2(t∗)
for system (1). It was established in paper (Cockayne & Hall, 1975) that any point of the
boundary ∂G2(t∗) can be attained using piecewise control with at most one switch. Namely,
the following variants of the control actions are possible: (−1, 0), (1, 0), (−1, 1), (1,−1). The
first variant means that control u ≡ 1 acts on some interval [0, t̂), and control u ≡ 0 works on
the interval [t̂, t∗]. The similar is true for the rest of the four variants. Using this proposition
and running the switch instant t̂ from 0 to t∗, we can construct the boundary of the set G2(t∗).
The form of the sets G2(t∗) for four instants of time t∗ = i 0.5π, i = 1, 2, 3, 4, is shown in Fig. 1.
The chosen values t∗ correspond to the time needed to turn the velocity vector by the angle
i 0.5π when moving with the control u = 1 (u = −1). For every t∗, the figure has its own
scale. In Fig. 2, several trajectories arriving at the boundary of the reachable set are shown.
The trajectories with the extreme controls u = 1 and u = −1 are the circles of radius 1. For
u = 0, the motion along a straight line occurs.

 

 

π5.0=∗t  π=∗t  

π5.1=∗t  π2=∗t  

Fig. 1. Form of the reachable sets G2(t∗) for system (1)

Since the set G2(t∗) is the union of the sets G2(t) over all t ∈ [0, t∗], then any point of the
boundary ∂G2(t∗) is reachable with the control of the above mentioned structure (but this
control is defined in general on [0, t̃] where t̃ ∈ [0, t∗]). The minimum time problem for
system (1) with the initial point z0 and given direction θ0 of the velocity vector to the point
z for which the angle θ is not specified is very popular. The structure of the solution to this
problem was described by A. A. Markov. It was also known to R. Isaacs, since such problem
is a degenerate case of the differential game “homicidal chauffeur”. Nevertheless, accurate
images of reachable sets G2(t∗) have been appeared only in the beginning of 1990s (Boissonnat



Reachable Sets for Simple Models of Car Motion 151

π=∗t  

1−=u  

1+=u  

0=u  

0=u  

Fig. 2. Structure of the controls steering to the boundary of the reachable set G2(π) for
system (1)
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Fig. 3. Time-limited reachable sets G2(t) for system (1), τf = 7.3, δ = 0.1

& Bui, 1994). Fig. 3 shows the form of the sets G2(t) computed by the authors on the interval
[0, t f ], t f = 7.3, the output step for the construction results is δ = 0.1.
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3.2 Reachable sets with regard to an orientedly added set
Let us now define the reachable set at time t∗ with regard to an orientedly added set D:

G2
D(t∗) :=

⋃
u(·),w(·)

[z(t∗; 0, 0, u(·), w(·)) + Πθ(t∗ ;0,0,u(·),w(·))(D)].

Hence, when constructing G2
D(t∗), we add the set D which is rigidly rotated with respect to

the origin by the angle θ(t∗; 0, 0, u(·), w(·)) to each point (being attainable at the time t∗ with
u(·), w(·)) of the usual reachable set. It is assumed that z0 = 0 and θ0 = 0.
The sense of the set G2

D(t∗) can be explained using the following example. Let us fix
controls u(·), w(·). At the time t∗, the geometric position z(t∗; 0, 0, u(·), w(·)) and the slope
θ(t∗; 0, 0, u(·), w(·)) of the velocity vector are realized. Suppose we are interested at this time
instant in a point located at the distance d from the point z(t∗; 0, 0, u(·), w(·)) orthogonally to
the velocity vector ż(t∗) = (ẋ(t∗), ẏ(t∗)) to the left from its direction. Such point is written as
z(t∗; 0, 0, u(·), w(·)) + Πθ(t∗ ;0,0,u(·),w(·))(D), if we take the set consisting from the point (−d, 0)
in the plane x, y as the set D. The total collection of points at the time t∗ with the property we
are interested in is obtained by the enumeration of admissible controls u(·), w(·) and forms
the set G2

D(t∗).
The reachable set G2

D(t∗) by the time t∗ with regard to an orientedly added set D is defined as

G2
D(t∗) :=

⋃
t∈[0,t∗ ]

G2
D(t).

3.3 Isaacs’ transformation
System (4) is of the third order with respect to the state variables. Since we are interested in the
construction of reachable sets in the plane of geometric coordinates, it is convenient to pass to
a system of the second order with respect to the state variables. This can be done using Isaacs’
transformation.
Isaacs utilized system (4) with w ≡ 1, u ∈ [−1, 1] (i.e. system (1)) for the formulation and
solution of several pursuit-evasion differential games. The pursuit-evasion game “homicidal
chauffeur” proposed by R. Isaacs in his report (Isaacs, 1951) was then published in his famous
book “Differential games” (Isaacs, 1965) and became classical problem. We will apply the
transformation, which R. Isaacs used in this game, for our purposes.
Let h(t) be a unit vector in the direction of forward motion of system (4) at time t. The
orthogonal to h(t) unit vector is denoted by k(t) (see Fig. 4). We have

h(t) =

(
sin θ(t)

cos θ(t)

)
, k(t) =

(
cos θ(t)

− sin θ(t)

)
.

Axis y of the reference system is directed along the vector h(t), axis x is directed along the
vector k(t).
Let z̃ = (x̃, ỹ) be a fixed point in the plane x, y. The coordinates x(t), y(t) of this point in the
movable reference system whose origin coincides with the point z(t) are

x(t) = k′(t)(z̃− z(t)) = cos θ(t)(x̃− x(t))− sin θ(t)(ỹ− y(t)), (5)
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x

y

0

z(t)

θ(t) h(t)

k(t)
z̃

x

y

Fig. 4. Movable reference system

y(t) = h′(t)(z̃− z(t)) = sin θ(t)(x̃− x(t)) + cos θ(t)(ỹ− y(t)). (6)

Here, the prime denotes the operation of transposition.
Taking into account (5) and (6), one obtains

ẋ(t) = − sin θ(t)θ̇(t)(x̃− x(t))− cos θ(t)ẋ(t)−

cos θ(t)θ̇(t)(ỹ− y(t)) + sin θ(t)ẏ(t) = −y(t)θ̇(t)− cos θ(t)ẋ(t) + sin θ(t)ẏ(t), (7)

ẏ(t) = cos θ(t)θ̇(t)(x̃− x(t))− sin θ(t)ẋ(t)−

sin θ(t)θ̇(t)(ỹ− y(t))− cos θ(t)ẏ(t) = x(t)θ̇(t)− sin θ(t)ẋ(t)− cos θ(t)ẏ(t). (8)

The projection of the velocity vector of system (4) on the axis x at time t is zero, the projection
on the axis y is w(t). Therefore,

cos θ(t)ẋ(t)− sin θ(t)ẏ(t) = 0, (9)

sin θ(t)ẋ(t) + cos θ(t)ẏ(t) = w(t). (10)

Using (7) and (9), we obtain
ẋ(t) = −y(t)θ̇(t). (11)

With (8) and (10), we get
ẏ(t) = x(t)θ̇(t)− w(t). (12)

Equalities (11), (12), and θ̇ = u yield the system

ẋ = −yu,

ẏ = xu− w, u ∈ [b, 1], w ∈ [a, 1].
(13)
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3.4 Solvability sets for problems of approach at given time and by given time
Let M be a closed set in the plane x, y. Denote by W(τ, M) (respectively, byW(τ, M)) the set
of all points z = (x, y) with the property: there exist piecewise continuous admissible controls
u(·), w(·) which bring system (13) from the initial point z to the set M at time τ (respectively,
by time τ). The set W(τ, M) (W(τ, M)) is the solvability set in the problem of reaching the set
M at time τ (by time τ).
Take now the same set M as a terminal set in the problem of reaching a given set for system (13)
and as a set D in the problem of finding reachable set in geometric coordinates for system (4)
with regard to an orientedly added set. It follows from the sense of Isaacs’ transformation
that the set W(τ, M) drawn in coordinates x, y coincides with the set G2

M(τ) depicted in
coordinates x,y. Therefore,

W(τ, M) = G2
M(τ). (14)

Similarly,

W(τ, M) = G2
M(τ). (15)

In the following, we will utilize relations (14), (15) in order to obtain the reachable sets G2
D(t)

and G2
D(t) of system (4) using the sets W(τ, M) andW(τ, M) computed for system (13) with

τ = t and M = D. In addition, if M is a one-point set that coincides with the origin in the
plane x, y, then

W(τ, M) = G2
M(τ) = G2(τ), W(τ, M) = G2

M(τ) = G2(τ).

By fixing some point z̄ = (x̄, ȳ) in the plane and by increasing t, let us find the first instant t̄
when z̄ ∈ G2

M(t̄) (equivalently, z̄ ∈ G2
M(t̄)). Such t̄ be the optimal time V(z̄) of passing from the

point z0 = 0, θ0 = 0 to the point z̄ for system (4) with accounting for M. Hence, the Lebesgue
set {z : V(z) ≤ t} of the optimal result function coincides with the set G2

M(t) = W(t, M).
For the sets shown in Fig. 3 (where M = {0}), the function z → V(z) is discontinuous on the
upper semi-circumferences of radius 1 with the centers at the points (−1, 0), (1, 0).

3.5 Backward procedure for construction of solvability sets
The algorithms developed by the authors for the numerical construction of the sets W(τ, M)
andW(τ, M) are based on the backward procedure (the parameter τ increases starting from
τ = 0) and being variants of the dynamic programming method for the considered class
of problems. Backward procedures for the construction of the solvability sets at given time
and by given time are intensively developed (Grigor’eva et al., 2005), (Mikhalev & Ushakov,
2007) for control problems and differential games. Elements of the backward constructions are
included in one or another form (Sethian, 1999), (Cristiani & Falcone, 2009) into grid methods
for solving differential games. For control problems, the backward procedures are simpler,
since the second player whose actions should be accounted for in differential games is absent.
Especially simple are the backward procedures for problems in the plane. In this case, one can
storage the boundary of the sets W(τ, M) andW(τ, M) in form of polygonal lines.
The general idea for the construction of the solvability sets W(τ, M) in the problem of
approaching a set M by system (13) at time τ is the following. We deal with polygonal sets
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which are considered as approximations of the ideal sets W(τ, M). Specify a time step ∆ (it
can also be variable) and define τ0 = 0, ..., τi+1 = τi + ∆.
Consider the vectogram E(z) =

⋃
u∈P

f (z, u) of the right hand side of the controlled system.

For system (4), we have u = (u, w), P = {(u, w) : u ∈ [b, 1], w ∈ [a, 1]}. The set z− ∆E(z)
describes approximately the collection of points from which the point z can be approached at
time ∆. Running over the boundary ∂W(τi, M) and attaching the set z − ∆E(z) “to every”
point of the boundary, we approximately construct the boundary ∂W(τi+1, M) of the set
W(τi+1, M).
Theoretically, the solvability setW(τ∗, M) for the problem of approaching the set M by system
(13) by the time τ∗ is defined through the union of the sets W(τ, M), τ ∈ [0, τ∗]. However, one
can reject the explicit realization of the union operation and try to construct the boundary of
the setW(τi+1, M) directly on the base of the boundary of the setW(τi, M). To this end, the
notion of a front is introduced.
Using the optimal result function V, the front corresponding to the time τ is formally defined
as

F(τ) := {z ∈ ∂W(τ, M) : V(z) = τ}.
If z̄ /∈ W(τ, M), then every trajectory of system (13) starting from the point z̄ can approach
W(τ, M) through the front F(τ) only.
It is known (see e.g. Bardi & Capuzzo-Dolcetta (1997)) that if F(τ∗) = ∂W(τ∗, M) for some τ∗,
then F(τ) = ∂W(τ, M) for all τ ≥ τ∗.
Let A(τ) := ∂W(τ, M) \ F(τ). It follows from results of optimal control theory and theory of
differential games that the function z → V(z) is discontinuous on the set A :=

⋃
τ≥0

A(τ) and

continuous in the remaining part of the plane.
Possible structure of the set A is not well explored for time-optimal problems. It is reasonable
to assume that if the set B := A \ M is not empty, then it consists of a collection of smooth
arcs. Such arcs are called barriers (Isaacs, 1965).
By the definition of the front F(τ), we have F(τ) ⊂ W(τ, M). From here, with accounting for
the relations F(τ) ⊂ ∂W(τ, M), W(τ, M) ⊂ W(τ, M), we obtain F(τ) ⊂ ∂W(τ, M).
The main idea of the algorithm of the backward construction of the setsW(τ, M) is explained
in Fig. 5. The next setW(τi+1, M) for τi+1 = τi + ∆ is computed on the basis of the previous
setW(τi, M). The central role in this computation belongs to the front F(τi). As a result, the
front F(τi+1) is obtained, and a new set A(τi+1) is formed via the extension or reduction of
the set A(τi). The union F(τi+1)

⋃
A(τi+1) is the boundary of the next set W(τi+1, M). The

initial front F(0) coincides with those part of the boundary ∂M that consists of the points from
which the trajectories of system (13) (being written in backward time) leave M with increasing
τ for at least one pair of admissible controls u(·), w(·). According to (Isaacs, 1965), such part
of the boundary of M is called the usable part of M.
Therefore, the algorithm resembles the front propagation.
Several typical cases (local fragments) of the front propagation are presented in Figs. 6 and 7.
Fig. 6a shows the case in which the left end of the front is moving from the endpoint c of the
usable part of ∂M with increasing τ. In the algorithm, simultaneously with the computation
of the next front F(τi+1), the extension of the barrier is computed by means of connection of
the left ends of the fronts F(τi) and F(τi+1). In the case considered, this results in the local
increase of the totality A(τi+1) with respect to A(τi). The extension of the barrier forms a line
on which the value function is discontinuous.
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Fig. 5. Backward construction of the solvability setsW(τ, M). The boundary of the set
W(τi+1, M) is F(τi+1)∪A(τi+1)

Mcq

F(τi+1)

F(τi)

B

F(τi+1)
q F(τi)

M
d

a b

Fig. 6. a) The movement of the left end of the front generates the barrier line on which the
value function is discontinuous; b) The right end of the front is moving along the boundary
of the terminal set

In the case shown in Fig. 6b, the right end of the front starts to move along ∂M from the very
beginning i.e. for small τ > 0. Here, no barrier line emanates from the right endpoint d of the
usable part. The value function near the point d outside the set M is continuous.
Fig. 7 represents the case where the left end of the front is running along the back side of the
already constructed barrier. This results in the local decrease of the totality A(τi+1) comparing
to A(τi).
A more detailed description of the algorithm is given in (Patsko & Turova, 2009).
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Mq
F(τi+1)

F(τi)

c

Fig. 7. The left end of the front is bending around the barrier line

3.6 Results of numerical construction of solvability sets (reachable sets)
Let M be a one-point set that coincides with the origin (in the numerical computations, a
circle with a very small radius is taken). For system (3) with a < 0, the set G2(t) “swells”
monotonically with increasing t, i.e. G2(t2) ⊃ G2(t1) for t2 > t1, where the strict inclusion
holds. This provides that the sets G2(t) and G2(t) coincide. For a = −1 (i.e. for system (2))
the set G2(t) = G2(t) is symmetric with respect to the axes x, y.
After publishing the paper (Reeds & Shepp, 1990) related to the minimum time problem for
system (2), the obtained results were refined and essentially propelled in the works (Sussmann
& Tang, 1991), (Soueres et al., 1994), and (Soueres & Laumond, 1996) by using the Pontryagin
maximum principle. The second paper describes in particular the construction of reachable
sets G2(t) and give the structure of controls steering to the boundary of these sets. The
properties of monotonic swelling of the sets G2(t) and the symmetry make system (2) very
convenient for solving very complex problems of robot transportation (Laumond, 1998),
pp. 23 – 43. For a = −0.8 and a = −1, the reachable sets are shown in Fig. 8. As before,
the notation t f means the end time of the construction interval. The symbol δ denotes the
output step of the representation, which is not necessarily equal to the step ∆ of the backward
constructions. The latter is, as a rule, smaller.
For a = 0.8 and a = 0.2, the behavior of the reachable sets G2(t) for system (3) with increasing
t is shown in Fig. 9. The dependency of the sets G2(t) and G2(t) on the parameter a is
presented for t = 1.8 in Fig. 10. Similar sets but for non-symmetric constraint u ∈ [−0.6, 1]
(i.e. for system (4)) are depicted in Fig. 11. Non-symmetry of the restriction on the control u
results in the non-symmetry of the obtained sets with respect to the vertical axis. Note that
from the theoretical point of view, the minimum time problem and the related problem of
the construction of the sets G2(t) for system (4) with a = 1 and b ∈ [−1, 0) were studied in
(Bakolas & Tsiotras, 2011).
In Figs. 12 and 13, the sets G2

M(τ) computed for a = 0.2 and b = −0.6 are shown. The set
G2

M(τ) = W(τ, M) becomes for the first time non-simply-connected at τ∗ = 4.452 when the
right part of the front collides with M. Here, one needs to fill a “hole” adjoining to the back
side of initial part of the barrier. The hole is completely filled out by the time τ̄ = 4.522.
The second hole occurs at time τ∗ = 5.062 when left and right parts of the front meet. In
this case, the filling out of the hole ends at ¯̄τ = 5.21. The function V of the optimal result is
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Fig. 8. Reachable sets G2(t) = G2(t) for system (3), t f = 1.8, δ = 0.04: a) a = −0.8; b) a = −1
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Fig. 9. The reachable sets G2(t) at given time for system (3), t f = 1.8: a) a = 0.8, δ = 0.2;
b) a = 0.2, δ = 0.3

discontinuous on the two barrier lines being the upper semi-circumferences with the centers

at the points (a/b, 0) = (−1/3, 0) and (a, 0) = (0.2, 0) and the radiuses
1
3
− r and 0.2− r,

where r = 0.01 is the radius of the terminal circle M.

Let us consider an example where the set M is a circle of radius 0.3 centered at the point
(0.7, 0). Put a = 0.8. In Figs. 14 and 15, results of the construction of the sets W(τ, M)
are presented. We see which parts of the boundary of the reachable set G2

M(τ) = W(τ, M)
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propagate in a regular way with increasing τ and which ones (and from what time) are
developed in a more complex manner. With increasing τ, the left end of the front moves
along the barrier line (as in Fig. 6a). After passing the point d, the left end begins to move
along the same barrier line but over its back side. The right end runs along the boundary of
the terminal set with increasing τ (as in Fig. 6b), then changes over to the back side of the
barrier. At time τ∗ = 4.864, the self-intersection of the front occurs. The front is divided into
two parts: the inner and the outer ones. The ends of the inner front slide along the left barrier
until they meet each other and a closed front is formed. The construction then is continued
for the closed front. At time τ∗ = 6.08, the inner front shrinks into a point. The computation
of the closed outer front is also continued till this time τ∗. The optimal result function V is
discontinuous outside of M on the barrier ce.
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M(τ) =W(τ, M) for system (4) with a = 0.2, b = −0.6. The set M is

the circle of radius 0.01 with the center at the origin. The output step of the representation is
δ = 0.12, the terminal time is τf = 5.21
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M(τ) =W(τ, M) for the circle M centered at (0.7, 0); a = 0.8,

b = −1, τf = 6.08, δ = 0.076
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4. Three-dimensional reachable sets

Let us describe the reachable sets

G3(t∗) :=
⋃

u(·),w(·)
(z(t∗; 0, 0, u(·), w(·)), θ(t∗; 0, 0, u(·), w(·)), G3(t∗) :=

⋃
t∈[0,t∗ ]

G3(t)

in the three-dimensional space x, y, θ. We restrict ourselves to the case of system (1) and a
close to it system in which the control parameter u is restricted as u ∈ [b, 1], where b ∈ [−1, 0)
is the fixed parameter.

4.1 Structure of controls steering to the boundary of reachable sets at given time
In paper (Patsko et al., 2003), it was established based on the application of the Pontryagin
maximum principle to system (1) that for any point (z, θ) ∈ ∂G3(t∗) the control steering to
this point is piecewise continuous and has at most two switches. In addition, there are only 6
variants of changing the control:
1) 1, 0, 1; 2) −1, 0, 1; 3) 1, 0, −1; 4) −1, 0, −1; 5) 1, −1, 1; 6) −1, 1, −1.
The second variant means that the control u ≡ −1 acts on some interval [0, t1), the control
u ≡ 0 works on an interval [t1, t2), and the control u ≡ 1 operates on the interval [t2, t∗]. If
t1 = t2, then the second interval (where u ≡ 0) vanishes, and we obtain a single switch from
u = −1 to u = 1. In the case t1 = 0, the first interval where u ≡ −1 vanishes; in the case
t2 = t∗ the third interval with u ≡ 1 is absent. The control has constant value for all t ∈ [0, t∗]
if one of the following three conditions holds: t1 = t∗, t2 = 0, or both t1 = 0 and t2 = t∗.
Similar is true for the other variants.
The proposition on six variants of the control u(t) steering to the boundary of the reachable
set G3(t∗) is similar in form to the Dubins theorem on the variants of the controls steering to
the boundary of the reachable set G3(t∗). The same variants are valid. However, due to the
relation between the sets G3(t∗) and G3(t∗) (the set G3(t∗) is the union of the sets G3(t) over
t ∈ [0, t∗]), the above mentioned properties of the controls leading to the boundary of the set
G3(t∗) result in the analogous properties of the controls leading to the boundary of the set
G3(t∗), but the converse is false.

4.2 Numerical construction of three-dimensional reachable sets at given time
Let us apply the above formulated result on the structure of the control u(t) steering to ∂G3(t∗)
for the numerical construction of the boundary ∂G3(t∗).
To construct the boundary ∂G3(t∗) of the set G3(t∗), we search through all controls of the form
1– 6 with two switches t1, t2. For every variant of switches, the parameter t1 is chosen from the
interval [0, t∗], and the parameter t2 from the interval [t1, t∗]. In addition, controls with one
switch and without switches are also considered. Taken a specific variant of switching and
searching through the parameters t1, t2 on some sufficiently fine grid, we obtain a collection
of points generating a surface in the three-dimensional space x, y, θ.
Therefore, each of the six variants yields its own surface in the three-dimensional space. The
boundary of the reachable set G3(t∗) is composed of pieces of these surfaces. The six surfaces
are loaded into the visualization program without any additional processing of data. Using
this program, the boundary of the reachable sets is extracted. Some surfaces (in part or as a
whole) find themselves inside of the reachable set. The visualization program does not plot
such pieces.
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The visualization of the three-dimensional sets is done with the program “Cortona VRML
Client” utilizing the open standard format VRML/X3D for the demonstration of interactive
vector graphics.
Fig. 16 shows the boundary of the set G3(t∗) at time t∗ = 1.5π from two perspectives. The
initial values of x0, y0, and θ0 are equal to zero. The different parts of the boundary are marked
with different colors. For example, part 2 is reachable for the trajectories with the control u(t)
of the form−1, 0, 1 with two switches. The sections of the reachable set by the plane θ = const
are depicted with some step along the axis θ. The points of junction lines of parts 1,2; 1,3; 2,4;
2,5; 2,6; 3,4; 3,5; 3,6 are obtained with a single-switch control. Any point of the common line
of parts 5 and 6 is reachable for two trajectories with two switches each. Parts 5 and 6 have
non-smooth junction along this line. The angle of the junction is not visible because it is rather
small. The control u(t) ≡ 0 steers to the junction point of parts 1−4.
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Fig. 16. The set G3(t∗) for t∗ = 1.5π shown from the two perspectives

Fig. 17 shows reachable sets G3(t∗) at the same perspective but with different scales for four
time instants t∗. The transformation of the structure of the reachable set boundary is clearly
seen. With increasing time, the forward part of the boundary covers the back part composed
of patches 5, 6. Note that the angle θ is not restricted as θ ∈ [−π, π).
Passing from t∗ = 3π to t∗ = 4π, one arrives at the time t∗ ≈ 3.65π when the reachable set
G3(t∗) becomes non-simply-connected for some small time interval. Namely, a cavity that
does not belong to the reachable set arises. In Fig. 18, an origination of such a situation is
shown. Here, a cut of two sets G3(t∗) corresponding to instants t∗ = 3π and t∗ = 3.65π is
depicted. The cut is done using the plane θ = 0. The set G3(3π) is simply connected and the
set G3(3.65π) is not.
Fig. 19 shows the set G3(t∗) for t∗ = 1.6π, t∗ = 2π, and t∗ = 2.5π. Here the angle θ is
calculated modulo 2π.
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Fig. 19. The set G3(t∗) for three time instants with θ computed modulo 2π

4.3 Numerical construction of three-dimensional reachable sets by given time
Let us describe the reachable sets G3(t∗) by given time. Theoretically, their construction can
base on the definition G3(t∗) =

⋃
t∈[0,t∗ ]

G3(t), and the boundary of the sets G3(t) can be

obtained by running t on [0, t∗] with a small step. However, this is very difficult approach
for practical constructions. The analysis of the development of the sets G2(t∗) and G2(t∗) in
the plane x, y suggests a more thrifty method.
The observation of change of the set G3(t) gives the following.
For t∗ ∈ (0, π), any point inside of that part of the boundary ∂G3(t∗) which is generated by
the controls of the kind 1−4 is strictly inside of the set G3(t∗ + ∆t) for any sufficiently small
∆t > 0. Conversely, any point lying inside of that part of the boundary ∂G3(t∗) which is
generated by the controls of the kind 5,6 is outside of the set G3(t∗ + ∆t).
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Therefore, one can say that for t∗ ∈ (0, π), the front part of the boundary ∂G3(t∗) be the piece
of the boundary generated by the controls 1−4, and the back part be the piece of the boundary
∂G3(t∗) corresponding to the controls 5,6. The junction of the front and back parts of the
boundary ∂G3(t∗) occurs along two one-dimensional arcs in space x, y, θ, which correspond to
the controls of the form (1, -1) and (-1, 1) with one switch on [0, t∗]. Computing the collection
of such arcs for every t ∈ [0, t∗], we obtain a surface which forms the “barrier” part of the
boundary of the set G3(t∗). In total, the boundary of the set G3(t∗) is composed of the front
and barrier parts.
Thus, the construction of the boundary ∂G3(t∗) for t∗ ∈ [0, π] requires loading of 4 surfaces
corresponding to the controls 1−4 with two switches and 2 surfaces corresponding to the
controls of the form (1, -1) (surface I) and (-1, 1) (surface II) with one switch on the interval
[0, t], where t ∈ [0, t∗], to the visualization program. The program constructs automatically
the visible from the outside boundary of the set G3(t∗).
Let now t∗ ∈ (π, 4π]. In this case, some part of the boundary ∂G3(t∗) generated by the
controls of the form 5 and 6 becomes the front one. For the construction of the boundary
∂G3(t∗), 6 surfaces corresponding to the controls 1−6 with two switches and 2 surfaces I and
II corresponding to the controls of the form (1, -1) and (-1, 1) with one switch on [0, t], where
t ∈ [0, t∗], are loaded into the visualization program. Note that for t∗ ∈ [2π, 4π] it is not
necessary to increment two latter surfaces. It is sufficient to use their parts constructed up
to time 2π. It should be emphasized that similarly to the case of the sets G3(t∗), there is a
small time interval from [3π, 4π] on which the set G3(t∗) becomes non-simply-connected. For
t∗ from such an interval, the above described rule of the construction of the boundary using
the visualization program gives only the external part of the boundary of the sets G3(t∗). The
detection of the “internal” boundary requires additional analysis and is not described here.
Starting from the instant of time t∗ = 4π, the boundary of the set G3(t∗) becomes entirely a
front. In this case, G3(t∗) = G3(t∗), t∗ ≥ 4π.
The set G3(t∗) for t∗ = 1.5π is shown from two perspectives in Fig. 20; development of G3(t∗)
with increasing t∗ is given in Fig. 21. These pictures can be compared with Figs. 16 and 17.
The difference of the reachable sets by given time from the reachable sets at given time is in
the presence of the barrier part formed by the smooth surfaces I and II. To understand better
its arrangement, Fig. 22 gives the cut-off sets G3(2π) and G3(3π) (cutting plane is θ = 0). The
barrier part is developed from the initial point (0, 0, 0) (white point in the pictures). Every of
the shown level lines on the barrier part corresponds to its own instant of time. Till t∗ = π,
the level lines are closed curves. With t∗ increasing, new level lines which are not anymore
closed occur. In addition, the old level lines are reduced at their ends, among them those ones
constructed until t∗ = π. Starting from the instant t∗ = 2π, the reduction of the constructed
lines begins. It finishes at the time t∗ = 4π when the set G3(4π) captures the point (0, 0, 0).
The set G3(t∗) for t∗ = 2π with the angle θ computed modulo 2π is shown in Fig. 23.
Time-dependent construction of the reachable sets G3(t∗) with the indication of which control
from variants 1– 6 corresponds to every particular piece on the front part of these sets is close
to finding of optimal feedback control synthesis for the minimum time problem of steering
to the point (0, 0, 0). The optimal feedback control synthesis for system (1) was obtained in
(Pecsvaradi, 1972) (θ is taken modulo 2π).
Note that some individual images of three-dimensional reachable sets by given time (with θ
taken modulo 2π) obtained by other means are available in the works (Laumond, 1998), p. 7,
and (Takei & Tsai, 2010), pp. 22, 23, 26, and 27.
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4.4 Case of non-symmetric constraint on control u
The proposition on the structure of controls steering trajectories of system (1) to the boundary
of the reachable set G3(t∗) is also preserved for the case of non-symmetric constraint u ∈ [b, 1]
with b ∈ [−1, 0). One should only replace u = −1 by u = b. Results of the construction of
the sets G3(t∗) are shown for b = −0.25 in Fig. 24. The sets G3(4π) and G3(6π) are depicted
from the same perspective and have the same scale. Approximately the same perspective but
a larger scale is used in Fig. 25 presenting the set G3(4π). This set with the angle θ taken
modulo 2π is shown in Fig. 26.
With a fixed point (x, y, θ), we can compute the first instant V(x, y, θ) when this point is on the
boundary of the set G3(t) or, what is the same, on the boundary of G3(t). The value V(x, y, θ)
be the optimal steering time from the point (0, 0, 0) to the point (x, y, θ). Paper (Bakolas &
Tsiotras, 2011) gives results on the computation of level sets of the function V(x, y, θ) for
fixed values θ (modulo 2π) and different values of the parameter b. This is equivalent to
the computation of θ-sections of the sets G3(t) for different values of b.
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Fig. 24. The reachable sets G3(t∗) for the instants t∗ = 4π and t∗ = 6π for non-symmetric
constraint on the control u
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5. Conclusion

The paper considers reachable sets and inherent character of their development for simplest
models of “car” motion used in the mathematical literature. Our investigation is restricted
to the cases where reachable sets are constructed in two- and three-dimensional spaces. The
understanding of the features and complexities that appear in low dimensional problems can
be useful for the analysis of more complex models and for solving real practical problems
(Laumond, 1998),(Lensky & Formal’sky, 2003), (LaValle, 2006), (Martynenko, 2007).
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