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Slide 1
We work at the N.N.Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia. The photo

shows the central entrance to our Institute. Our report is devoted to the three-dimensional reachable set for the
“Dubins car” model, namely, to the analytical description of the reachable set. “Reachable set” and “reachability
set” are synonyms for us.
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The model "Dubins car" is used to approximate the dynamics of various controlled objects 
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Dubins Car 

A.A. Markov (1889),   R. Isaacs (1951),   L. Dubins (1957) 

(strictly one-sided turn case) 

E. J. Cockayne,  G. W. C. Hall,   T. Pecsvaradi,   Yu. I. Berdyshev,  A.W. Merz,   

J.-P. Laumond,  P. Souéres,  H.J. Sussmann,  S.M. LaValle,  T. Shima,  M. Weiss,  Z. Chen,  

G. Merkulov,  P. Tsiotras,  E. Bakolas,  M. Pachter,  R. Murphey,  H. Choi,  C.Y. Kaya, 

M. Vendittelli,  D. Casbeer,  E. Garcia,  M. Mitchell,  C.J. Tomlin,  M.E. Buzikov,  A.A. Galyaev, 

S. Cacace,  A.S. Matveev,  A.V. Savkin,  Yu.L. Sachkov,  A.A. Ardentov,  R. Takei,  R. Tsai, 

N.D. Botkin,  V.L. Turova,  V.N. Ushakov,  A.T. Becker,  … 
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Here, the standard kinematic description of the "Dubins car" is shown. With respect to the left value in the

specification of the constraint on the control u, we distinguish 4 cases: symmetric case, asymmetric case, one-sided
turn case, and strictly one-sided turn case. In our report, we will talk only about the symmetric case. The angular
coordinate ϕ changes in the interval (−∞,∞).

Of course, there are a lot of works in the modern literature related to the analysis of the Dubins car model (or
those close to it) and to using it in solving various control problems or even game problems. We give a far from
complete list of authors of publications on this topic.

First of all, we mention A.A.Markov, R.Isaacs, and L.Dubins.



Reachable set in projection onto a geometric plane x, y 
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In the remarkable paper by E.J. Cockayne and G.W.C. Hall, an analytical description of the reachable set for

the Dubins car in geometric coordinates x, y is given and the evolution of the reachable set in time is studied. The
frontal part of the reachable set boundary is a smooth junction of two involutes, the rear part of the boundary is
composed of two cardioids with non-smooth joining.

At our Institute, Yu.I. Berdyshev also worked with the reachable set in geometric coordinates in the early 70s.
Six years ago, he published a book presenting his results on solving various control problems using the Dubins
model and its generalizations.

We emphasize that the reachable set in the geometric coordinates x, y is the projection of the three-dimensional
reachable set (which is constructed in the coordinates x, y, ϕ) onto the two-dimensional plane x, y.
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Three-dimensional reachable set “at the instant” 
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Is a φ-section 

Patsko V.S., Pyatko S.G., Fedotov A.A. (2003) Three-dimensional reachability set for a nonlinear control system. 

Journal of Computer and Systems Sciences International. Vol. 42, No. 3, pp. 320–328 



Slide 4
This slide represents the time evolution of the three-dimensional reachable set for the Dubins car. Recall that

we consider the reachable set “at the instant”. It is the union of all three-dimensional phase states at a fixed time
tf , each of which can be reached with the help of some admissible control.

The figure shows the results of numerical constructions taken from our 2003 paper. To construct the boundary
of the reachable set, it is sufficiently to use six control types with no more than two switchings. The symbol Gϕ(tf )
will denote the two-dimensional ϕ-section of the three-dimensional set G(tf ) by the angular coordinate ϕ. Namely,
these ϕ-sections will be interested for us.

Without loss of generality, we assume that the initial instant and the initial phase vector are zero.
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φ-section of the reachable set  

 for  φ = 0.1π  and   tf  = 3.7π 

 

The plane of cross-section corresponds to  φ = 0 
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From the results of numerical constructions, we know that some ϕ-sections may be non-simply connected. The

figure on the right shows an example of such a ϕ-section. Here, the central area does not belong to the ϕ-section.
A three-dimensional reachable set can also be non-simply connected. The corresponding example is shown in the
left figure.
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Lee E.B., Markus I.  Foundation of Optimal Control Theory,  Wiley and Suns. New York, 1967 
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In the book by E.B. Lee and L. Markus, a theorem is formulated and proved that any open-loop control and

its corresponding motion leading to the boundary of the reachable set satisfy the Pontryagin maximum principle.
The type of conjugate system for the Dubins model is very simple.
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Here, we write out the formula of the maximum principle, from which it follows that the control u∗(·) leading

to the boundary is determined at each instant t by the sign of the third component ψ∗
3(t) of the vector ψ∗(t) of the

conjugate system. If the control u∗(·) has two or more switches, then a switching line occurs. Note that straight
switching line is not universal. For each motion leading to the boundary, the switching line is different.

The facts noted on this and previous slides are the simplest. They directly follow from the relations for the
Pontryagin maximum principle. These relations also allow us to talk about a finite number of switches for each
piecewise-constant control leading onto the boundary of the reachable set.
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Controls generating the boundary 

of three-dimensional reachable set 
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Patsko V.S., Pyatko S.G., Fedotov A.A. (2003) Three-dimensional reachability set for a nonlinear control system. 

Journal of Computer and Systems Sciences International. Vol. 42, No. 3, pp. 320–328 
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On this slide, we present the formulation of our theorem from the paper of 2003, which determines the controls

leading to the boundary of the reachable set at the instant for the Dubins car. These six types coincide with
the controls indicated in the paper by L.Dubins related to the time-optimal problem. The difference lies in an
additional condition that must be satisfied for controls of types 5) and 6). This condition means that the duration
of the average interval of the control constancy must not be less than the total duration of the first and third
intervals.

In our previous papers, we used this theorem to numerically construct the boundary of the reachable set. Since
motions are explicitly integrated due to each of the six types of controls, now we use it as a basis for an analytical
study of ϕ-sections of the three-dimensional reachable set.
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Up to this slide there was an introductory part of our report. Now, we turn to the presentation of new results.

On the plane ϕ and tf , we distinguish five sets, for each of which the structure of ϕ-sections is the same. The
classification is shown for non-negative values ϕ. Specifics of the kinematic description of the Dubins car is revealed
in the symmetry of the system motions when the sign of the control u(·) is changed. Therefore, for the negative
values ϕ, we obtain a picture of the classification that is symmetric to shown one with respect to the vertical axis.

The simplest case in the classification is number V. Here, each ϕ-section degenerates into a point.
Next, we turn to the consideration of cases I–IV.
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For any  tf  and  φ ≥ 0 ,   φ-section 
is symmetric with respect to the axis X 
of the auxiliary coordinate system  X, Y. 
The axis X passes through the origin 
of the original system  x, y. 
 

 tf = 10π   tf = 2π  

Auxiliary coordinate system X,Y. 

Symmetry property with respect to the axis X 

A1 :     +1,  0,  +1  

A2 :    –1,  0,  +1  

A3 :    +1,  0,  –1  

A6 :   –1,  +1,  –1 

four types of curves : 
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If ϕ≥0, then it is enough to take only four types of controls to describe the boundary of the reachable set: 1), 2),

3), and 6). With a fixed ϕ, each of them determines a one-parameter curve on the plane of geometric coordinates
x, y. The corresponding curves are denoted as A1, A2, A3, and A6. Taking these curves in the sequence A1,
A3, A6, and A2, we obtain a continuous closed curve that contains the boundary of the ϕ-section. Examples are
shown at the bottom of the slide. For small values tf , we have a closed curve without self-intersections (fig. on
the left). As tf increases, the closed curve under consideration becomes more complicated and the number of its
self-intersections grows (fig. on the right). In this case, the problem of selecting segments of curves lying on the
boundary of the ϕ-section becomes much more complicated.

Analyzing the introduced closed curve, we are convinced of its symmetry with respect to the axis X of some
auxiliary coordinate system X, Y (upper part of the slide). The auxiliary coordinate system depends only on the
value ϕ. The axis X passes through the origin of the original coordinate system.

Further analysis will use the formulas for writing curves A1, A2, A3, and A6 in the auxiliary coordinate system.



is a parameter 
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After trigonometric transformations, 
we obtain a parametric representation of each of the 
curves A2 and A3 in the form of an involute of a circle: 

The curves А2 and А3 are involutes of circles 

Here,      is a base circle radius, 
(the angle of rotation of the generating straight line). 

For curve A2, we have 

For curve A3 : 

the center of base curve is 

the center of base curve is 

, , 

, , 
.

.

Dashed lines are not trajectories 
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Here, at the top of the slide, formulas for parametric representation of the curves A2 and A3 in the auxiliary

coordinate system are given. The curve A2 is determined with the help of the parameter s2, and the curve A3 is
given by the parameter s3. Using trigonometric transformations, each of these two curves can be written in the
standard form corresponding to the involute of the circle. In both cases, the radius of the base circle equals 2.
However, the centers of these base circles, generally speaking, do not coincide.

In the figure on the right, the involutes A2 and A3 are shown together with their base circles and with
generating straight lines for the values tf = 2.5π and ϕ = π/3. Generating straight lines are shown by dashed
lines. In general, each generating curve (it consists of the base circle arc and the generating straight line) is not
an extreme trajectory satisfying the Pontryagin maximum principle. We just interpret the curves A2 and A3 as
the circle involutes in order to justify the geometric properties of these curves that we need. This is the difference
from the above-considered projection of the three-dimensional reachable set onto the plane x, y.

Note that the curves A1 and A6 are always arcs of circles.
Thus, the boundary of any ϕ-section consists of some arcs of circles and some parts of involutes.
For the values tf and ϕ indicated in the figure caption, the boundary of the ϕ-section includes the curves A1,

A3, A6, and A2 entirely.



View of φ-sections for case I 
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The case I with an additional restriction  tf ≤ 2π was considered in the paper 

Patsko V.S., Fedotov A.A. (2020)  Analytic description of a reachable set for the Dubins car.  

Trudy Instituta Matematiki i Mekhaniki URO RAN,  vol. 26,  no. 1,  pp. 182–197  (in Russian). 
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On this slide, we show the view of the ϕ-section boundary for the case I. The value ϕ is the same for both

figures. For fig. on the left, the value tf is less than for fig. on the right. The case I is characterized precisely by
the fact that the boundary of the ϕ-section coincides with the closed curve formed by the sequentially connected
curves A1, A3, A6, and A2. In the case I, the curves A2, A3, A6 are non-degenerate, and the curve A1 degenerates
only when ϕ = 0.

The case I with the additional restriction tf≤2π was considered in our paper of 2020.



Evolution of φ-section in time for case I  (φ is fixed) 
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A1 :     +1,  0,  +1  

A2 :    –1,  0,  +1  

A3 :    +1,  0,  –1  

A6 :   –1,  +1,  –1 

four types of curves : 
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Here, for the case I, the evolution of the ϕ-section boundary is shown with the increasing instant tf for the

fixed value ϕ = 0.5π. It can be seen that the curves A1 are concentric arcs of circles with the same angular span.
The curves A6 are also arcs of concentric circles. The curves A2 and A3 (involutes) join smoothly with the curve
A1, but their joining with the curve A6 is not smooth.



View of φ-sections for case II 
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The main feature of ϕ-sections in the case II is that they are not simply connected. The ϕ-sections considered

here are given by the outer and inner boundaries. This slide represents two examples of ϕ-sections for a fixed
value ϕ = 0.1π. In the upper part of the slide, the sets Gϕ(tf ) are shown in their entirety, and in the lower part
their enlarged fragments are given showing the peculiarity arising in the case II. The value tf for the left figure
corresponds to the first time instant when the curves A2 and A3 touch (touch point P1=P2). In the right figure
(for a larger value tf ) the curves A2, A3 are already intersected at two different points P1 and P2.

The feature of the case II is realized in the appearance of a set Bϕ(tf ) whose interior does not belong to the
ϕ-section. The boundary of the "hole" Bϕ(tf ) (the inner boundary of the ϕ-section) is composed of the curve A6
and adjacent parts of the curves A2 and A3 to the point P2. The outer boundary is formed by the curve A1 and
adjacent parts of the curves A2, A3, taken up to the point P1.
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The boundary of φ-section in this case is formed by the curve A1 
and parts of the curves (the involutes)  A2 and A3 up to the point of their first intersection 

View of φ-sections for case III 

( non-degenerate subcase:  t f  > 4 –  ) 
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This slide shows examples of ϕ-sections for the case III under the condition tf > 4π − ϕ (non-degenerate

subcase). Here, the curve A6 and some parts of the curves A2, A3 are located in the interior of the ϕ-section. The
set Gϕ is simply connected. Its boundary is formed by the curve A1 and parts of the curves A2, A3 taken up to
the point P1 of their intersection. For large values tf , the curves A2 and A3 can intersect many times (fig. on the
right).



View of φ-sections for case III 

( degenerate subcase:  t f  = 4 –  ) 
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The boundary of φ-section in this case is formed by the curve A1 
and parts of the curves (the involutes)  A2 and A3 up to the point of their first intersection. 

Curves A1, A2, A3 are shown in full. Curve A6 degenerates into point H. 
In the last two pictures, the first intersection point of the curves A2 and A3 coincides with the point H. 
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This subcase of the case III borders with case II for ϕ < π and with case I for ϕ≥π (see classification on slide 9).

For both conditions, the curve A6 consists of one point.
The left figure shows an example for ϕ < π. Here we have the set Bϕ(tf ) (is introduced for case II) degenerating

into the point H. The boundary of the ϕ-section consists of the arc A1 and the arcs A2 and A3 up to the point
of their first intersection.

On the middle and right figures, the examples are shown for ϕ≥π. Here, too, the curves A2 and A3 after
hitting the point H have no continuation. We obtain the boundary of the ϕ-section as sequential connecting the
curves A1, A3, and A2.

In general, the boundary of the ϕ-section is described using three curves (as in the non-degenerate subcase of
the case III).



View of φ-sections for case IV 

( 2     tf  ) 
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The curve A1 is a circle with an “overlap”  ( with a scope greater than 2π ). 
 

The set                 is the circle          . 
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The case IV is determined by the condition 2π≤ϕ < tf . Here, the curve A1 is a circle (a circumference) with

an “overlap”. This circle is the boundary of the ϕ-section. The center of the circle coincides with the origin of the
auxiliary coordinate system, and the radius is equal to tf − ϕ. The curve A6 as a whole and the curves A2 and
A3, except the points of their joining with the curve A1, lie in the interior of the set Gϕ(tf ) and do not participate
in the formation of its boundary.



Summary 
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An analytical description of the boundary of two-dimensional φ-sections 
of the three-dimensional reachable set for Dubins car is obtained including 
the case of not simply connected φ-sections. 
 
The boundary of each φ-section is formed by means of arcs of circles and parts of 
involutes. 
 
A classification of possible variants of φ-section structure is introduced. 
 
The results obtained can be used in solving various control problems. 
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The paper investigates the structure of cross sections by angular coordinate (ϕ-sections) of three-dimensional

reachable set “at instant” for the Dubins car. Curves lying on the boundary of ϕ-sections are analyzed. Their
analytical description is obtained.



Future 

19 

An asymmetric case of restrictions on left and right turns will be considered. 
We plan to prove that its study reduces to the symmetric case. 
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In our work for the controlled object "Dubins car”, the case of symmetric control constraint is considered:

u∈[−1, 1]. We plan to prove that the results obtained can also be used for any asymmetric constraint of the form
u1≤0≤u2. Namely, in the asymmetric case, for any tf and ϕ, the desired ϕ-section can be obtained from the
symmetric case by taking the same value ϕ, but some other value t∗f instead of tf .


