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Structure of the Course on 
Optimal Control and Differential Games

(14 lectures and home work of students)

1. Reachable sets of control system. Pontryagin’s 
maximum principle for controls guiding the system to 
the boundary of a reachable set (linear and non-linear 
systems). 

2. Open-loop control problems for different optimality 
criteria. Pontryagin’s maximum principle.

3. Positional formalization by N.N.Krasovskii for 
differential games. 

4. Maximal stable bridges and extremal strategies. 

5. Model practical problems.

These are the main topics of the one-semester course for master students of the Mathematical Department. Concerning the 
mathematical control theory, the principal concept is the notion of reachable set. In differential game theory, the main object is maximal 
stable bridge. This is practically the same as solvability set and level set of the value function if we have a differential game with payoff 
function.

In our talk, we shall show four model airspace problems, which we use teaching students. Each of these problems has been 
formulated and investigated by the authors as an independent and very interesting control or differential game task.



Three-Dimensional Reachable Set 
for a Model of Aircraft Motion in Plane

space, which can be reached by the system from the origin at the given instant t using admissible piecewise-continuous control.

It was established by means of the Pontryagin maximum principle (and students study this proof) that for arbitrary point on the 
boundary of the reachable set, the control guiding the system to the point has at most two switches. In addition, there are only six variants 
of changing the control. For example, the magenta part of the boundary is reachable by means of the control of the form -1, 0, +1 with 
two switches.

On this slide, we see the boundary of the reachable set at the instant t = 1.5¼ from two points of view. Several lines of µ-sections are 

shown.

For navigation 
computations, the 
model of aircraft 
motion in the 
horizontal plane 
written above is 
used. Here, x and y 

are the Cartesian 
coordinates of the 
aircraft, µ is the 

angle of the velocity 
vector, V is the 

magniude of the 
velocity, ° is the 

bank angle, and g is 

the gravity 
acceleration.

Assume that 
the value V is 

constant. Then after 
a normalization, we 
pass to the system 
in the second row. 
This model is also 
used in theoretical 
robotics. It is called 
the "Dubins' car".

The reachable 
set at a given 
instant t is the set 

of all points in the 
three-dimensional 



Development of the reachable set G(t)

These pictures show the development of the reachable sets with growing t.

Here, we assume that the angle µ can change in the range 1 . It allows us to recognize the laws of evolution of the reachable 

sets in time.
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Reachable Sets with µ  Computed Modulo 2¼

It is possible to pass to the sets, for which the angle  is calculated modulo 2¼. This slide shows such sets for three instants.

When demonstrating such three-dimensional reachable sets to students, we emphasize that the Pontryagin maximum principle is only 
a necessary condition for the control leading a non-linear system to the boundary of the reachable set.

µ



Linear Interception Problem
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is the time constant characterizing the inertia of the pursuer's control action;  is the position of the evader, v is his control vector. The constraints for the 

controls u and v are ellipses. A payoff in the game is the geometric distance between the players at the termination instant. The fist player minimizes the 

payoff, the second one maximizes it.
By introducing two-dimensional reference vector y, the system can be rewritten, and we have linear differential game of the sixth order where payoff 

depends on Euclidean norm of the vector y at the instant T.

Using a standard way, which is well-known in the differential game theory, we pass to an equivalent differential game of the second order. The new phase 
variables are » (t) and » t . They are values of two components of the vector y forecasted to the instant T under zero controls of the players (zero-effort miss 1

coordinates).

xE

( )2

In the next model 
problem, we have the 
pursuer P (it is an anti-

missile) and the evader 
E (it is a maneuvering 

target). Nominal initial 
points of P and E are 

connected by the initial 
nominal line-of-sight. 
The dashed lines 
denote nominal 
rectilinear trajectories. 
We consider the case 
when capabilities of the 
objects to change their 
velocities during the 
motion are small. The 
reference horizontal 
velocity is very large. 
Therefore, instead of 
the real miss (which is 
the closest distance 
between objects during 
the motion), we com-
pute lateral miss in the 
plane YZ at the instant 

T of the nominal 

collision.
Dynamics of the 

objects after the linea-
rization is shown in the 
center of this slide. 
Here, x  is the two-P

dimensional position 
vector of the pursuer, u 

is his control vector, ¿  P



* Critical value c  = 2.391.

Backward instant 
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General View of Critical Tube
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The main aim to study this material by student is to know how exotic the level sets of the value function can be. On this slide, we see 
the level set of the value function corresponding to the value of the payoff c* = 2.391. The tube has a narrow throat.

If the initial forecasted coordinates » ,  are inside this tube, then the first player guarantees the final miss not greater than . If the 1

initial vector (» , » ) is outside the tube, then there is no such a guarantee. 1 2

» c*2
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Large View of the Narrow Throat

This is a large view of the throat. The time sections of the tube are convex, but their geometry is changing in time non-trivially. This is 
the result of numeric computations. It is very difficult to give analytical description of the value function in this region.
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Level Set with the Narrow Throat
and a Larger One

T

Here, we see one tube more. The value of the payoff for this additional tube (which is drawn semi-transparent) is a bit larger than . 

But this new tube has smooth boundary and has good analytical description.

c*



Interception Problem with Two Pursuers
and One Evader

values of components of y   forecasted to instants   T  2
(ZEM, zero effort miss coordinates)

T and  1

J.Shinar, S. Le Menec

pursuers. Here, x  and  are scalar variables. The dynamics of the evader is similar.P1

Let T  and T  be the instants of the nominal collisions of the evader and the first and second pursuers, respectively. The crucial 1 2

property of this problem is that the payoff is not convex.
Denote by »  and »  the zero-effort miss coordinates.1 2

xP2

The third 
problem is similar to 
the previous one, 
but now we have 
two pursuers. If we 
would like to keep 
the second 
dimension of the 
geometric miss 
between each of the 
pursuers and the 
evader, then we pass 
finally to the 
equivalent 
differential game of 
the fourth order on 
the phase vector. It 
is very difficult both 
for analytical and 
numerical 
investigation. 

Therefore, we 
formulate the pursuit 
problem in such a 
way that the miss 
between each of 
pursuers and the 
evader is one-
dimensional. Thus, 
we have a linear 
dynamics for the 
first and second 



A Level Set of the Value Function

»1

»2

The solution of the problem depends essentially on the parameters of the game. Let us have the following values of the parameters ¹ , 

¹ , º, ¿ , ¿ , ¿ , T , and T , which are shown on the slide. For these parameters, we see here a level set of the value function obtained 2 P1 P2 E 1 2

numerically. With growing of the backward time, the t-sections lose connectedness and disjoin into two parts, which join back further.

In the lectures, we show to the students the level sets of the value function for some variants of the parameters. We emphasize that 
non-convexity of the level sets of the value function and losing connectedness by them are stipulated by certain type of the payoff, which is 
specific for the considered problem.

1



Aircraft Landing under Wind Disturbances

A.Miele, V.M.Kein

The problem of aircraft landing under wind disturbances is the natural example for mathematical control theory and differential games. 
But there are some difficulties for formalization of such a problem as a differential game. Namely, the aircraft has four main controls: thrust, 
elevator, rudder, and ailerons. Bounds for their ranges are known. Therefore, we can strictly describe the constraints for the useful control. 
In contrast, we do not know the real constraints for the wind disturbances. 



Aircraft Landing Stages

I. Descent till passing the runway threshold – the problem
under investigation

II. Levelling till contact with runway (the stage of flare)

III. Running on main wheels

IV. Running on all wheels

0 T

t

T*
*T 

15 m

I II III IV

In our investigations, we consider the part of the landing process from the height about 400 meters till passing the runway threshold 
at the height about 15 meters, that is, the part when the nominal trajectory of the aircraft is a rectilinear glide path.
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After linearization, the original

non-linear system actually 

disjoins into two independent 

subsystems: 

of lateral and vertical motions

Terminal sets:
  in vertical channel – 
    vertical deviation and its speed
  in lateral channel –
    lateral deviation and its speed

Landing Problem as Differential Game

After linearization of the non-linear dynamics with respect to the nominal motion, the aircraft dynamics disjoins into two subsystems, 
which are almost independent. One of them is for the vertical channel, and another is for the lateral channel. We consider two 
corresponding auxiliary linear differential games where the payoff is computed at the terminal instant of passing the runway threshold. In 
the framework of these two games, we obtain a feedback adaptive control and further use it in the original non-linear dynamics. The 
method for generating the adaptive control does not demand a priori knowledge of the constraints for the wind disturbances.



 Trajectories in the Space 
Vertical Deviation £ Velocity of Vertical Deviation

Here, the results of simulations of the non-linear system for two variants of the wind disturbances are given in the variables of the 
vertical channel. We see phase trajectories in the plane vertical deviation from the nominal motion, the velocity of the vertical deviation. At 

the right, we see a large view of the area near the terminal target set. The polygonal target set is the tolerance for the vertical channel.



Realization of Adaptive Controls and Disturbance

On this slide, we see the realizations of the thrust and elevator controls. These are command control signals. Below, the realizations of 
longitudinal and lateral wind disturbances are shown. They were created by means of a wind microburst model. We used two variants of 
the location of the microburst zone.

Studying the aircraft landing problem, students learn the description of the non-linear aircraft dynamics, linearized systems of the 
vertical and lateral motions, adaptive control method, and different model of the wind disturbances.
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On the slide of references, we give the book by N.N.Krasovskii and A.I.Subbotin and papers (by the authors) concerning the four 
problems of the presentation.

The last reference is devoted to the adaptive control method which have been elaborated by the authors on the basis of differential 
game theory.
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