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The presentation is devoted to analytical and numerical study of a time-
optimal game problem in the plane. This problem is a game extension of the 
model brachistochrone problem. 



The classical brachistochrone problem

Velocity of the mass point:

Controlled system:

Admissible controls:

Space of states:
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is the time of attaining  the terminal set Mft

Let A and B be arbitrary points in the vertical plane. One looks for a curve 
connecting A and B such that a massive point being started from A with zero initial 
velocity attains B along this curve for the minimal time. In the general case, the 
terminal point B is replaced by a given terminal curve M.  For any trajectory, the 

1/2velocity of the mass  point at (x, y) is (2gy) , where g is the gravitation constant.
The brachistochrone problem can be reformulated as control the following 

problem: instead of choice of the trajectory, we assume that the magnitude of the 
1/2velocity is (2gy)  and the direction is defined by the unit vector u. Thus, u is 

chosen from the unit circle P. The problem is considered for  y 0. The control і 
objective is to minimize the time of attaining  terminal set M. This control  the
problem is equivalent to the brachistochrone problem. 



Isaacs' game statement of the problem

Admissible controls :

Game space:
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When considering the brachistochrone problem in the book “Differential 
games”', R. Isaacs introduced a disturbance influencing the dynamics of the 
system. The disturbance can be interpreted as a second player, whose objective is 
to increase the time of attaining the terminal set.

R. Isaacs considered the first quadrant as the state space. The terminal set was 
the positive semiaxis y.  So, it was unbounded. The vectograms of the players 

1/2were: the circle of radius (2gy)  for the first player, and the diagonal of a square 
with the side w for the second player. The first player minimizes the time of 
attaining the terminal set M,  the second player has the opposite objective.

1/2It is clear that the coefficient (2g)  does not play any role, hence, it can be 
replaced by 1.

A solution to this differential game was given by R. Isaacs in his book. 
However, this solution is not absolutely correct.  Namely, Isaacs supposed that the 

2value function is infinite below the horizontal line y = w . Above this horizontal 
line, the solution is defined by a switching line of the second player. On one side 
of the switching line, the second player utilizes one of two extremal controls; on 
the other side of the switching line, he uses the other extremal control of the 
opposite sign.



Improved solution to the Isaacs' problem

S.A. Chigir'  "The game problem on the dolichobrachistochrone"
Journal of Appl. Math. Mech., Vol. 40, no. 6, 1976, pp 950–960

M.L. Lidov  "On a differential game problem"
Avtomat. i Telemekhan., no. 4, 1971, pp.173–175 (in Russian)
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M.L. Lidov pointed out to an error in the Isaacs' solution. Later on, 
2S.A. Chigir has improved the R. Isaacs’ solution. The horizontal line y = w  is not a 

barrier, as it was erroneously claimed in the Isaacs' book. Namely, there are points 
below this line, for which the game is solvable. The correct form of the barrier is 
shown on the slide. The optimal trajectories are broken on the switching line of the 
second player. The value function is differentiable in the whole solvability domain. 

It is interesting to modify the game statement of the brachistochrone problem 
in such a way that the value function would become non-differentiable. Besides, 
we wanted to find out whether the singular equivocal lines can arise in the game 
brachistochrone problem. According to the book of R. Isaacs, the equivocal 
singular lines are only inherent to differential games.



Our statement of the problem

Dynamical  system:

Admissible controls:

Game space:

Isaacs-Bellman equation:

For our case:
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Let the vectograms of the players are of the following form: a circle of radius  
1/2y  for the first player and a vertical segment of the length 2w for the second 

player. The symbols u  and u  denote control parameters of the first player in the 1 2

description of the system dynamics. The variable v is a scalar control of the 
second player.

The terminal set M is chosen to be a rectangle of the height h with the base 
edge on the  x-axis. Since the right-hand side of the dynamic equations does not 
depend on x, the location of the set M on the x-axis and its width do not play any 
essential role. This implies that the solution has to be symmetric with respect to 
the vertical line passing through the center of  M.

The Bellman-Isaacs equation for this problem is written in the lower part of 
the slide.

Thus, we will consider only the right half of the solution. We begin with the 
2case  h > w .



Fields of characteristics 
2h w>(case              )

  first family

overlaping region of two families 

second family

5



Using  the Isaacs' method, we obtain three families of characteristics that are 
constructed taking into account the boundary condition on the terminal set. The 
characteristics of the first, second, and third family emanate from the vertical part 
of the boundary, from the right upper vertex of M, and from the horizontal part of 
the boundary, respectively. The third family consists of vertical lines. For all 
families, the characteristics belonging to the same family do not intersect each 
other. The first and second families overlap partially. The second and third 
families adjoint each other smoothly.

Relations on the moving time along the characteristics of all families are 
obtained. Unfortunately, they do not define the guaranteed attainment time 
explicitly. To obtain the optimal trajectories, the characteristics of the first and 
second families were processed additionally.



Solvability set and optimal  trajectories

   D  is a dispersal part

 E  is an equivocal part

 S  is a switching (with respect 
      to the second player control) part
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The singular dispersal line D was computed from the condition that the 
attainment instants along characteristics of the first and second families are equal. 
Parts of characteristics computed backwards are removed  beyond intersection 
points with D. Each point of D is a source for two optimal trajectories. The 
construction of the dispersal line is stopped if it becomes tangent to one of the 
trajectories of the first family. A point corresponding to this situation is denoted 
by a on the slide.

The point a gives rise to a singular equivocal line E. The property of 
equivocal lines is that two optimal trajectories emanate from their points. One of 
the two optimal trajectories goes into the upper region and arrives at the right 
upper vertex of M along a characteristic of the second family. The second optimal 
trajectory goes along the equivocal line up to the point a.

The equivocal line is described by a first-order ordinary differential equation.
Construction of the equivocal line is continued until it meets a curve that 

bounds the second family from below. The equivocal line approaches this curve 
tangentially. Let us denote the common  point by b. The point F divides the lower 
bounding curve of the second family into two parts: the right part is denoted by S  
on the slide. The curve S is a switching line of the second player.

On the second stage of solving process, characteristics of the Bellman-Isaacs 
equation are issued backwards from the parts E and S of the singular line. But till 
now, complete description of these characteristics is absent.

Thus, the first arc of the singular line that defines the optimal solution 
posseses the dispersal property. This arc is computed numerically. The endpoint a 
of the dispersal arc can not be expressed analytically. The next arc of the singular 
line posseses the equivocal property. It is a numerical solution to a differential 
equation with a as the initial condition. The endpoint of the equivocal arc is 
determined numerically too. The third arc S is a switching  line of the second 
player.

The value function is not differentiable on the arcs D and E, and it is 
differentiable on the line S. The solvability region of  the problem is defined by 
the barrier line B that consists of a curviline segment and a horisontal line whose 

2y-coordinate is equal to  w .
The barrier line is smooth. The value function is infinite on the curviline part 

of the barrier. The second player can prevent the achievement of the terminal set 
whenever the trajectory starts from any point that lies below the barrier line. 



All three parts of  the singular line are presented 

6.0, 2h w= =Solution for 
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2It was the description of the solution structure for h > w .  Now, we show how 
the solution changes if the value of the parameter h  decreases. The value of w is 
fixed.

For this slide,  h = 6.  For the previous slide, h = 12. Principally, the 
qualitative structure of the solution remains the same. As before, the singular line 
consists of three arcs, and it is located over the barrier line B.



The singular line and the barrier have common tangent 

at the point  a 

Solution for 4.4, 2h w= =
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If  h  continues to decrease, the singular line approaches the barrier line near 
and near. The limiting case where the singular line touches the barrier is shown.



Solution for  4.3, 2h w= =
9

The equivocal part is not any continuation of
the dispersal part 

E

B

D a2a1

If  h decreases further, the singular line breaks up: the dispersal arc 
approaches the barrier B tangentially at the point a ,but the equivocal arc 1  

emanates tangentially from another point a lying on the barrier on the right from 2 

the point a . Basically, the singular line consists of three parts as before.1



Solution for 4.0, 2h w= =

The solvability set changes jump-like. 
Only dispersal line remains. 
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2  In the case  h = w , the solvability region changes jump-like. The upper barrier 
*line B  bounding the solvability region from above appears. The equivocal arc and 

switching arc of the second player disappear. It is interesting to remark that the 
*value function is infinite on the upper barrier line B . The value function is finite 

on the lower barrier B.



The endpoint of the dispersal line goes  
on to the upper barrier 

for the both barriers( , )T x y < Ґ

Solution for  3.5, 2h w= =
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If h  decreases, the solution structure remains the same: two barriers define 
the solvability region. The endpoint of the dispersal arc goes on from the lower 
barrier to the upper barrier. The value function is finite on both barriers.



The results set forth above are of our study based on construction of the 
singular line. The solution is not trivial. We have a program for computation of the 
singular line.

The complete exact proof for the described solution structure is not 
implemented yet. Nevertheless, we are sure that our results are correct because 
they are in agreement with the independent computation of level sets of the value 
function. This independent computation utilizes an algorithm based on the 
backward propagation of fronts.



General view of the level sets 
of the value function 
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6h =
2w =

Height of the terminal set:

Parameter for the second player:

The step of calculation is 0.05, each third front is shown, 
computation is performed up to the instant 7.32
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2y w=

Here, level sets of the value function are presented for h = 6, w = 2. The curve 
consisting of the corner points of the fronts is clearly seen. This curve coincides 
with our singular line. The region that is filled out with the fronts coincides with 
the solvability region. The accumulation of the fronts near the horizontal line        

2 2y = w  means that the value function goes to infinity when approaching y = w  
from above.



Enlarged fragment of the previous view 
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2w =

Height of the terminal set:

Parameter for the second player:

Computation is performed up to the instant 7.32

line of front 
unsmoothness

B (barrier)

2y w=

Here, a fragment of the previous picture is shown. More fronts for the same 
time interval are presented.



Separation of the dispersal and equivocal lines  
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4.3h =
2w =

Height of the target set:

Parameter for the second player:

B (barrier)

2y w=

D (dispersal line)

E (equivocal  line)
a1

a2

On this slide, a fragment of the collection of  the level sets is shown for 
h = 4.3. One can see the curve composed of the corner points of the  fronts is 
divided onto  two parts. For h cosidered, the division point a  and a  are close to 1 2

earch other.



B (barrier)

2y w=

D (dispersal line)

E (equivocal  line)

a1

a2

Regions of accumulation of  the fronts 
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2w =
4.05h =Height of the terminal set:

Parameter for the second player:

If h decreases, the points a  and a  go away each from other. An accumulation 1 2

of the fronts arises over the terminal set  in the left part of the picture. 



Appearance of the upper barrier 
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Height of the terminal set:

Parameter for the second player:

B (lower barrier)

2y w=

D (dispersal line)

a1

*B  (upper barrier)

M

2
This picture is done for h = w  = 4. The accumulation of the fronts in the 

*upper part of the picture gives the upper barrier B . The solvability region changes 
jump-like.



Decreasing of the regions of front concentration  
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Height of the terminal set:

Parameter for the second player:

B (lower barrier)

D (dispersal line)

*B  (upper barrier)M
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If h decreases further, the upper accumulation region of the fronts reduces. 
The curve composed of the corner points of the fronts  meets  the lower barrier as 
before.



Motion of the endpoint of the dispersal line 
18
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Height of the terminal set:

Parameter for the second player:

B (lower barrier)

(terminal set)

D (dispersal line)

*B  (upper barrier)

M
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The computation are done for h = 2.5. The curve composed of the corner 
points  of the fronts meets the upper barrier.
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