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1. INTRODUCTION

For the last two years, the first author had read a one-
semester course (14 lectures) on optimal control and
differential games for master students of the first study-
year at the Mathematical-Mechanical Department of the
Ural State University, Ekaterinburg, Russia. Since the
listeners were of different specialties, the delivered material
did not suppose any preliminary acquaintance with the
subject.

Six lectures on the optimal control were devoted to the
concept of a reachable set of a control system and to
the statement that open-loop control leading the system
onto a point on the boundary of its reachable set satisfies
the Pontryagin’s maximum principle. After proving this
statement, linear and nonlinear optimal control problems
with some concrete optimality criteria (e.g., problem with
a fixed termination instant and integral-terminal payoff
function, optimal-time problem) were considered.

Other eight lectures concerning the differential game the-
ory were based on the concept of a maximal stable bridge
(MSB), which is a keystone of the Krasovskii’s theory for
solving problems of conflict control. The concept of MSB
generalizes naturally the concept of tube of the reachable
set in the control theory. In the game-control problems
with a payoff function, MSB is built by the backward
procedure from a level set (Lebesgue set) of the payoff
function. In the game space, the bridge defines a solvability
set for the problem with a result not greater than some
constant c, where the value c corresponds to the chosen
level set. Further, the following materials were considered:
the concept of an extremal positional strategy, the scheme
of control with a guide, methods of the positional control
on the basis of the switch surfaces. For problems with small
dimension of the state vector (or for ones that can be
reduced to such problems), the main ideas of numerical
methods are set forward.

Peculiarity of the course consists in the following. At the
end of each lecture, results of computer simulation were

demonstrated approximately during 20 minutes, and this
material was connected to topic of the lecture. The authors
had composed model aero-space guidance problems, which
were earlier investigated in their scientific work. Four such
problems are described in the paper.

2. THREE-DIMENSIONAL REACHABLE SET
FOR A MODEL OF AIRCRAFT MOTION IN PLANE

For navigational computations, the following model of
aircraft motion in the horizontal plane (Miele (1962);
Pecsvaradi (1972)) is used:

ẋ = V sin θ, ẏ = V cos θ, θ̇ =
g

V
tan γ; |γ| ≤ 30◦. (1)

Here, x and y are the Cartesian coordinates of the air-
craft, θ is the angle of the velocity vector counted clock-
wise from the positive direction of the axis y, V is the
magnitude of velocity, γ is the bank angle, and g is the
gravity acceleration.

Assume V = const. Then, after a normalization, we pass
from system (1) to the following system:

ẋ = sin θ, ẏ = cos θ, θ̇ = u; |u| ≤ 1. (2)

Model (2) is used also in theoretical robotics; it is called
“Dubins’ car” (Laumond (1988)).

The reachable set G(t;x0, y0, θ0) at a given instant t is
the set of all positions (x, y, θ), which can be reached
at the instant t from the initial point (x0, y0, θ0) (taken
at the starting instant t0 = 0) by the trajectories of
system (2) using admissible piecewise-continuous control
u(·). Without loss of generality, suppose that x0 = y0 =
θ0 = 0. Denote by G(t) the reachable set from this point.

In paper (Patsko et al. (2003)), it was established (based
on application of the Pontryagin’s maximum principle to
system (2)) that for any point (x, y, θ) ∈ ∂G(t) the control
steering to this point is piecewise continuous and has at
most two switches. In addition, there are only 6 variants
of changing the control: 1) 1, 0, 1; 2) −1, 0, 1; 3) 1, 0, −1;
4) −1, 0, −1; 5) 1, −1, 1; 6) −1, 1, −1.
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The second variant means that the control u ≡ −1 acts on
some interval [0, t1), the control u ≡ 0 works on an interval
[t1, t2), and the control u ≡ 1 operates on the interval
[t2, t]. If t1 = t2, then the second interval (where u ≡ 0)
vanishes, and we obtain a single switch from u = −1 to
u = 1. In the case t1 = 0, the first interval where u ≡ −1
vanishes; in the case t2 = t the third interval with u ≡ 1
is absent. The control has constant value if one of the
following three conditions holds: t1 = t, t2 = 0, or both
t1 = 0 and t2 = t. A similar property is true for the other
variants.

The proposition on six variants of the control u(t) steering
to the boundary of the reachable set G(t) is similar in
its form to the Dubins’ theorem (Dubins (1957)) on the
variants of the controls steering to the boundary of the
reachable set G(t) by given time t. The same variants
are valid. However, due to the relation between the sets
G(t) and G(t) (the set G(t) is the union of the sets G(s)
over s ∈ [0, t]), the above mentioned properties of the
controls leading to the boundary of the set G(t) result
in the analogous properties of the controls leading to the
boundary of the set G(t), but the converse is not true.

We apply the above formulated result on the structure
of the control u(t) steering to ∂G(t) to the numerical
construction of the boundary ∂G(t).

To construct the boundary ∂G(t) of the set G(t), we search
through all controls of the form 1–6 with two switches
at the instants t1, t2. For every variant of switches, the
parameter t1 is choosing from the interval [0, t], and the
parameter t2 from the interval [t1, t]. In addition, controls
with one switch and without switches are also consid-
ered. Taking a specific variant of switching and searching
through the parameters t1, t2 on some sufficiently fine grid,
we obtain a collection of points generating a surface in the
three-dimensional space x, y, θ.

Therefore, each of the six variants yields its own surface in
the three-dimensional space. The boundary of the reach-
able set G(t) is composed of the pieces of these surfaces.
The six surfaces are loaded into the visualization program
without any additional processing of data. Using this pro-
gram, the boundary of the reachable sets is extracted.
Some surfaces (in part or as a whole) are located inside of
the reachable set. The visualization program does not plot
such pieces. The three-dimensional sets has been drawn by
the program “Cortona VRML Client” utilizing standard
format VRML for the demonstration of interactive vector
graphics.

Fig. 1 shows the boundary of the set G(t) at time t = 1.5π
from two perspectives. The different parts of the boundary
are marked with different colors. For example, part 2 is
reachable for the trajectories with the control u(t) of the
form −1, 0, 1 with two switches. The sections of the
reachable set by the plane θ = const are depicted with
some step along the axis θ.

Fig. 2 shows reachable sets G(t) at the same perspective
but with different scales for four time instants t.

Note that during solving the problem, we assume that the
angle θ can change in the range (−∞,∞). This allows to
see the laws of evolution of the sets G(t) with growing t. It
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Figure 1. The set G(1.5π) from the two perspectives
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Figure 2. Development of the reachable set G(t)
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Figure 3. The set G(2π) with θ computed modulo 2π

is possible to pass easily to the sets, for which the angle θ
is calculated modulo 2π. Fig. 3 shows such a set G(t) for
t = 2π.
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When demonstrating these three-dimensional sets at the
instant for non-linear system (2), we emphasize that the
Pontryagin’s maximum principle is only a necessary con-
dition for the controls leading the system to the boundary
of the reachable set. Some parts of the obtained surfaces
are located inside the reachable set, but the maximum
principle is held for them too.

3. LINEAR DIFFERENTIAL GAMES WITH FIXED
TERMINATION INSTANT

Linear differential games

ẋ = A(t)x+B(t)u+ C(t)v, t ∈ [t0, T ], x ∈ Rn,
u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq, φ

(
xi(T ), xj(T )

) (3)

with fixed termination instant T and continuous payoff
function φ depending on two components xi, xj of the
phase vector are of a very important type of differential
games. For such games, there are effective numerical
procedures for constructing level sets of the value function.
We suppose that the first (second) player governs the
control u (v) choosing it from a convex compact set P
(Q) to minimize (maximize) the value of the payoff φ at
the instant T .

The variable change

ξ(t) = Xi,j(T, t)x(t)

provides a standard pass to an equivalent differential game.
Here, Xi,j(T, t) is a matrix combined of the ith and jth
rows of the fundamental Cauchy matrix X(T, t) for the
differential equation ẋ = A(t)x. This equivalent game is

ξ̇ = D(t)u+ E(t)v, t ∈ [t0, T ], ξ ∈ R2,
u ∈ P, v ∈ Q, φ

(
ξ1(T ), ξ2(T )

)
.

(4)

In the lecture course, we describe a backward procedure
for an approximate stepwise construction of time sections
W (t) of MSB W for game (4). The bridge is built from a
terminal set M , which is taken as a polygon in the plane
ξ1, ξ2. As the setM in game (4) with the payoff function φ,
we take the level set Mc =

{
(ξ1, ξ2) : φ(ξ1, ξ2) ≤ c

}
.

4. LINEAR INTERCEPTION PROBLEM

Consider a differential game concerning an interception
problem (Shinar et al. (1984); Shinar and Zarkh (1996)).
The pursuer in this problem is an antimissile, the evader
is a maneuvering aerial target. The natural payoff is the
minimal approach distance, that is, the miss, which is min-
imized by the pursuer P and maximized by the evader E.
The vectors of the initial nominal velocities (VP )nom
and (VE)nom are directed such that there is an exact colli-
sion along the nominal rectilinear trajectories. The control
of each object is orthogonal to the current velocity vector
(the current direction of the building longitudinal axis).
The maximal values of the lateral control accelerations are
bounded by constants µ and ν. Assume that µ > ν. The
evader controls its acceleration directly, but the pursuer
has an additional inertial link with the time constant τP .
Capabilities of the objects to change direction of their
velocities during the motion are small (weak-maneuvering
objects).

The choice of the coordinate axes is made in the following
way. The origin O coincides with the nominal pursuer

Figure 4. Coordinate system in the interception problem

position Pnom at the initial instant. The axis OX is di-
rected along the initial nominal line-of-sight. The axis OY
is orthogonal to OX and is located in the plane defined by
the vectors of the nominal velocities (Fig. 4). The axis OZ
is orthogonal to the mentioned two ones.

Since deviations of the actual velocities VP (t) and VE(t)
from their nominal values (VP )nom and (VE)nom are small,
the relative motion along the axis OX can be considered
as uniform. Therefore, the miss can be computed at the
instant of the nominal collision as the distance between
the objects in the plane Y Z. Thus, the problem of mini-
mization of the closest spacial miss can be reduced to the
minimization of the distance in the Y Z plane at the fixed
instant T of the nominal collision.

Linearizing the objects’ dynamics with respect to the
nominal motions, we get the following linear differential
game (Shinar et al. (1984); Shinar and Zarkh (1996)):

ẍP = aP , t ∈ [0, T ],
ȧP = (u− aP )/τP , xP , xE ∈ R2,
ẍE = v, u ∈ P, v ∈ Q,

φ
(
xP (T ), xE(T )

)
=

∣∣xE(T )− xP (T )
∣∣. (5)

Here, xP is the position vector of the first (pursuing)
player, xE is the position vector of the second (evading)
player, τP is the time constant characterizing the inertial-
ity of the first player’s control action. The sets P and Q
bounding the first and second players’ controls are ellipses:

P =

{
u ∈ R2 :

u2
1

A2
P

+
u2
2

B2
P

6 1

}
,

Q =

{
v ∈ R2 :

v21
A2

E

+
v22
B2

E

6 1

}
.

The semiaxes AP , BP , AE , BE are parallel to the co-
ordinate axes and can be computed on the basis of the
constants µ, ν bounding the players’ accelerations and
cosines of the angles (χP )nom and (χE)nom. The termina-
tion instant T is fixed. The payoff is the geometric distance
between the objects at the termination instant. The first
player minimizes the payoff, the second one maximizes it.

By introducing two-dimensional vector y = xE − xP , the
system (5) can be rewritten as (3). Numerical construc-
tions are made in the coordinates of system (4).

In Fig. 5, two level sets of the value function (two MSBs)
are shown in the space t, ξ1, ξ2 for the case (VP )nom <
(VE)nom. One can see that the larger set (corresponding
to c = 1.67) has smooth boundary. The smaller set
(corresponding to c = 1.546) has a narrow “throat” with
complicated geometry of t-sections, which changes in time.
A zoomed view of the throat is given in Fig. 6. The
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Figure 5. A level set with a narrow throat and a larger one

Figure 6. A zoomed view of the narrow throat

construction are made for the parameters T = 7.0, τP = 1,
AP = 0.871, BP = 1.30, AE = 0.71, BE = 1.00.

The main aim of involving this model problem in the
course is to show how elliptic constraints P and Q can
appear naturally. Also, this problem demonstrates how
dramatically the solution can depend on the parameters
of the game.

5. INTERCEPTION PROBLEM WITH TWO
PURSUERS AND ONE EVADER

An interception problem similar to the previous one but
with two pursuers is very difficult because if to keep the
second dimension of the geometric miss between each of
the pursuers and the evader, then equivalent game (4) has
a 4-dimensional phase vector.

To simplify reasonably the problem, we assume that
the vectors of the nominal velocities (VP1)nom, (VP2)nom,
(VE)nom are in the plane of the initial nominal geometric
positions of all three objects and the pursuit takes place in
this plane too. Such a situation can be considered if in the
control scheme, the pursuers’ controls are disjointed into
two channels: “vertical” and “lateral”. The miss in each of
these two channels is one-dimensional.

From the mathematical point of view, in each channel,
we have a problem, where two pursuers P1, P2 and the
evader E move along a line. The dynamics description for
pursuers P1 and P2 is (Le Ménec (2011))

ẍP1 = aP1 , ẍP2 = aP2 ,

ȧP1 = (u1 − aP1)/τP1 , ȧP2 = (u2 − aP2)/τP2 ,

|u1| ≤ µ1, |u2| ≤ µ2,

aP1(t0) = 0, aP2(t0) = 0.

(6)

Here, xP1 and xP2 are the geometric coordinates of the
pursuers, aP1 and aP2 are their accelerations generated by
the controls u1 and u2. The time constants τP1 and τP2

define how fast the controls affect the systems.

The dynamics of the evader E is similar:

ẍE = aE , ȧE = (v − aE)/lE ,

|v| ≤ ν, aE(t0) = 0.
(7)

Let us fix some instants T1 and T2. At the instant T1,
the miss of the first pursuer with respect to the evader is
computed, and at the instant T2, the miss of the second
one is computed:

rP1,E(T1) = |xE(T1)− xP1,E(T1)|,
rP2,E(T2) = |xE(T2)− xP2,E(T2)|.

(8)

Assume that the pursuers act in coordination. This means
that we can join them into one player (which will be called
the first player). This player governs the vector control
u = (u1, u2). The evader is counted as the second player.
The resultant miss is the following:

φ = min{rP1,E(T1), rP2,E(T2)}. (9)

At any instant t, both players know exact values of all
state coordinates xP1 , ẋP1 , aP1 , xP2 , ẋP2 , aP2 , xE , ẋE , aE .
The first player choosing its feedback control minimizes
the miss φ, the second one maximizes it.

Studying this problem, we pass to two one-dimensional
relative geometric coordinates

y1 = xE − xP1 , y2 = xE − xP2

and, further, to the coordinates ξ1 ξ2, which are the fore-
casts of y1 and y2 to the instants T1 and T2, respectively.
Level sets of the value function (MSBs) are constructed in
the three-dimensional space t, ξ1, ξ2.

In Fig. 7, one can see a numerically obtained level set of the
value function for the following parameters of the problem:

µ1 = µ2 = 1.1, ν = 1, τP1
= τP2

= 1/0.6,

τE = 1, T1 = T2 = 20.

With growing of the backward time, the t-sections lose
connectedness and disjoin to two parts, which join back
with further growth of the backward time.

In the lectures, we show to the students the level sets for
other variants of the problem parameters. We emphasize
that the non-convexity of the t-sections of level sets of
the value function and losing connectedness by them are
stipulated by the concrete type of payoff function (9). If
formula (9) would contain max instead of min, then for
any t ≤ max{T1, T2} the value function would be convex.

6. ADAPTIVE CONTROL OF AIRCRAFT LANDING
UNDER WIND DISTURBANCE

Take-off and landing of an aircraft under wind disturbance
are the natural examples (Miele et al. (1986, 1988)) of
application of modern methods of mathematical control
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Figure 7. A level set of the value function with t-sections
losing connectedness

theory and differential game theory to practical problems.
But there are some difficulties during formalization of
these problems.

The aircraft has four controls: thrust, elevator, rudder, and
ailerons. Bounds for their control ranges are known. There-
fore, during formalization, we can strictly describe the
constraints for the useful control. But there are problems
with the constraints for the disturbance. Even if to suppose
some middle maximal level of it and to take into account
the theoretically worst realization, the result of the process
can be unacceptable. Also, if the actual wind disturbance
is weak, then the result is good, but the realization of the
control is technically bad: it switches from one extreme
value to another instead of keeping some intermediate
level.

So, during the formalization, we get a problem with fixed
termination instant. With that, the level of the dynamic
disturbance is bounded, but unknown a priori. To apply
standard methods of control, we do the following. At first,
choose some monotonically growing family {Qk}, k ≥ 0,
of constraints for the disturbance. The set Qk for k = 1
is called critical. It is chosen from some “reasonable”
estimation of the disturbance. For each value k, we also
define some constraint Pk for the useful control. It grows
with k ∈ [0, 1]. When k = 1, it equals P , the maximal
capability of the control. If k ≥ 1, then Pk = P .

Each pair Pk, Qk together with some terminal set Mk pro-
duces a stable tube (bridge) Wk in the space time t×phase
vector x. It possesses the following stability property: if
the initial position is in the tube and the realization of the
disturbance is inside the set Qk, then the useful control
taking its value from the set Pk can keep the motion inside
this tube.

If to take the family of terminal sets {Mk} monotonically
growing on k, then the system of stable bridges {Wk} is
also monotone. The system generates a control according
to the following procedure. At the instant t, we measure
the current phase state x(t) and find the value k̄ such
that x(t) is on the boundary of Wk̄. Then we take an
appropriate control with its value from the set Pk̄ and keep
it during some small period of time. If after the end of this
period the motion of the system leaves the bridge Wk̄,
then the disturbance is actually of a level higher than Qk̄.
Therefore, during the next period of time we shall apply a

control of a higher level too (if it is possible). The value of

the control will be taken from some set Pk̃, k̃ > k̄, which
corresponds to a bridge Wk̃ whose boundary contains the
new system position. If, vice versa, the motion comes into
the interior of the bridge Wk̄ and reaches some bridge of
a lower level, then during the next period of time we shall
apply a control of a lower level corresponding to some

bridge Wk̂, k̂ < k̄, which is reached by the system.

Thus, it is possible to say that the control adapts itself to
the actual level and “quality” of the disturbance. The final
result depends on the maximal level of the disturbance
during the process and on how “clever” it was.

The approach for constructing the growing family {Wk},
k ≥ 0, of stable bridges for problems with linear dynamics
is suggested in (Ganebny et al. (2009)). In the case of
linear system, any bridge from the family can be easily
built on the basis of two special stable bridges and the
index k. One of these two bridges corresponds to the
index k = 1. The another one is subsidiary and does not
belong to the family. The generation of a certain bridge
involves operation of algebraic sum (Minkowskii sum) and
multiplication of a set by a non-negative scalar. Therefore,
we can keep in the memory of a computer these two bridges
only.

When a bridge is built, the control is produced by applica-
tion of the extremal shift method (Krasovskii and Subbotin
(1974, 1988)). Its realization in the case of convex sets is
very simple.

In the framework of the studied problem, the landing of
an aircraft is considered until passing the threshold of the
runway (Patsko et al. (1994)). After linearization with
respect to the nominal motion along the glide path, the
dynamics disjoins in two almost separate systems: one
is for the vertical motion and another is for the lateral
motion. Both systems are considered as linear problems
with unknown level of the dynamic disturbance. Terminal
sets for them are taken from tolerances in the coordinates
vertical deviation from the nominal position, velocity of
the vertical deviation (for the vertical channel), and lateral
deviation, lateral velocity (for the lateral channel). If at
the instant of passing the runway threshold, the aircraft
reaches these tolerances, then the following stage of land-
ing is guaranteed to be safe.

The nominal glide path is rectilinear, its height over
the runway threshold is 15m. The adapting controls are
produced in the framework of two linear systems men-
tioned above. The forecasted instant of passing the runway
threshold is corrected during the landing process. The
produced controls are put into the non-linear dynamics
of the aircraft.

Results of simulations of the non-linear system for two
variants of the wind disturbance taken as a wind micro-
burst (Ivan (1985)) are given in Fig. 8. The figure contains
results concerning the vertical channel. The initial position
of the aircraft is taken in 8000m far from the runway, in
40m up and 80m aside from the glide path. Trajectories
and graphs for the weak microburst are shown by dashed
lines. The results for the case of strong microburst are
drawn in solid lines. Upper left subfigure gives a view
of the trajectories in the coordinates vertical deviation,
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Figure 8. Simulation of the landing problem. At the
top: trajectories in the phase plane vertical devi-
ation ∆yg (m) × velocity of the vertical deviation
∆Vyg (m/sec). Below: graphs of the command controls
on the thrust δps (deg) and elevator δes (deg); at the
bottom: graphs of the longitudinal wxg (m/sec) and
vertical wyg (m/sec) components of the wind velocity.
The dashed lines correspond to the weak microburst,
solid ones are for the strong microburst.

velocity of the vertical deviation. The upper right subfigure
show a large view near the terminal set. In both situations,
the process finishes successfully: the trajectories reach the
terminal set. Two graphs below give the realizations of the
controls on thrust and elevator. Two lower graphs show
the realization of the disturbance along the trajectory. The
thin dashed lines denote the nominal and extreme levels
of the controls (in the graphs of the controls) and the zero
level and critical constraints for the disturbance.

One can see that at the beginning, the disturbance grows
and decreases later. The useful controls also increase their
levels adapting to the disturbance. The maximal level of
the useful control is not achieved despite the disturbance
is out of the critical constraint (for some period of time).
Also, there are some periods when the useful controls
“chatter”; but the chattering is smoothed by the inertiality
of the servomechanisms.

Studying this problem, students learn some complete de-
scription of the non-linear dynamics of the aircraft, lin-
earized systems of the vertical and lateral motions, adapt-
ing control method, and different models of the wind
disturbance.

CONCLUSION

Concepts of reachable sets and maximal stable bridges
founded the basis of the course on optimal control theory
and differential games. The considered material is illus-

trated by model problems from aero-space field. Numerical
construction of reachable sets and maximal stable bridges
allows to obtain new results, which can be useful in engi-
neering practice.
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