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Dubins car:

one-sided
and strictly one-sided cases,

Pontryagin maximum principle
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Canaiig 3

Mpsr namomunaem jguddepennuaibuble ypaBHeHus g Marmabl Jlybunca u onpejie/ieHne MHOXKECTBa JIOCTU-
JKUMOCTHU «B MOMEHT». Bo BTOPOIi JIEKIIUM OCTAHOBUMCHA HA CJIydasgX OJIHOCTOPOHHETO W CTPOrO OJHOCTOPOHHEIrO
noBopoToB. Ha pucynke crpaBa BHH3Y MOKa3aH BUJI TPEXMEPHOI'O MHOYXKECTBA JIOCTUXKUMOCTU B CJIydae CTPOro
OJITHOCTOPOHHEI'O IIOBOPOTA.

Slide 3

We recall the differential equations for the Dubins car and the definition of the reachable set “at instant”. In
the second lecture, we will focus on the cases of one-sided and strictly one-sided turns. The figure at the bottom
right shows a view of the three-dimensional reachable set in the case of a strictly one-sided turn.



Pontryagin Maximum Principle (PMP): what is it?

x=f(t,xu), ueP; te[t.t], xeR" (1)

vty (F(t X0, u) = F(t, X1, u(1)) <0, UeP, ae. telt,t]

max w*'(t) f(t, X(t), u) = w*'(t) f(t, X0, D), ae tef[t.t;] @
UueP

T

(O e Y )
V= —(ax(t, X(t), u (t))) W 3)

(t, X, u,w) = w' f(t xu)

Semipermeable property

End conditions for i

af(ex 0 ®) = | (Fex 0 - ftx o0 )

uepP

PMP for u*(-), x*(") :
7 non-zero solution t — y*(t) of system (3)
such that the maximum condition (2) is realized
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DTOT cjaiid MOBTOPLAET cjaiim 18 u3 mepBoil JeKIun.

Slide 4
This slide repeats Slide 18 from the first lecture.



Pontryagin Maximum Principle

It is known [ Lee, E.B., Markus L. ] that controls that carry a system onto
the reachable set boundary satisfy the PMP.

e

X = COSo, dynamic description y v
9 y = sin Q, of Dubins car
- ) in normalized coordinates
QY = u, @
) X
uelug, U], u,=1 7

Let u*() be some admissible control and

(X), vy, (p*(-))T be the corresponding motion

of Dubins car on the interval [ty, t; ] S wy =0,
Differential equations of the adjoint system : /

Wq =y, SiNQ" —y,Cosp*.

€.V1=O,

We have v (-) =const, y5(-)=const.
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B nepBoit neknun yke ObLI1 Takoit ciaiin ¢ Homepom 19.

Slide 5

In the first lecture, there was already such a slide with number 19.



Maximum Principle Condition

The PMP means that a nonzero solution (7 (), w5(-), w3())" of the adjoint system exists,
for which almost everywhere (a.e.) on the interval [tq, t; ], the following condition is satisfied :

i (00s9"(1) +y3(0)00s9"M) +YFOUE) = max [yi ) c0sg™(t) + w3t cosp ) +y3u |
uefug, us]

= U0 = max s |, ae tefto, ]
uefug, us]

)
From the maximum condition (1), it follows that in \
one-sided and strictly one-sided cases, extremal
motions (satisfying the PMP ) consist of pieces ts
with extreme control values (either u=u, or u=u, ) to
and pieces where y5=0.

One of these variants is shown in the figure
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Omnvaue JaHHOrO Cjaiijia ot ciaiija ¢ HomepoM 20 B MEpBOil JIEKIIUU TOJIBKO B TOM, UTO 3/I€Ch ITOMEIIEHA
KapTUHKA, COOTBETCTBYIOIAA OJHOCTOPOHHEMY IIOBOPOTY.

Slide 6

The only difference between this slide and Slide 20 in the first lecture is that here a picture at the bottom right
corresponds to a one-sided turn.



Types of extremal motions

.Jy

vy =0

We have ()= w; =const, w,(-)= w, =const.

1)If y; =0and w, =0, then wz(-)=const=0
on [ty, ts].

So, a.e. Ut)=U,, or a.e. Ut)=U,.

2) Let now at least one of the numbers v/f , 1/15

is not equal to zero. Using the equations of

wa(t) =y y(t) —wox'(t) +C.

Therefore, the relation w3 (t) =0 is fulfilled
if and only if when the point (X*(t), y*(t))"
of the geometric position of the original system

at the instant t satisfies the equation of

U,

the straight line Y1 Y —WoX+C =0.

/TN

The switching line is not universal : I

1

it is individual for each extremal motion I
I

I
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(U =0) O<u <1) 7~
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Ciait1 MOKa3bIBAET TUIIBI IKCTPEMAJIbHBIX JIBUKEHUI, KOTOPbIe MOT'YT OBITH B CJIydae OJHOCTOPOHHErO TIOBO-
poTa u B ciiydae CTPOro OJHOCTOPOHHErO MOBOPOTa. B mepBoM ciiydae 9KCTpeMaJIbHOE JIBUXKEHUE COCTOUT U3 JIyT
OKpyzKHOCTEll Tpy v = 1 U npsaMosmHeilHbx ydacTkoB npu v = (. KoymdecTBo nepek/iodeHuil He MpeBbIacT
nByX. Bo BTOpoM ciryuae sKcTpeMasbHOE JIBUKEHHE CKJIABIBAETCS U3 JIyT OOJIBIIOrO pajuyca Ipu U = Up U JIyT
MaJioro pajuyca npu v = 1. KosimiecTBo mepekJ/iiovennii KOHEYHO, HO MOYKET OBITH CKOJIb YT'OJHO OOJIBIIUM IIPU
YBEJIMIECHUU MOMEHTa, tf.

Slide 7

The slide shows the types of extreme motions that can occur in the case of a one-sided turn and in the case of
a strictly one-sided turn. In the first case, the extreme motion consists of arcs of circles at uw = 1 and straight line
parts at u = 0. The number of switches does not exceed two. In the second case, the extreme motion consists of
arcs of large radius at u = u; and arcs of small radius at u = 1. The number of switches is finite, but it can be
arbitrarily large with an increase in the instant ¢.



One-sided case:

types of extremal motions,

structure of the reachable set
boundary



One-sided case u,=0
(it is allowed to move in a straight line)

Convexity of ¢-sections:

Two variants of controls leading

the motion onto the boundary circle for ¢ 22m and
circular segment for ¢ < 2n

Patsko V.S., Fedotov A.A. (2018) Reachable set at a certain time for a Dubins car in the case of
a one-sided turn, Trudy Instituta Matematiki i Mekhaniki URO RAN, vol. 24, no. 1, pp. 143-155 (in Russian).
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B ciaygae ofHOCTOPOHHETO MOBOPOTA TPAHUIIA MHOYKECTBA JOCTUYKMMOCTH Pa30MBAETCsl HA JIBE YaCTU (CHHSIS
u Xkénras). B Kaxkyro TOUKy CuHeNl moBepXHOCTH BegéT ynpasjienue suga 1, 0, 1. IIpogo/mkurebHOCTD yUacT-
KOB IIOCTOSHCTBA YIIPABJICHUS 3aBUCUT OT PacCMaTpUBacMOil TOUKHM. B KaxKIyio TOUKY KEJITOI MOBEPXHOCTU Be-
nét ynpasienne Bujia 0, 1, 0. HeoxkumanubiM 11 HAC 0Ka3aJ10Ch CBOMCTBO BBINYKJIOCTU (-cedennii. Bojee Toro,
KaxKJloe (p-cedeHue Ipu p > 27 eCThb KPYT ¢ HEKOTOPBIM IIEHTPOM U HEKOTOPBIM pajuycoM. [Ipu ¢ < 27 coorBer-
CTBYIOIIlEE (p-CeUeHMe IpeJIcTaBsgeT coboit Kpyrosoit cerment. [lepeunciiennbie cBoiicTBa 0OOCHOBAHBI aBTOPAMU
B ctaTrhbe 2018 1.

Slide 9

In the case of a one-sided turn, the boundary of the reachable set is divided into two surfaces (blue and yellow).
A control of the form 1, 0, 1 leads to each point on the blue surface. The duration of the parts with constant
control depends on the point under consideration. A control of the form 0, 1, 0 leads to each point on the yellow
surface. The convexity property of ¢-sections turned out to be unexpected for us. Moreover, each y-section at
@ > 27 is a circle with some center and some radius. For ¢ < 27, the corresponding ¢-section is a circular segment.
The listed properties are justified by the authors in the article of 2018.



One-sided case u;=0

Lemma. Let u;=0. Then any point on the boundary of the reachable set G (tf ) can be reached using
the piecewise constant control u ( - ), which takes the values 0 and 1 with no more than two switching
instants.

straight switching line

T

Y

The non-uniqueness of the extremal motions for ¢ = 2n due to the transport of the cycle

Patsko V.S., Fedotov A.A. (2018) Reachable set at a certain time for a Dubins car in the case of
a one-sided turn, Trudy Instituta Matematiki i Mekhaniki URO RAN, vol. 24, no. 1, pp.143-155 (in Russian).
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3/1eCh MOsICHSIETCSI, 33 CUET Yero BOZHUKACT HECMHCTBEHHOCTD SKCTPEMAJILHOIO JIBUKEHUS B CIydae OJHOCTO-
ponuero nosopota. [Ipuunnoit gB/sieTcs «mepeHoc» MUKJa Mpu @ > 27.

Slide 10

Here, it is explained why there is a non-uniqueness of extreme motion in the case of a one-sided turn. The reason
is the “shift” of the cycle if ¢ > 27.



One-sided case u,=0
Properties of the reachable set boundary

1. Pontryagin maximum - "
yag Necessary and sufficient condition

principle
2. @-sections of Convex:
the reachable set circle for @ = 2n and circular segment for @ < 2t
' <
3. Controls Uniqueness for ¢ < 2x

leading to the boundary Non-uniqueness for @ = 2x

(in the class of piecewise constant controls)
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B rabsmiie orpakeHbl cBOWCTBA JIBUKEHUIT, Be/IyIIUX Ha IPAHUILY MHOYKECTBA JOCTUKUMOCTHU, M CBOWCTBO BbI-
IIyKJIOCTH €ro @-cedennii. B ognocroponneMm cirydae [IMII cranoBuTcd m0cTaToOvHBIM YCIOBUEM IIEPEBO/Ia Ha I'pa-
HUILY. DTO ACCOIMUUPYETCA CO CBOMCTBOM BBIMYKJIOCTH (P-CEUCHHUIA.

Slide 11

The table shows the properties of the motions leading to the boundary of the reachable set and the convexity
property of its ¢-sections. In the one-sided case, the PMP becomes a sufficient condition of transition to the
boundary. This is associated with the convexity property of ¢-sections.



Strictly one-sided case:

types of extremal motions,

structure of the reachable set
boundary



Strictly one-sided case u,>0
Variants of motions which lead onto the boundary

0 Motions with constant (in time) control :
u=u, or u=u,
(two extreme points of reachable set)
1 Motions SB: start with control u = u,
and finish with control u = u, ;

2 Motions SS: start with control u = u,
and finish with control u = u, ;

3 Motions BS: start with control u = u,
and finish with control u = u, ;

4 Motions BB: start with control u = u,
and finish with control u = u, .

Example of the SB-type motion

Patsko V.S., Fedotov A.A. (2019) The structure of the reachable set for the Dubins car with a strictly
one-sided turn. Trudy Instituta Matematiki i Mekhaniki URO RAN, vol. 25, no. 3, pp. 171-187 (in Russian).
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B cnyuae cTporo ogHOCTOPOHHErO MOBOPOTa MBI KJIACCUMUIIMPYEM BapUAHTHI JIBUKCHU, BEIYIINX Ha I'DAHU-
Iy, UCXO/d W3 3HAYEHU yIpaB/IeHUIl Ha MEPBOM M IOCTEIHEM y4YacTKaX IMOCTOSHCTBa ylpasjenud. Hampumep,
cumBoJl SB o3nadvaer, 4To Ha MEPBOM ydacTKe JIEHCTBYET yIpaBjeHue u = Uy = 1; & Ha MOCJE/HEM DeaTn3yeTcs
ynpaBienrne u = u;. KoamiecTBo mepek/ioveHnii ypaBieHns B KayKJIOM U3 BAPHAHTOB MOXKET ObITh Pa3IMIHBIM.

Slide 13

In the case of a strictly one-sided case, we classify the variants of motions leading to the boundary, based on
the values of controls in the first and last parts of constant control. For example, the symbol SB means that the
control u = uy = 1 acts in the first part; and on the latter, the control © = u; is realized. The number of control
switches in each of the variants can be various.



Analytical description of @-sections of the reachable set, ¢ >0

Tep[th] sint; 1 [ sinp—sint 1 sin(t) —Ty,)—sinty
Yeult1) ~ | 1-costy +u_1 oS t —CoS @ +n(u—1—1) cos t1—cos(t1—Ty,)

The

arc £ 1) -t

| Ty, = n+1) -t , v 1, if ¢ is multiple to 2,
SB ? n 2m

! n =

tf = Pty , [;] ,  if ¢ is not multiple to 2r.

| (n+ 1)(1 - uq) u

| oS (t + Ty u1>

1
sl EL o (n+ 1)(1 = ) (Tul ) 2
= + 2 sin

The | Vsl 11 L-cosy “ sin (t1 + Tu;ul)
arc |

: by — te —
SS u1 .4 Tug =21 — ( f (P) o

_____________________________________________________________________________________________________________________________

Patsko V.S., Fedotov A.A. (2019) The structure of the reachable set for the Dubins car with a strictly
one-sided turn. Trudy Instituta Matematiki i Mekhaniki URO RAN, vol. 25, no. 3, pp. 171-187 (in Russian).
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st KaxK10ro m3 4eThbIPpEX BAPUAHTOB YIIPABJICHUN IMOJIYYEHbI aHAJTUTUYECKUE (DOPMYJIbI ITapaMeTPUICCKOTO
[IpeJICTABICHUS JIyT, 00pa3yonux rpanuily p-cedennii. Bapuanter SB u BS anamorunansr apyr apyry. Takxke ana-
JIOTUYHBI JIPYT ApyTy BapuadnTol SS u BB.

Ha cnaiie mana dpopmysa nmapamerpudeckoro npejcrasienns jgyru SB. B ueit Benmunna 7T, sBjsieTcs KOH-
crantoit. CUMBOJI 1 O3HAYAET YUCJIO IepekJiodenuii ynpasiaenus. OHO onpeessercs oJHO3HAYHO. s KaxK 1010
p-cedenns jyru SB u BS cymecrBytor.

Kpusasi SS ectb jyra okpyKHOCTH. UHCJIO MEPEKIOYEHUN N JjI HEE MOXKET OINpPEe/IAThCsl HEOJHO3HAYHO,
MCXO/sI M3 COOTHOIIEHUIA, MMPeICTaBIeHHbIX B HUMKHENH JacTh ciaaiiza. A mMmenHo, ayra SS mpeacrabisieTcst Jmbo
B JIByX 9K3eMILISpaxX IMPU COCETHUX N, JIMOO B OJHOM 3K3eMILISpe C OJHUM 3HadeHumeM n, Jaubo jgyra SS (mpu
paccMaTpUBaeMoM ) He CyIecTByeT. AHajorudHo Jyist ayru BB.

Slide 14

For each of the four control variants, analytical formulas are obtained for the parametric representation of the
arcs forming the boundary of the ¢-sections. The SB and BS variants are similar to each other. The SS and BB
variants are also analogical.

The slide shows the formula for the parametric representation of the arc SB. In it, the value T}, is a constant.
The symbol n indicates the number of control switches. It is defined uniquely. For each ¢-section, the arcs SB
and BS exist.

The curve SS is an arc of a circle. The number of switches n for it may be not unique, based on the relations
presented at the bottom of the slide. Namely, the arc SS is represented either in two samples for neighboring n, or
in one sample with one value of n, or the arc SS (for the considered ¢) does not exist. It is similar for the arc BB.



Strictly one-sided case u,>0. Types of ¢-sections

4 arcs with
smooth connection

3 arcs with
smooth connection

2 arcs with
smooth (¢ = 27)
or with
nonsmooth (¢ < 27)

BB BB AS

SS

SS

9 10

B <2z @ is mult1ple
SB S - (¥ <27) - (¥ is multiple’)

BB

BB

connection

Patsko V.S., Fedotov A.A. (2019) The structure of the reachable set for the Dubins car with a strictly
one-sided turn. Trudy Instituta Matematiki i Mekhaniki URO RAN, vol. 25, no. 3, pp. 171-187 (in Russian).



Caaiig 15

Ha crnaitne nmokazanbl 11 BapraHTOB rpaHUIIbl (p-C€UEHN, KOTOPBHIE BO3MOYKHBI B CTPOT'O OJIHOCTOPOHHEM CJTydae.
Kakwe-umbo npyrue BapuanTbl HEBO3MOXKHBI. J[1000€ (p-cevuenne mpeJicTaBigeT OO0 CTPOro BBITYKJI0€ MHOYKECTBO.
CootBercrBytoriue GhaKkThl YCTAHOBJIEHBI B cTaThe aBTOpoB 2019 1.

Slide 15

The slide shows 11 variants of the boundary of the y-sections, which are possible in a strictly one-sided case.
Any other variants are not possible. Any p-section is a strictly convex set. The corresponding facts are established
in the author article of 2019.



Reachable sets for the strictly one-sided case u,>0

Examples for u;=0.5, u,=1

BB
% SS \\
@-section

coloring

<

BS

N

............
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3/1ech MpeJICTABICHBI TPEXMEPHBIE MHOXKECTBA JOCTUKUMOCTH B CTPOIO OJIHOCTOPOHHEM CJIydae Jjisd TPEX MO-
MEHTOB BpeMeHU. Packpacka dacreil 'paHUIHO OBEPXHOCTH COOTBETCTBYET PA3IMIHBIM THUIAM JyT (CM. CHMBO-
JMYIEeCKUil PUCYHOK BHU3Y CIpaBa). B mpejenax KazKaoro OTJAeIbHOrO yIacTKa OBEPXHOCTH YUCJIO ePEKTI0TeHI
VIIPABJICHUS IIOCTOAHHO.

Slide 16

Here, we present three-dimensional reachable sets in the strictly one-sided case for three time instants. The
coloring of the parts of the boundary surface corresponds to different types of arcs (see the symbolic drawing at
the bottom right). Within each individual surface part, the number of control switches is constant.



Strictly one-sided case u,;>0
Properties of the reachable set boundary

1. Pontryagin maximum

orinciple Necessary and sufficient condition

2. g-sections of Strictly convex
the reachable set

3. Controls

_ Uniqueness in the class
leading to the boundary

of piecewise constant controls
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Jannyto TabuIy it CTPOro OJHOCTOPOHHErO CJIydas MOXKHO CPaBHUTL ¢ Tadsureil Ha ciazge 11, koropas
ObL1a clie/laHa Jjid OJITHOCTOPOHHETO cirydas. BujinMm, 4To (-cedenns CTaJii CTPOTO BBITYKJIBIME U IIPOIAJIA HeeIH-
CTBEHHOCTDb IKCTPEMAJILHBIX JIBUZKEHUIA.

Slide 17

This table for the strictly one-sided case may be compared with the table in Slide 11, which was made for the
one-sided case. We see that the (p-sections have become strictly convex and the non-uniqueness of extreme motions
has disappeared.



Dubins car:
Pontryagin maximum principle
and properties of ¢-sections,

unigueness of motions
leading onto the boundary



Properties of the reachable set boundary

. Summary table

Pontryagin
maximum principle

@p-sections

of the reachable set

Piecewise constant
controls leading
onto the boundary

up =0
one - sided case

u; € (0,1)

strictly
one -sided case

Necessary and

sufficient condition

Convexity :

circle for ¢ 2 21
and
circular segment
for o < 2m

Uniqueness
for ¢ < 2m

Non-uniqueness
for ¢ 2 2w, t; > 27

Strict convexity

Uniqueness

U1:'1
symmetric
case

u, € (-1, 0)

asy mmetric
case

Only necessary
condition

Non convexity

Non-uniqueness
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Wrorosas Ta6J'II/IILa nokasbiBaeT coorHomenus [IMII n cBoiicTBa I'PaHUIbI gp—cequHﬁ JJI4d KazKI10I'0 U3 T{GTpréX
CJIy4daeB, Oolipeae/IdeMbIX 3HaYCHUEM ITapaMeTpa U1 B IIOCTaHOBKE 3a/la4u.

Slide 19

The final table shows the relations of the PMP and the properties of the boundary of the y-sections for each
of the four cases determined by the value of the parameter u; in the problem statement.



Dubins car:

construction of information sets



Caaiig 20

Tenepb BoO3BpalaeMcst K IIOCTPOEHUIO HHMOPMAIIMOHHBIX MHOYKECTB B 3a/ade HaOJIIOACHUsT 3a JBUKEHIEM Ca-
MOJIETa B TOPU3OHTAILHOI 110cKocTH. Crieyronine aBa Caaiiga B3AThl U3 IePBOIi JIEKIIIH.

Slide 20

Now we return to the construction of information sets in the problem of observing the motion of an aircraft in
a horizontal plane. The following two slides are taken from the first lecture.



An observation problem of aircraft motion

The polar

coordinate system Measurement errors

used.by radars _—- of a radar is restricted

consists of " by geometric constraints.

azimuth (angle 5

from north), Taking into account the dynamics

elevation (angle © of the aircraft motion, this allows

up from to find an area of possible states

horizontal), and : of the aircraft during observation
process

slant range.

H is a set of uncertainty
for a measurement
in the horizontal plane




Using of reachable (forecast) sets for construction of information sets

Forecast set

/; at the instant t*
T ( by virtue
of the system
dynamics )

Uncertainty set
Information set of a measurement Information set

at the instant t, at the instant t* at the instant t*

Information set at a current instant is a totality of all phase states
consistent with description of the dynamics, constraints on measurement errors,
and history of the observation — control process.

Terms equivalent to the term “information set” are
“feasible set”, “membership set’, “likelihood set’.

The approach is often called the “set membership estimation” or
“‘unknown but bounded error description (UBB approach)”



Intersection of the forecast set
with a measurement uncertainty set

H (t*) Y4

Convexity of (2-sections allows to construct fast procedures for
intersection

............
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MHuozkecTBO HeomnpeeaéHHOCTH 3aMepa H (1) ecTeCTBEHHO CYUTATH BBITYKJIBIM U IUJIMHIPAIECKIM IO YIJIOBO
koopanHaTe. CXeMaTUIHbBI PUCYHOK IMTOSCHAET IMPEUMYIIECTBO MOCTPOEHNA MHMOPMAIMOHHBIX MHOYKECTB B CHUTY-
aIu, KOTJIa (-CeveHnsl TPEXMEPHOro MHOKeCcTBa mporuo3a G(t*) 6buin 6bl BBITYKJIBIMUA. B TaKOM CiIydae MOXKHO
BECTHU TIOCTPOCHUE MHOYKECTBA IPOTHO3a Ha CeTKe 3HAYEHUil (p U MUCIIOJIb30BaTh MIPOCTHIE OIEPAIUN JIjId Iepecede-
HIsI BBITYKJIBIX (O-CEUCHUII MHOYKECTBA MPOTHO3a C BBIMYKJIBIM (-CEUCHUEM MUJIMHPUIECKOro MHOXKecTBa H (t*).
[MonyuenHoe B pesyiabrare nHGOpPMAIMOHHOE MHOXKeCTBO I(1*) Takke OyIeT 3a/1aH0 Ha CeTKe 3HAYEHHUIl .

Slide 23

The set H(t*) of measurement uncertainty is naturally considered convex and cylindrical on the angular co-
ordinate. The schematic figure explains the advantage of constructing information sets in a situation where
the @-sections of the three-dimensional forecast set G(t*) would be convex. In this case, it is possible to construct
a forecast set on a grid of values of ¢ and use simple operations to intersect the convex sections of the forecast set
with the convex @-section of the cylindrical set H(t*). The resulting information set I(¢*) will also be defined on
the grid of values of .



Approximation from above for the reachable set

tf =27

Estimate from above

Kumkov S.1., Patsko V.S., Pyatko S.G., Reshetov V.M., Fedotov A.A. (2003) Information Sets in the Problem
of Observation of Aircraft Motion in a Horizontal Plane. Journal of Computer and Systems Sciences International.
Vol. 42, No. 4, pp. 544-554 N— :



Canaiig 24

B pa6ore 2003 1. aBTOPBI IPEIIOKUIN CIIOCOD ocTpoenust onenku ceepxy G (t*) mis muoxkectBa nmporuosa G(t*).
MuoxkectBo G(t*) mMeeT BBIIyKJIbIE (p-cedeHus. [Ipr OHOTOYETHOM HAYAJIBHOM MHOYKECTBE MOCTPOEHHE TAKOM
OILICHKH CBEPXY 3KBUBAJICHTHO OBBIIIYKJICHUIO (0-CeYCHUIT NIeaaIbHO MOCTPOCHHOTIO MHOXKECTBA JOCTUKIMOCTH, (O-Ce-
YeHUsl KOTOPOI'O BBIIYKJIBIME He aBjidioTcd. Ha craiine Jia MomenTa ¢y = 27 IOKa3aHO HjeaJbHOE MHOMKECTBO
JIOCTUKUMOCTH B CUMMETPUYHOM CJIy4dae U €ro OICHKA CBEpXY.

Slide 24

In 2003, the authors proposed a method for constructing an estimate from above G(t*) for the forecast set G(t*).
The set G(t*) has convex p-sections. For a single-point initial set, the construction of such an estimate from above
is equivalent to the convexication of the ¢-sections of an ideally constructed reachable set whose ¢-sections are
not convex. The slide shows the ideal reachable set in the symmetric case for the instant t; = 27 and its upper
estimate.



Approximation from above for the reachable set

tf =3r

............



Caaiig 25

B,ZLGCB naeaJibHOEC MHO2KECTBO JOCTU2KMMOCTHU M €I'0 OLICHKa CBEPXY IIOKa3aHbI JIJId MOMEHTa tf = 3.

Slide 25

Here, the ideal reachable set and its upper estimate are shown for the instant ¢; = 3.



Comparison with exact reachable sets
(projection onto the plane Xx,y)

tf =27

............



Caaiig 26

Cuait1 mosicHsieT pa3Jjindue MPOEKINi TOYHOI'O MHOXKECTBA JIOCTUKUMOCTH U AIlllIPOKCU-MUPYIOIIET0 MHOYKECTBA
Ha IUIOCKOCTB T, Y. lIpoekims anmpoKCUMUPYIONIEro MHOYXKECTBa TOKa3aHa CBETJIO-cepoil 3aymBKoil. [locTpoenns
CJleJIaHbI JIJISI YeTBIPEX MOMEHTOB BPEMEHH.

Slide 26

The slide explains the difference between the projections of the exact reachable set and the approximating set
into the x, y plane. The projection of the approximating set is shown by a light gray fill. The constructions are
made for four time instants.



Motion of the information set, example 1

V=400 m/s, k=15 m/s?

. Measurement instants: 0, 20, 32 sec
x=Vcosg,

y=Vsing, y y

¢:£u; |U|S1,

k=const>0,

» % '
V =const>0 X w X

Structure of the information set at t = 20 sec:
Before the measurement (at the left) and after (at the right)

............



Caaiig 27

[IpuBenéM MOIEIBHBIN IPUMEDP PA3BUTHs HH(MOPMAIIMOHHOTO MHOXKECTBA BO BpeMeHn. PaccMaTpuBaroTcst HEHOP-
MHUPOBaHHbIE KMHEMATHUIEeCKUE ypaBHEHHUs, B KOTOPBIX CKOPOCTh V u Kod(hduimeHT k SBISIOTCI KOHCTAHTAMU.
B navasnbHbIil MOMeHT ¢ = ( mpejosaraeM 33 JaHHBIM HallpaBjieHne JBikeHnst (yroi ). OTHOCHTEIHHO reoMer-
PUYECKOTo TOJIOYKEHNSI B HAYAJIbHBIM MOMEHT CUUTAEM, YTO OHO IIPUHA/JIEKAT 38/I[AHHOMY I1apaJljieIorpaMMy.

[Tepsoiit 3amep npuxouT B MoMeHT ¢ = 20, Bropoit — B Moment ¢ = 32. Ha npomexyrke [0, 20) undopmariy-
OHHOE MHOKECTBO PACTET: YBEJUIUBACTCSI KOJIMIECTBO €r0 (p-ceueHuil (BBIMYKJIBIX MO MOCTPOEHHIO); HEKOTOPhIE U3
cedennii ctanoBaTcst Oosbimmu. Ciraboil 3a/IMBKOI TIOKA3aHO ceueHne, KOTOPOMY IIPUHA/JIE?KUT UCTUHHAS TOUKA.

[MunuaIprYeckoe MHOXKECTBO HEOIIPEeIeJIEHHOCTH, COOTBETCTBYIOIee 3aMepy B MoMeHT t = 20, B IpPOEKIINn
Ha, IJIOCKOCTHh M€OMETPUIECKUX KOOPJIMHAT IPEJICTaBIAeT co0oi napaJsuiesorpamm. MHuorue p-cedenusi nagopma-
IIMOHHOTO MHOXKECTBa «JI0 3aMepay JIaloT IIYCTOoe IepecedeHre ¢ 3TUM IapaJuiejorpamMmMmoM. B nadopMmalmonHoe
MHOKECTBO «IIOC/I€ 3aMepay BKJIIOYaeM pe3yJIbTaThl HEIYCThIX mepecederuil. Takum obpaszom, nHMOPMAIMOHHOE
MHOZKECTBO TI0C/Ie 3aMepa TaKzKe 3aJ]aHO0 Ha HEKOTOPOIl ceTKe 10 KOOP/IMHATE ¢ U KazKJI0e (p-cedeHne PeJICTaBIsaeT
€O0O0I1 BBITYKJIbIE MHOTOYTOJIbHUK.

Hatee nndopMalmonHoe MHOZKECTBO BHOBb PACTET JI0 MOMEHTA ¢ = 32 U YMEHBIAETCS IOCIe STOIO0 MOMEHTA.

Slide 27

Here is a model example of evolution in time of an information set. We consider non-normalized kinematic
equations, in which the velocity V' and the coefficient k are constants. At the initial instant ¢ = 0, we assume that
the direction of motion (the angle ¢) is given. Also, we assume that the geometric position at the initial instant
belongs to the given parallelogram.

The first measurement comes at the instant ¢ = 20 and the second one at the instant ¢ = 32. In the interval
[0,20), the information set grows: the number of its @-sections (convex by construction) increases. Some of the
sections become large. A weak fill shows the ¢-section, to which the true point belongs.

(to be continued in the next page)



The cylindrical uncertainty set corresponding to the measurement at the instant ¢ = 20 is a parallelogram
in the projection to the plane of geometric coordinates. Many -sections of the information set “before the
measurement” give empty intersection with this parallelogram. We include the results of non-empty intersections
into the information set “after the measurement”. Thus, the information set after the measurement is also a set
in some grid of the coordinate ¢ and each ¢-section is a convex polygon.

Further, the information set grows again until the instant ¢ = 32 and contracts after this instant.



Motion of the information set, example 2

uncertainty sets: t :..O' 2_0, 40, GQ sec

No initial
approximation
for the angular
coordinate

t=5sec t=12sec

V=200m/s, k=5m/s?

Case with the sections approximation by rectangles

............



Caaiig 28

Otmyinaure BTOPOro mpuMepa B TOM, UTO B HAYAJbHBI MOMEHT CUUTAECTCH HEM3BECTHBIM HAIIPABJICHHUE JBUZKE-
Husi. ['eoMeTputieckoe moJI0KeHNe B HAYAJIBHBI MOMEHT IPUHA/JIEYKUT HEOOJIBIIIOMY KBaJIPATY. 3aMepbI IIPUXOJIAT
¢ maroM 20 c. MHoxKecTBa HEOIPEIeIEHHOCTH, COOTBETCTBYIONINE 3aMepaM, SABJIAIOTCA UJIMHIPUIECKUME 10 KO-
OpJINHATE © W B MPOEKINH Ha TJIOCKOCTH T€OMETPUIECKUX KOOPUHAT MPEJICTABIAIOT cOOO HEOOIBITION KBaIpaT,
CTOPOHBI KOTOPOT'O MapaJuIe/IbHbl ocaM ., y. CHoBa MH(MOPMAIIMOHHOE MHOYKECTBO PACTET JI0 IIPUX0/IA OUYEPEIHOTO
3aMepa U yMeHbIIIaeTcsd ocjIe 3aMepa.

[Ipu MoseTMpoBaHUYT CYUTAJIN, YTO TIPU IIOCTPOEHUN MHOXKECTBA ITPOTHO3A (P-CEUEHUS AIITPOKCUMUPYIOTCS Psi-
MOYTOJIbHUKaMHU CO CTOPOHAMU, MapaJljieIbHbIMU OCSIM T, .

Slide 28

The difference of the second example is that at the initial instant the direction of motion is considered to be
unknown. The geometric position at the initial instant belongs to a small square. Measurements come with the
time step 20 sec. The uncertainty sets corresponding to the measurements are cylindrical by the coordinate ¢ and
(in projection onto the plane of geometric coordinates) represent a small square, the sides of which are parallel to
the x, y axes. Again, the information set grows before the arrival of each next measurement and decreases after
the measurement.

During modeling, it was assumed that the (p-sections are approximated by rectangles with sides parallel to the
x, iy axes when constructing the forecast set.
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Caaiig 29

B mepBoit rpyi1ime cchlIOK MBI OTMEYaeM aBTOPOB, KOTOPbIE UCIIOIB30BaIn Mojae b Jlybunca B cBoux paborax.
BesycioBHO, ykKazaHo JuIlb HEOOJIBIIIOE TUCIO UCCIIEI0BATENIENH.

Teopust mHGOPMAIIMOHHBIX MHOXKECTB I MOJEIbHBIE IPUKJIAHBIE 3aIa91, CBSI3aHHBIE C UX ITOCTPOEHNEM, MHTEH-
cuBHO uccieioBaauch B 1970-e u 1980-e rr. B Exatepunoypre, Mockse u Kuese. Bosuuk TepMun «MHHUMAaKCHas
duabrpanusgy. Ha ciaiije Tak»ke oTMedeHbI (haMUIUU 3l THBIX UCCIeI0BaTe /e, BHECIINX 3HAUNTEIbHBIA BKJIA/I
B pa3BUTHUE TEOPUU U COOTBETCTBYIOIIUX METOJOB AIlIPOKCHMAIIIH.

B konre ciaiiia npuseseHsl JiBe padoTbl aBTopoB 2019 1., cBA3aHHBIE ¢ IOCTPOCHUEM M OITMCAHUEM MHOXKECTB
JIOCTHKUMOCTH )Tt Marmuubl Jyoumca.

Slide 29

In the first group of references, we note the authors who used the Dubins model in their works. Of course, only
a small number of researchers are indicated.

The theory of information sets and model applied problems related to their construction were intensively
studied in the 1970s and 1980s in Yekaterinburg, Moscow, and Kiev. The term “minimax filtering” appeared.
The names of Western researchers who have made a significant contribution to the development of the theory and
the corresponding approximation methods are also indicated on the slide.

At the end of the slide, two works by the authors of 2019 are shown, which relate to the construction and
description of reachable sets for the Dubins car.



Some additional
slides and movie



Reachable sets in the projection onto a geometric plane

tf =37

tf =2.57

tf =27

tf =157

[T

HNEEEEN

LT

U1=—1 U1=—0.5 U1=0 U1=+O.5
(symmetriccase) (asymmetrc case) (one-side case) (strictone-side case)

............
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Caaiig 31

Ha cnaiine npejacraBiieHbl pe3y/abTaThl UUCJIEHHBIX IMOCTPOCHHUI MHOXKECTBA JOCTU:KUMOCTH B IPOEKIINHA Ha
IIOCKOCTh T€OMETPUIECKUX KOoopauHaT. JIeBast KOJIOHKa COOTBETCTBYET CHUMMETPUIHOMY CJIydaro. 3eCh Pe3y/ib-
TaThl YNCJEHHBIX MOCTPOEHUI COOTBETCTBYIOT aHAINTHIECKNM (bopmysiaM, nmoaydeHHbiM B pabore E.J. Cockayne,

G.W.C. Hall (1975).

Slide 31

The slide shows the results of numerical constructions of the reachable set in the projection on the plane
of geometric coordinates. The left column corresponds to the symmetric case. Here, the results of numerical
constructions correspond to the analytical formulas obtained in the work of E.J. Cockayne and G.W.C. Hall (1975).



Cases u,=0 and u,>0. Applications?

We don't know about it surely.
But there are investigations concerning aircraft landing problems
with failed engines and ailerons. May be there?

T Mot 285 Crew 3 run 6 dir NM2W3D3/A3.2/(KCAO 02) The Emergency
/ . T T T T T T

S ' Landing Planner
"~ j Experiment
- 180 KLHX 08 KLHX 26 | (2011)

% ' N. Meuleau,
L C. Neukom,
T 75l | C. Plaun_t,

( D.E. Smith, and

" T. Smithy

Intelligent Systems

Division
NASA Ames
Research Center,

California

KCAO 20
36.5

0 02
ti.arc.nasa.gov/publications

36 044 -104.2 -104.0 -103.8 -103.6 -103.4 -103.2 -103.0 -102.8

Choi H. Time-Optimal Paths for a Dubins Car and Dubins Airplane with a Unidirectional Turning
Constraint: Dissertation for the degree of Doctor of Philosophy / University of Michigan, 2014. 134 p.



Caaiig 32

Y aBTOpPOB HET TOKa MIPUMEPOB, MOKA3BIBAIOIINX BO3MOXKHOCTDH UCIOIBL30BAHUS CJIyYaeB OJJHOCTOPOHHETO ITOBO-
poTa M CTPOro OJIHOCTOPOHHETO MOBOPOTa. 1eM He MeHee, MOXKHO YKa3aThb padOThI 1O MPUKJIAIHON aBUAIMOHHOM
TeMaTHuKe, B KOTOPBIX MOJIETUPYETCS MPOTIECC TTOCAIKN CAMOJIETA TPU OTKA3ABIINX JIBUTATE/TAX.

Ha neBoM pucyHKe TIOKa3aH IpuMep, KOT/Ia CaMOJIET COBEPIIAET eTIe00pa3Hble JIBUKEHNs ¢ TTOBOPOTOM B OJIHY
u Ty Ke cTopoHy. Ha mpaBoM pucyHke jiaH eIne oJInH IIpUMeED, IJie BO3HUKAET HapyIleHne BO3MOXKHOCTH ITI0BOPOTA
B IPaBYIO CTOPOHY (3/1eCh MCXOJHAS TPAEKTOPHsl — CHHUIN IBET, IJIAHKpyeMas TPAEKTOPHsl C OJHOCTOPOHHUM
OBOPOTOM — 3€JICHBII I[BET, peain30BaHHAasT IMJIOTOM TPACKTOPUsST — YEPHBIIT 11BET).

Slide 32

So far, the authors have no examples showing the possibility of using cases of one-sided turn and strictly
one-sided turn. Nevertheless, it is possible to specify works on applied aviation topics, in which the process of
landing an aircraft with failed engines is simulated.

The figure on the left shows an example when an airplane makes loop-like motions with a turn to the same
side. The right figure shows another example where there is a violation of the possibility of turning to the right
(here the initial trajectory is blue, the planned trajectory with a one-side turn is green, the trajectory implemented
by the pilot is black).



Information sets in four-dimensional space

r = Vcosp,
y = Vsing,
o = ku/V, u| <1,
V o= w, k = const > 0,
V >const >0, 1 Sw< o
@A GO
HiN A
PRAREROROR
SPoe o)
-.fi..':';ii:;;sla;';sIa»"i.'?a;'i.'1.»"‘

Net on the plane V/, ¢

Each node of the grid contains
a convex set in the plane x,y

v

Filtration of the non-observed coordinates

2\
271+

t=60s

before measurement

after measurement

I

!
100 500

-
V

............



Caaiin 33

Y aBTOpPOB €CTh HEKOTOPBIN OIBIT ITOCTPOEHUST HH(MOPMAIIMOHHBIX MHOXKECTB B U€TBIPEXMEPHOM (ha30BOM IIPO-
CTPAaHCTBE, KOTJIa BEJIMYUHA JTUHEHHON CKOPOCTU ABJISIETCS IepeMeHHoi. B 3ToM ciiydae K TpEM ypaBHEHUSIM Ma-
munbl JlyOunca jmobaBiisiercs emié OJIHO yYpaBHEHHE, OIHUCHIBAIONee M3MEHEHUE BEJIUYUHBI JIMHEWHONH CKOPOCTH.
[Ipeamosaraercst, 9T0 B IPOIECCce JBUKEHUsT U3MEPSIOTCs ¢ OIMMOKON reoMeTpuviecKne KOOPJMHATHI X, 1.

JI1s1 auCIeHHOrO MIPEJICTaBICHUST YeThIPEXMEPHOI0 NH(MOPMAIIMOHHOTO MHOXKECTBA UCIIOJIb3YeM CETKY 10 HeHa-
OsrotaeMbIM KoopauHaTaMm ¢, V. B Kaxk/oMm y3je XpaHUTCs BBIIMYKJIOE MHOXKECTBO 10 KoopjuHatam x, y. Ha
PUCYHKE CJIeBa, [OKAa3aHa IIOCTPOEHHAs IIPU MOMOIIK CeTKH Hpoeknus G 4eThIpéXMEepPHOr0 MHOKECTBA IIPOTHO3A
Ha IJIOCKOCTH ¢, V. Ha pucyrke cripaBa MmoKa3aHbl HEITYCTBIE y3JIbI CETKU JIO OUEPETHOTO 3aMepa U MOCIe 3aMepa.
KonudectBo Takux y3/10B cokpailiaercsa. B aTom u cocTouT puabTpalinsd HeHabIoIaeMbIX KOOPAUHAT ¢, V.

Slide 33

The authors have some experience in constructing information sets in a four-dimensional phase space, when
the value of the linear velocity may vary. In this case, an equation is added to the three equations of the Dubins
car. They describe the change of the linear velocity value. It is assumed that during the motion, the geometric
coordinates x, y are measured with an error.

For the numerical representation of a four-dimensional information set, we use a grid on unobservable coordi-
nates ¢, V. Each node stores a convex set at the x, y coordinates. The figure on the left shows the projection
G of the four-dimensional forecast set onto the plane ¢, V, constructed using a grid. The figure on the right
shows non-empty grid nodes before the next measurement and after the measurement. The number of such nodes
is reduced. This is what it is the filtering of the unobservable coordinates ¢, V.



The task of flying an aircraft through the given sets

xr = Vcosp+uv
1 b \/’U12—|-”022 SV
y — VSin(,Q—i—'Ug, |’(U| <M
o = ku/V, u| < 1
= w, V > const >0
k = const > 0
t =108
i
fa/ t=94 :;:/f—fi.?f'
=4 M/s - M
= /,/f )
t=55/5.;7.-§ i
t=30 v -
W#(to) ‘.4.' tZ

Terminal set:

X

The impact of wind constraints on results

a) v =16 M/s, B)r=20wm/s, ¢) v =21 m/s.

H'(s) H'(1) H'(1)
Wi(t,) Wt Wi(t,)
.
[
V
w’ (ro w(1) w’(1,)
e

+300Mmon x,y; +£20°0n¢; +£20nm/s onV (around 200 M/S )
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Caaiig 34

Ha coraiijie pejicraBjieH pe3yJibraT MOJISTMPOBAHUS YeTBIPEXMEPHON 3a/1a41 [IPOBOJIKHI CAMOJIETA, TJIe B OIUCA~
HUM JIUHAMUKH IPUCYTCTBYET BeTPOBOe BosMyTenue v = (v, v;) . lleas ynpasienus — npusectu GhasoBblii BEKTOP
Ha BBIITYKJIO€ MHOZKECTBO M# B Baﬂ‘aHHbH/I MoMeHT 1. HpI/I 9TOM TpPaeKTOpUA CHUCTEMbI II0 I'€eOMETPUYICCKUM KO-
Op/IMHATAM B OFOBOPEHHBIE MOMEHTHI BPEMeHH f; JOJI7KHa TPOXOIUTH uepes 3ajanuble MuoskectBa H7 (). Taxue
MHOZKECTBA aHAJIOTHYHBI MHOXKECTBAM HEOIPEJICIEHHOCTH B 3a/a9e (DUIbTPAIIUH.

[IpuMeHstst ONSITHBIE TPOIEyPbl 13 Teopru b depeHnnantbHbIX Urp (HONsTHBIE TIPOIE/LYPhl IOCTPOEHHsT MaK-
CUMAJIBHBIX CTAOMJIBHBIX MOCTOB), MBI CTPOMM MHOXKECTBa TapaHTUPOBAHHOI PA3pPENIMMOCTH 3a/adi B 9eThIPEX-
MepHOM azoBoM mpocTpancTie. Ux mpoekrmm W# (1) Ha II0CKOCTh TEOMETPUIECKIX KOOPMHAT JI/IsT HEKOTOPHIX
MOMEHTOB ¢ OTMeUYeHbI Cepoil 3aJIMBKOI (PUCYHOK CJIeBa).

Ha pucynke cripaBa nokasana 3aBUCHMOCTB Tpoekimit W# (1)) MHOKECTB paspermuMocTy i TPEX BADHAHTOB
OrpaHMYeHNii Ha BETPOBYIO [OMeXyY. BUJIHO, YTO IIpK CHJIBHOIN BETPOBOI IIOMexXe Hava/lbHasi TOUKa HAIEeH CHCTeMBbI
0 TeOMeTPHYCCKIM KOOPJMHATAM He IoIaJaeT B MHOKecTBO W7 (). AHamormymas KapTHHKA /I HPOEKIuil
W< (ty) MHOMkKeCTBa Pa3PENTMMOCTH Ha IJIOCKOCTh KOOPJIHHAT 0, V TIOKa3aHa Ha IIPABOM PHUCYHKE BHH3Y.

Slide 34

The slide shows the simulation result for a four-dimensional problem of flying an aircraft where the wind
perturbation v = (v1,vy)" presents in the description of the dynamics. The purpose of the control is to bring
the phase vector to the convex set M# at a given instant 7. In this case, the trajectory of the system on the
geometric coordinates at the specified time instants #; must pass through the given sets H#(#;). Such sets are
analogous to the uncertainty sets in the filtering problem.

(to be continued in the next page)



Applying backward procedures from the theory of differential games (backward procedures for constructing
maximal stable bridges), we construct sets of guaranteed solvability of the problem in a four-dimensional phase
space. Their projections W# () on the plane of geometric coordinates for some instants ¢ are marked with a gray
fill (the figure on the left).

The figure on the right shows the dependence of the projections W# (¢,) of the solvability sets for three variants
of restrictions on wind disturbance. It can be seen that with a strong wind disturbance, the initial position of our
system on geometric coordinates does not fall into the set W#(¢y). A similar picture for projections W< () of
the solvability set onto the coordinate plane ¢, V' is shown in the right lower figure.



Strictly one-sided turn (case u,>0),
animation of the reachable set

Here is the reachable set for u;=0.5
when it develops over time in the interval from 41t to 241r.

The video is available here:
http://sector3.imm.uran.ru/POP LECTURES/SoProMat2020/SoProMat2020 Patsko2020 animation00.html




Caaiig 35

IT.A. Bacés (naboparopusi kommnbioreproit Busyaiausainuun UMM YpO PAH) paspaGoran nmporpaMmy, mo3Bo-
JIAIONILYIO CMOTPETHh Pa3BUTUE TPEXMEPHOTO MHOYKECTBA JIOCTHKUMOCTHU i MaruHbl /younca. [IpegcraBiennas
3/1eCh AaHUMAITUs TTOKA3BIBACT PA3BUTHIE MHOXKECTBA, JIOCTHKUMOCTHA BO BPEMEHHU JIIS CIydas CTPOro OJTHOCTOPOHHETrO
IIOBOPOTA.

Slide 35

P.A. Vasev (Computer Visualization Laboratory of the IMM UB RAS) has developed a program that allows
one to watch the evolution of a three-dimensional reachable set for the Dubins car. The animation presented here
shows the motion in time of the reachable set for the case of a strictly one-sided turn.



