
The presentation is devoted to the analytical and numerical study of a time-optimal game problem in

the plane. This problem is a game extension of the model brachistochrone problem.

Let and be arbitrary points in the vertical plane. One looks for a curve connecting and such

that a mass point being started from with zero initial velocity attains along this curve for a

minimal time. In general case, the terminal point is replaced by a given terminal curve . For any

trajectory, the velocity of the mass point at ( ) is (2 ) , where is the gravitation constant.

problem.

When considering the brachistochrone problem in the book “Differential games”', Isaacs introduced a

disturbance influencing the dynamics of the system. The disturbance can be interpreted as a second

player whose objective is to increase the time of attaining the terminal set.

Isaacs considered the first quadrant as the state space. The terminal set was the positive semiaxis . So,

it was unbounded. The vectograms of the players were: the

player. The first player minimizes the time

of attaining the terminal set , the second player has the opposite objective.

It is clear that the coefficient does not play any role, hence it can be replaced by 1.

A solution to this differential game was given by Isaacs in his book. However, this solution is not fully

correct. Namely, Isaacs supposed that the value function is infinite below the horizontal line = .

Above this horizontal line, the solution is defined by a switching line of the second player. On one side

of the switching line, the second player utilizes one of two extremal controls. On the other side of the

switching line, he uses the other extremal control.
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The brachistochrone problem can be reformulated as a control problem: instead of choice of the

trajectory, we assume that the magnitude of the velocity is and the direction is defined by the

unit vector . Thus, is chosen from the unit circle . The problem is considered for 0. The

objective of the control is to minimize the time of attaining a terminal set . This control problem is

equivalent to the brachistochrone
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Lidov pointed out to an error in the Isaacs' solution. Later on, Chigir has improved the solution of

Isaacs. The horizontal line is not a barrier, as it was erroneously claimed in the Isaacs' book.

Namely, there are points below this line, for which the game is solvable. The correct form of the barrier

is shown on the slide. The optimal trajectories are breaking on the switching line of the second player.

The value function is differentiable in the whole solvability domain.

It is interesting to modify the game statement of the brachistochrone problem so that the value function

would become non-differentiable. Besides we wanted to find out whether singular lines can

arise in the game brachistochrone problem. According to the book of Isaacs, equivocal singular lines

are only inherent to differential games.

Let the vectograms of the players are of the following form: a circle of radius for the first player and

a vertical segment of the length 2 for the second player. The symbols and denote control

parameters of the first player in the description of the system dynamics. The variable is a scalar

control of the second player.

The terminal set is chosen to be a rectangle of the height with the base edge on the -axis. Since

the right-hand side of the dynamic equations does not depend on , the location of on the -axis and

its width do not play any essential role. This implies that the solution has to be symmetric with respect

to the vertical line passing through the center of .

A Bellman-Isaacs equation for this problem is written in the lower part of the slide.

Thus, we will consider only the right half of the solution. We begin with the case > .

Using the Isaacs' method, we obtain three families of characteristics that are constructed taking into

account the boundary condition on the terminal set. The characteristics of the first, second, and third

family emanate from the vertical part of the boundary, from the right upper vertex of , and from the

horizontal part of the boundary, respectively. The third family consists of vertical lines. For all

families,the characteristics belonging to the same family do not intersect each other. The first and
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second families overlap partially. The second and third families adjoint each other smoothly.

Relations for the moving times along characteristics of all families are obtained. Unfortunately, they do

not define the guaranteed attainment time explicitly.

To obtain optimal trajectories, the characteristics of the first and second families were processed

additionally.

Singular dispersal line was computed from the condition that the attainment times along

characteristics of the first and second families are equal. Parts of characteristics computed backwards

are removed beyond intersection points with . Each point of is a source for two optimal

trajectories. The construction of the dispersal line is stopped if it becomes tangent to one of the

rajectories of the first family. A point corresponding to this situation is denoted by on the slide.

The point gives rise to a singular equivocal line . The property of equivocal lines is that two optimal

trajectories emanate from their points. One of the two optimal trajectories goes into the upper region

and arrives at the right upper vertex of along a characteristic of the second family. The second

optimal trajectory goes along the equivocal line up to the point .

.

The equivocal line is described by a first-order ordinary differential equation.

The construction of the equivocal line is continued until it meets a curve that bounds the second family

from below. The equivocal line approaches this curve tangentially. Let us denote the common point by

. The point divides the lower bounding curve of the second family into two parts: the right part is

denoted by on the slide. The curve is a switching line of the second player.

On the second stage of solving process, characteristics of the Bellman-Isaacs equation are issued

backwards from the parts and of the singular line at the moment. Complete description of these

characteristics is absent.

Thus, the first arc of the singular line that defines the optimal solution posseses the dispersal property.

This arc is computed numerically. The endpoint of the dispersal arc can not be expressed analytically.

The next arc of the singular line posseses the equivocal property. It is a numerical solution to a

differential equation with as the initial condition. The endpoint of the equivocal arc is determined

numerically too. The third arc is a switching line of the second player.
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The value function is not differentiable on the arcs and , and it is differentiable on the line . The

solvability region of the problem is defined by the barrier line B that consists of a curviline segment

and a horisontal line whose -coordinate is equal to .

The barrier line is smooth. The value function is infinite on the curviline part of the barrier. The second

player can prevent the achievement of the terminal set whenever the trajectory starts from any point

that lies below the barrier line.

It was the description of the solution structure for > . Now, we show how the solution changes if

the value of the parameter decreases. The value of is fixed.

For this slide, = 6. For the previous slide, = 12. Principally, the qualitative structure of the solution

remains the same. As before, the singular line consists of three arcs and it is located over the barrier

line .

If continues to decrease, the singular line approaches the barrier line near and near. The limiting case

where the singular line touches the barrier is shown.

If decreases further, the singular line breaks up: the dispersal arc approaches the barrier

tangentially at the point but the equivocal arc emanates tangentially from another point lying on

the barrier on the right from the point . Basically, the singular line consists of three parts as before.
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If = ,the solvability region changes jump-like. An upper barrier line bounding the solvability

region from above appears. The equivocal arc and switching arc of the second player disappear. It is

interesting to observe that the value function is infinite on the upper barrier line . The value function

is finite on the lower barrier .

If decreases, the solution structure remains the same: two barriers define the solvability region. The

endpoint of the dispersal arc goes on from the lower barrier to the upper barrier. The value function is

finite for the both barriers.

These are results of our study based on the construction of the singular line. The solution is not trivial.

We have a code for the computation of the singular line.The full exact proof for the described solution

structure is not completed yet. Nevertheless, we are sure that our results are correct because they are in

agreement with the independent computation of level sets of the value function. This independent

computation utilizes an algorithm based on the backward propagation of fronts.

Here, level sets of the value function are presented for = 6, = 2 . The curve consisting of the corner

points of the fronts is clearly seen. This curve coincides with our singular line. The region that is filled

out with the fronts coincides with the solvability region. The accumulation of the fronts near the

horizontal line means that the value function goes to infinity when approaching from

above.

Here, a fragment of the previous picture is shown. More fronts for the same time interval are presented.
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On this slide, a fragment of the collection of the level sets is shown for = 4.3. One can see that the

curve composed of corner points of the fronts is divided onto two parts. For considered, the

divisionpoints and are close to earch other.

If decreases, the point and go away each from other. An accumulation of the fronts arise over

the terminal set in the left part of the picture.

This picture is done for = = 4. The accumulations of the fronts in the upper part of the picture gives

the upper barrier . The solvability region changes jump-like.

If decreases more, the upper accumulation region of the fronts reduces. The curve composed of the

corner points of the fronts meets the lower barrier as before.

The computation are done for = 2.5. The curve composed of the corner points of the fronts meets

the upper barrier.
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