Пленарные доклады

Секция І

Общая и прикладная механика

МАШИНА ДУБИНСА: ТРЕХМЕРНОЕ МНОЖЕСТВО ДОСТИЖИМОСТИ

<u>В.С. Пацко</u>¹, А.А. Федотов¹

¹Институт математики и механики им. Н.Н.Красовского, Екатеринбург patsko@imm.uran.ru

Аннотация. Исследуется трёхмерное множество достижимости в момент для управляемого объекта "машина Дубинса". Управлением является угловая скорость поворота вектора линейной скорости. Наряду со случаем, когда по постановке задачи поворот возможен в обе стороны, рассматриваются случаи одностороннего поворота. Дано описание сечений трёхмерного множества достижимости по угловой координате. Исследованы закономерности развития множества достижимости. Приводятся результаты моделирования. Робота в иногисание при нодкарские греците РФФИ № 18, 01, 00410

Работа выполнена при поддержке гранта РФФИ № 18-01-00410.

Введение

В прикладных работах, опирающихся на математическую теорию управления [1, 2], очень популярной является модель управляемого объекта, называемая "машина Дубинса". Такая модель задается нелинейной системой дифференциальных уравнений третьего порядка. Две фазовые переменные характеризуют геометрическое положение управляемого объекта на плоскости, третья переменная – угол направления вектора скорости. Величина скорости считается постоянной. Скалярное управляющее воздействие, стесненное геометрическим ограничением, определяет мгновенную угловую скорость поворота.

В 1957 г. американский математик Л. Дубинс опубликовал теоретическую работу [3] о линии кратчайшей длины с ограниченным радиусом кривизны, соединяющей две точки на плоскости с заданным направлением выхода из первой точки и заданным направлением входа во вторую. Полученные Л. Дубинсом результаты оказались очень полезными при исследовании объектов с ограниченным радиусом поворота и постоянной по величине скоростью передвижения. Такие объекты стали называть машиной Дубинса. В дальнейшем оказалось, что близкие вопросы в 1889 г. изучал А.А. Марков в работе [4], посвященной проблемам прокладки железных дорог.

Модель Дубинса применяется в задачах управления колесными роботами, для диспетчерских расчетов в гражданской авиации, а также в прикладных работах по построению траекторий движения беспилотных летательных аппаратов в горизонтальной плоскости.

Под множеством достижимости $G(t_f)$ в момент времени t_f для машины Дубинса понимаем совокупность всех состояний в трехмерном фазовом пространстве, в каждое из которых возможен перевод системы в момент t_f из заданного начального фазового состояния при помощи некоторого допустимого управления. Работа посвящена задаче построения множества достижимости в момент.

Постановка задачи

Пусть динамика управляемого объекта (машина Дубинса) описывается системой дифференциальных уравнений третьего порядка:

(1)

$\dot{x} =$	$\cos \varphi$,	
ý =	$\sin \varphi$,	
$\dot{\varphi}$ =	и,	$u \in [u_1, u_2].$

Здесь *x*, *y* – координаты геометрического положения, φ – угол направления вектора скорости, отсчитываемый против часовой стрелки от оси *x* (рис. 1), *u* – скалярное управление, стесненное геометрическим ограничением. Величина линейной скорости равна 1. Значение *u*₁ является параметром задачи и удовлетворяет неравенству $-u_2 \le u_1 < u_2$. Предполагаем, что $u_2 = 1$.

Рис.1 Система координат

К представлению (1) может быть приведена произвольная управляемая система третьего порядка, описывающая движение с постоянной по величине линейной скоростью и заданным диапазоном угловой скорости поворота. Для этого требуется перемасштабирование по геометрическим координатам и по времени.

В качестве допустимых управлений $u(\cdot)$ рассматриваем измеримые функции времени со значениями $u(t) \in [u_1, u_2]$. Предполагается, что угловая координата φ принимает свои значения в интервале $(-\infty, +\infty)$.

Множество достижимости $G(t_f)$ в момент t_f при оговоренном начальном фазовом состоянии x_0, y_0, φ_0 определим как совокупность всех состояний системы (1) в момент t_f , реализуемых при помощи допустимых программных управлений. Без ограничения общности, в начальный момент времени $t_0 = 0$ полагаем $x_0 = 0, y_0 = 0, \varphi_0 = 0$. Цель работы – описать множество $G(t_f)$. Рассматриваются следующие случаи: а) $u_1 = -1, 6$ – $1 < u_1 < 0, B$ – $u_1 = 0, C$ – $0 < u_1 < u_2 = 1$.

В статье [5] для случая а) исследовано множество достижимости в проекции на плоскость *x*, *y*. Трёхмерные множества достижимости для случаев а) – г) частично рассматривались в предыдущих статьях [6, 7]. Имеются работы (см., например, [8]), в которых при помощи численных методов, разрабатываемых для уравнений типа Гамильтона – Якоби, получены изображения трёхмерных множеств достижимости "к моменту" (но не "в момент").

Управления, ведущие на границу множества достижимости

Известно [2], что управления, которые приводят систему на границу множества достижимости $G(t_f)$ в момент t_f , удовлетворяют принципу максимума Понтрягина (ПМП).

Движения системы (1), удовлетворяющие ПМП, в проекции на плоскость x, y формируются из участков движения по дугам окружностей и прямолинейных участков. На каждом из них управление можно считать постоянным. Поэтому при анализе управлений, удовлетворяющих ПМП, можем ограничиться *кусочно-постоянными* управлениями (предполагаем непрерывность справа в точках разрыва). Имеет место конечность числа переключений на промежутке $[t_0, t_f]$.

Теорема 1. Для случаев а), б) в каждую точку границы множества достижимости системы (1) можно перейти при помощи кусочно-постоянного управления с не более чем двумя переключениями. При этом в случае двух переключений можно ограничиться шестью вариантами последовательности управлений:

1) $u_2, 0, u_2;$ 2) $u_1, u_2, u_1;$ 3) u_2, u_1, u_2 4) $u_1, 0, u_1;$ 5) $u_1, 0, u_2;$ 6) $u_2, 0, u_1.$ (2)

Варианты (2) совпадают с теми вариантами оптимальных управлений, что указаны для задачи оптимального быстродействия в статье [3]. Каждый из промежутков, на котором действует постоянное управление, может вырождаться.

Теорема 2. В случае в) в любую точку границы множества достижимости системы (1) можно перейти при помощи кусочно-постоянного управления $u^*(\cdot)$, принимающего значения $u_1 = 0$ и $u_2 = 1$ с не более чем двумя переключениями. Возможны два варианта последовательности управлений: 1) 1, 0, 1; 2) 0, 1, 0.

Пусть $u_1 > 0$ (случай г)). Тогда с увеличением t_f растет также и возможное число переключений управления (однако их число при заданном t_f конечно). Исследование данного случая представлено в работе [9].

В итоге, для всех четырёх вариантов задания значений u_1 имеются описания программных управлений $u(\cdot)$, ведущих на границу множества достижимости. Это позволяет сформировать границу множества достижимости в трёхмерном пространстве в виде конечного набора гладких поверхностей. Соответствующие участки границы представляются в виде двухпараметрических семейств точек [6].

Изображения множеств достижимости на момент $t_f = 3\pi$ для трёх значений $u_1 = -0.25$, 0, 0.25 показаны на рис. 2. Нумерация цветов участков границы соответствует перечню управлений (2).

Рис. 2 Вид множества достижимости для $t_f = 3\pi$ при разных значениях u_1

Сечения множества достижимости по угловой координате

Опишем сечения по угловой координате (φ -сечения) множества достижимости $G(t_f)$.

* Пусть $0 < u_1 < u_2 = 1$ (случай г)). Здесь количество переключений управлений, ведущих на границу, растёт с увеличением момента t_f . Но при этом φ -сечения являются строго выпуклыми. Свойство выпуклости φ -сечений первоначально было замечено в процессе моделирования, а потом доказано теоретически [9]. Также было установлено, что граница любого φ -сечения составляется из четырёх типов дуг SB, BB, SS, BS, для каждой из которых имеется аналитическое описание. Возможные варианты их стыковки показаны на рис. 3.

Рис. 3 Варианты структуры φ -сечений для $0 < u_1 < 1$

Дуга типа SB образуется при помощи кусочно-постоянных управлений со значением u_2 на первом участке и со значением u₁ на последнем. Для дуги типа BB управление на первом и последнем участках принимает значение u_1 . Аналогично, меняя местами u_1 и u_2 , определяются дуги BS, SS.

Число переключений управлений, ведущих на одну и ту же дугу, зависит от момента t_f и выбранного φ . При зафиксированных t_f и φ количество переключений для дуг BS и SB одинаково. Для дуг BB и SS оно либо одинаковое, либо отличается на одно переключение.

При выбранном направлении обхода границы (по или против часовой стрелки) возможны 4 варианта следования дуг: 1) SB, BB, BS, SS; 2) SB, BB, BS, BB; 3) SB, SS, BS, SS; 4) SB, SS, BS, BB. В зависимости от t_f и φ некоторые дуги могут вырождаться. Дуги BS и SB вырождаются одновременно. В работе [9] установлено, что всего может быть 11 типов *Ф*-сечений.

На рис. 4 показаны примеры множеств достижимости $G(t_f)$ при $u_1 = 0.5$, $u_2 = 1$ для трёх моментов $t_f = 6\pi, 10\pi, 20\pi$. Цвета участков границы соответствуют рис. 3. Один и тот же

цвет может встречаться несколько раз, поскольку меняется Puc. 4 Множества достижимости при $u_1 = 0.5$ количество переключений при изменении φ .

** Пусть $u_1 = 0$, $u_2 = 1$ (случай в)). Этот случай является самым простым. Здесь любое φ -сечение представляет собой [7, 9] либо круг (когда $\varphi \ge 2\pi$ независимо от t_f), либо круговой сектор (если $\varphi < 2\pi$). Таким образом, в данном случае φ -сечения являются выпуклыми.

*** Пусть $-1 \le u_1 < 0$, $u_2 = 1$ (случаи а) и б)). Здесь граница φ -сечений образуется при помощи шести типов управлений, указанных в теореме 1. Получаемые *Ф*-сечения могут быть невыпуклыми и даже неодносвязными [6].

Заключение

Выполнение ПМП является необходимым условием для управлений, ведущих на границу множества достижимости. Вообще говоря, для машины Дубинса это условие не является достаточным. Установлено, что в каждом из случаев а) и б) существует программное кусочно-постоянное управление, для которого ПМП выполнен, но соответствующее движение в момент t_f находится внутри множества $G(t_f)$, т.е. внутри некоторого его φ -сечения. Для случаев в) и г) доказано, что ПМП является достаточным условием перевода на границу. При этом имеет место выпуклость φ -сечений. Для случая г) φ -сечения являются строго выпуклыми. В этом случае кусочно-постоянное программное управление, удовлетворяющее ПМП, определяет единственное движение, ведущее в соответствующую точку на границе множества $G(t_f)$. В целом, использование ПМП позволило установить структуру Ф-сечений множества достижимости и тем самым эффективно описать его границу.

Литература

- 1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1969. 384 с.
- Ли Э.Б., Маркус Л. Основы теории оптимального управления. М.: Наука, 1972. 576 с. 2.
- Dubins L.E. On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal 3. positions and tangents // American Journal of Mathematics. 1957. Vol. 79, No. 3, pp. 497-516.
- 4. Марков А.А. Несколько примеров решения особого рода задач о наибольших и наименьших величинах // Сообщ. Харьков. матем. общ. 1889. 2-я сер., том 1, выпуск 2. С. 250-276.
- 5. Cockayne, E.J., Hall, G.W.C., Plane motion of a particle subject to curvature constraints, SIAM Journal on Control and Optimization, Vol. 13, No. 1, 1975, pp. 197-220.
- Пацко В.С., Пятко С.Г., Федотов А.А. Трехмерное множество достижимости нелинейной управляемой системы // 6. Известия РАН. ТиСУ. 2003. № 3. С. 8–16.
- 7. Пацко В.С., Федотов А.А. Множество достижимости в момент для машины Дубинса в случае одностороннего поворота // Труды института математики и механики, 2018, № 1, Том 24. С. 143–155.
- 8. Takei R., Tsai R. Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation. Journal of Scientific Computing. 2013. Vol. 54, pp. 622-644.
- 9. Patsko V.S., Fedotov A.A. Attainability set at instant for oneside turning Dubins car. Proceedings of 17th IFAC Workshop on Control Applications of Optimization, Yekaterinburg, Russia. 2018, pp. 201-206.