
MINIMUM-TIME PROBLEM FOR LINEAR SECOND-ORDER CONFLICT-CONTROLLEDSYSTEMSV.S.Patsko, V.L.TurovaInstitute of Mathematics and Mechanics, Ekaterinburg, RussiaAbstract. Time-optimal problem for linear di�erential games in the plane is considered. An algorithmfor the construction of level sets of the value function is proposed. Numerical examples are presented.Keywords: Di�erential games; time-optimal control; value function.INTRODUCTIONLinear stationary time-optimal control problems inthe plane are canonical problems in the theory ofoptimal control (see, for example, Tsien (1) and Pon-tryagin et al (2)). Many textbooks contain picturesrelated to the construction of switch lines which de-termine the optimal feedback control in such prob-lems. Also, the level sets W (�;M ) of the optimalresult function (value function) can be constructedvery easily in many cases. The set W (�;M ) is theset of all initial points for each of which the optimaltime needed to bring the system to the terminal setM does not exceed time �: A totality of such setsgives some geometrical image of the value function.The construction of the level sets can be consideredas the basis for �nding optimal feedback controls.The theory of di�erential games (Isaacs (3),Krasovskii and Subbotin (4), Krasovskii and Sub-botin (5)) is a natural extension of optimal con-trol theory. In this paper, we consider a conict-controlled system with linear dynamics and geomet-rical bounds on controls_x = Ax+ u+ v; (1)x 2 R2; u 2 P; v 2 Q:Here P and Q are convex closed polygons in theplane. The terminal set M (a convex polygon inthe plane) is given. The �rst player who governsthe control parameter u seeks to minimize the timeof attaining M from some initial point the aimof the second player governing the control vector vis opposite. It is known (see (4),(5)) that optimalguaranteeing results of the players coincide in feed-back (positional) controls for such problem.We are interested in �nding the sets W (�;M ); � > 0:Each of them is the set of all initial states x0 suchthat the �rst player guarantees the transition of thestate vector to M by the time �: The set W (�;M ) isthe level set (the Lebesque set) of the value functionof the minimum-time game problem.In terms of the works (4), (5), the set W (�;M ) isalso called t-section of the maximal u-stable bridgecorresponding to t = �:The paper is devoted to the numerical constructionof W (�;M ):

If there exists a polygonD such that P = �Q + D;the game (1) can be reduced (see (4), (5)) to thecontrol problem_x = Ax+ w; w 2 D:The most interesting cases are that ones wheresuch reduction can not be done. In these casesthe sets W (�;M ) can only be found numericallyeven for very simple examples (for instance, _x1 =x2 + v; _x2 = u; j u j� 1; j v j� 1).To �nd the sets W (�;M ); we use backward proce-dures. The application of backward procedures isthe typical way for solving control and di�erentialgame problems. Essential role in the theory of dif-ferential games belongs to the backward proceduresconsidered in the papers by L.S.Pontryagin (6) andB.N.Pshenichnii (7).The most developed results related to the algorith-mic implementations of backward constructions todi�erential games were obtained for linear di�eren-tial games with �xed terminal time and convex tar-get set (Subbotin and Patsko (8), Zarkh and Patsko(9), Taras'yev et al (10), Botkin and Ryazantseva(11), Zarkh and Ivanov (12)). In this case, the ap-plication of the backward procedure gives t-sectionsof the maximal u-stable bridge. The algorithms usethe property: the convexity of the target set impliesthe convexity of the t-sections of the maximal stablebridge. This makes the problem easier and enablesto apply numerical methods to some important prac-tical problems (see, for example, Patsko et al (13),Sokolov and Turova (14)).The above mentioned feature is not inherent to dif-ferential games with non�xed time of termination:as a rule, t-sections of maximal stable bridges arenot convex. Numerical methods for solving prob-lems with non�xed time of termination and noncon-vex problems with �xed time are studied in papersby V.N.Ushakov and his collaborators (see Ushakov(15), Ivanov et al (16)). Recently, numerical meth-ods for constructing value functions and their levelsets based on the notion of viscosity solutions ofHamilton-Jacobi (Bellmann-Isaacs) equations weredeveloped (Subbotin (17), Bardi and Falcone (18)).The principal notion of our algorithm is the notionof a \front". Let � be the time step of constructions
x0 ;



and let W (i�;M ) be the level set corresponding tothe time i�: The front Fi is the set of all pointson the boundary of the set W (i�;M ) such that theminimum guaranteeing time of the attainment ofthe previous set W ((i� 1)�;M )) is exactly equal to�: When operating with fronts, we use the ideas ofthe algorithms for constructing t-sections of maximalstable bridges proposed in (8) for linear games with�xed time of termination.STATEMENT OF THE PROBLEMWe now de�ne the set W (�;M ) more precisely (see(4), (5)). Let U be the set of all positional strate-gies U of the �rst player. Namely, this is the set ofall functions de�ned on [0; �] � R2 and taking thevalues in P: Let � be an arbitrary partition of thesegment [0; �] formed by the points 0 = t1 < t2 <::: < tn = �; let d(�) be its diameter, and let v(�) bea measurable function of time with values in Q: Lety(� ;�; x0; U; v(�)) denote the solution of system (1)emanating from the point x0 with the control v(�) ofthe second player and with the control u of the �rstplayer which is constant on each interval [ti; ti+1) ofthe partition � and is chosen as u = U (ti; x(ti)): Wedenote by W (�;M ) the set of all points x0 2 R2 foreach of which there exist a strategy U 2 U and amapping "! �(") from R+ to R+ such that for any" > 0, any � with the diameter d(�) � �("); and anyfunction v(�) with values in Q there exists a timet 2 [0; �] at which y(t;�; x0; U; v(�)) belongs to the"-neighborhood of the set M:Such a de�nition is equivalent to other well-knownde�nitions (see, for example, (5), (17)) of the solv-ability set W (�;M ) of the time-optimal game prob-lem. We give this de�nition because it shows theproperties of the optimal guaranteeing strategy ofthe �rst player in terms of the bundle of motionsgenerated by di�erent controls of the second player.THE IDEA OF THE ALGORITHMThe set W (�;M ) is formed via step-by-step back-ward procedure giving a sequence of embedded setsW (�;M ) � W (2�;M ) � W (3�;M ) (2)� ::: � W (i�;M ) � ::: � W (�;M ):Each set W (i�;M ) consists of all initial points suchthat the �rst player brings system (1) into the setW ((i � 1)�;M ) within the time duration �: Weput W (0;M ) = M:Before doing the �rst step of the backward proce-dure, we �nd a usable part �0 of the boundary ofM:In accordance with R.Isaacs (3), the usable part is acurve or several curves on the boundary ofM attain-able for trajectories of system (1) from points lyingin the exterior ofM close to the boundary ofM: The

usable part is de�ned by the following formula�0 = clfx2@M : minu2P maxv2Q h`; Ax+u+vi < 0; 8`2Kxg:Here Kx is the cone of outward normals to the set Mat x: SinceM is convex, each curve of the usable partis locally convex in the following sense: the normalto the curve at a point x keeps its rotation in onlydirection when x moves along the curve.Suppose the usable part of M consists of one curveonly. Let us introduce the term \front". We putF0 = �0: The front Fi is the set of all points onthe boundary of the set W (i�;M ) for which theminimum guaranteeing time of the attainment ofW ((i�1)�;M ) is equal to �: For other points of theboundary of W (i�;M ) the optimal time is less than�: The line @W (i�;M )nFi possesses the propertiesof barriers de�ned in (3). The front Fi is designedusing the previous front Fi�1:M �0 Fi�1 FiW (i�;M )
Fig. 1. Construction of the sets W (i�;M ):\Convex" case.Due to the linearity of system (1), the frontsF1; F2; :::; Fi; ::: inherit (Fig. 1) the property of thelocal convexity of �0 at the initial stage of construc-tions, and this property is kept until the current frontFi does not meet the set W ((i � 1)�;M ): Straightlines connecting endpoints of Fi with the correspond-ing endpoints of Fi�1 give the extension of the barrierlines. The boundary of the set W (i�;M ) is formedby the front Fi; the above mentioned extensions ofthe barrier lines, and the line @W ((i�1)�;M )nFi�1:The property of the local convexity of fronts enableus to employ, with small modi�cations, proceduresfor the construction of t-sections of maximal stablebridges which were developed in (8) for linear dif-ferential games with a convex target set and �xedtime of termination. An example of computing thesequence (2) for oscillating system in the case wherethe fronts do not meet the already constructed set isshown in Fig. 2. Here, the lines ac; bd are barriers.If the next front Fi meets the already constructed setW ((i � 1)�;M ); we say that the front collides withthe set W ((i� 1)�;M ): The situation of \collision"means that the current front meets the barrier part ofthe boundary ofW ((i�1)�;M ) or the part @M n�0



of the boundary of M: To construct the next frontFi+1; we should take into account that Fi and theboundary ofW ((i�1)�;M ) have the nonconvex con-junction (Fig. 3). Due to the properties of the plane,the complement of W (i�;M ) is locally convex nearthe conjunction point. So, assuming that the secondplayer seeks to bring the system to the complementand the �rst player has the opposite objective, wecan use the ideas of the \convex" algorithms. Aftercombining the curve which is the result of construc-tions from the convex part of the front with that onefrom the nonconvex conjunction, we obtain a newfront Fi+1 that may be not locally convex.
| | |
1 2 3

-1M a cb dQ P1�1_x1 = �0:35x1 + x2 + u1 + v1_x2 = �x1 + u2 + v2
x2 x1

Fig. 2. Level sets of value function for oscillatingsystem. Initial stage of constructions.The continuation of computations depicted in Fig. 2is given in Fig. 4. The �rst nonvexity appeared intheconstruction process due to the collision is shownwithin the enlarged square. The computations arecarried out up to the reverse time � = 7:2 whenthe current front meets the barrier line markedas bd in Fig. 2.The barrier lines of the set W (i�;M ) are stored inthe corresponding computer program as ordered col-lections of points. Updating these collections is easilydone if not too many collisions happen. The pro-gram is not applicable to very complicated cases ofcollisions whose processing require the exhaustion ofsigni�cantly large number of variants.If the usable part of M consists of several fragmentson the boundary ofM; then our constructions can becarried out independently for each fragment until in-tersections of the sets sprouting from these segmentsdo not occur.So, the algorithm consists of the following opera-tions:1) Finding the usable part on the boundary of M .

2) Constructing the next front using the previousone.3) Testing the intersections of the current front withthe barrier part of the already constructed set andthe boundary of M: If the intersection is detected,further computations are being carried out withtaking into account the arisingnonconvex conjunctionand possible splitting of the front into several parts.
MFi+1 Fi Fi+1FiW ((i + 1)�;M )

Fig. 3. Construction of the sets W (i�;M ):\Nonconvex case".
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Fig. 4. Level sets of value function for oscillatingsystem. Solution at � = 7:2.EXAMPLES1. The canonical example of the minimum-timeproblem in the theory of optimal control has the fol-lowing form: _x1 = x2_x2 = u; j u j� 1: (3)We add the disturbance v to the �rst equation and



consider the following di�erential game:_x1 = x2 + v_x2 = u; j u j� 1; j v j� 1: (4)The �rst player minimizes the time of the attain-ment of M; the aim of the second player is opposite.LetM be the regular octagon inscribed into the circleof the radius 0:1 and with the center at the point(0; 2): Here and below, we put � = 0:05: The setsW (�;M ) (W (� ) briey) for the time instants � =k � 4�; k = 1; 55; are shown in Fig. 5.
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Fig. 5. Di�erential game (4). Solution at � = 11.
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Fig. 6. Di�erential game (4). Solution at � = 20.We denote by a; b the endpoints of the usable part�0 of M: The curves ac and bd formed by the end-points of fronts are barriers. The value function isdiscontinuous on these curves and also on the line@M n �0: The line cf formed by corners of fronts isthe equivocal (see Ref. (3)) line. The value func-tion is not di�erentiable on cf: The �rst situation ofcollision happens at � = 6:6; the set W (6:6) is con-toured. The fronts can be constructed analyticallyup to � = 6:6: After this time, it can not be done.The sets W (� ) for � = k � 20�; k = 1; 20; are givenin Fig. 6. For � > 20; the front's endpoint r which

moves along the upper barrier overtakes another end-point d: The upper barrier ceases to grow when rcoincides with d; and this barrier (as well as the lowerbarrier ac) is extended by an equivocal line. Even ifthe level sets in the problem (4) look similar to thesets in the problem (3), they can not be calculated\by hand" because of the presence of equivocal lines.2. Consider the oscillating system_x1 = 0:35x1 + x2 + v_x2 = �0:8x1 + u; (5)�2 � u � 1:5; �6:1 � v � �4:The terminal set M is a regular octagon with thecenter at the origin. The level sets W (� ) for � =k ��; k = 1; 189; are given in Fig. 7. Up to � = 5:7;the front moves between the left and the right bar-rier lines emanating from the set M: The left barrierterminates at � = 5:7: For � > 5:7; the front be-gins to go around this barrier so that one of its end-points slides along the outward side of the barrier.At � = 8:15; the front collides with the initial part ofthe left barrier from outside. For � > 8:15; the leftand the right endpoints of the front move towardseach other along the left barrier. The constructionsare �nished at � = 9:45:In this example, the set �lled up with the fronts bythe time � = 9:45 is the set where optimal guaran-teeing time is less than in�nity. The �rst player can-not guarantee the transfer to M within any �nitetime from the initial points lying outside this set.The singular lines for the game (5) are depicted inFig. 8. The barrier line acdef terminates at the pointf: After that it is continued by the equivocal linefg which splits into the switch line gc of the �rstplayer and the switch line gr of the second playerat the point g: The curve bhkprs is the barrier, thecurve dk is the equivocal line, and the curve ec is theswitch line of the second player. The singular lineslisted above divide the set where the problem has asolution into subsets so that the optimal controls ofthe players take constant values in the interior partsof the subsets. These constant values are equal to theminimal and maximal values of controls: u� = �2;u� = 1:5; v� = �6:1; v� = �4: On the boundariesand near the boundaries of the subsets, the optimalcontrols are de�ned in a special manner.For the example in Fig. 9, the bounds on controls arethe same as in the previous one, but the dynamics isof the form _x1 = 0:6x1+ x2 + v_x2 = �x1 + u:The sets W (� ); � = k � 2�; k = 1; 130; are shown.The peculiarity here is that the barrier lines are prac-tically tangent at � = 2:4: So, the very narrow chan-nel connects the set where the optimal time is lessthan � = 2:4 with the set where the optimal timeis more than � = 2:4: If we do small changes of the
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parameters of the problem (for example, if we reducethe set M ), then the channel vanishes. As a result,the set where the optimal time is �nite changes in adiscontinuous manner.Figures 10{12 correspond to the system with the dy-namics _x1 = x2 + u1 + v1_x2 = �x1 + u2 + v2;u = (u1; u2)0 2 P; v = (v1; v2)0 2 Q:The set P is the vertical segment with the endpoints(0;�2:5); (0; 2:5); and Q is the segment with theapexes (�5; 1:5); (�1;�1:5): In Fig. 10, the calcula-tions are carried out up to � = 6:6: At � = 6:6; thefront collides with the terminal set M and is dividedinto two parts. Further constructions are made in-dependently from these two parts. In Fig. 11, theconstructions from the upper part are carried outuntil � = 8: The constructions are continued upto � = 11:6 in Fig. 12, and we are �lling up thegap G: The front which corresponds to the maximal� = 11:6 is about the middle of G: In Fig. 12, onlytwo fronts constructed from the lower part are shown.The accumulation of the fronts generates the dark re-gions in Figs. 10{12; that means very fast changingof the value function (though it is continuous).CONCLUSIONThe main di�culty in solving the minimax time-optimal problems is the necessity of doing (one wayor another) the operations which are equivalent tothe operations of summation and intersection of non-convex sets. In the paper presented, the arising di�-culties are overcome due to speci�c properties of theplane and dynamics' linearity. The level sets of thevalue function are constructed using backward proce-dures. On each step of the recurrent procedure, onlysome part of the boundary of the current level set isemployed. The algorithm is fast enough. The com-putation time for the examples presented is small.ACKNOWLEDGEMENTThis research was made possible in part by Grant N0NME000 from the International Science Foundation.REFERENCES1. Tsien, H.S., 1954,\Engineering Cybernetics", Mc Graw-Hill BookCompany, New York-Toronto-London.2. Pontryagin, L.S., Boltjanskii, V.G., Gamkre-lidze, R.V., and Mischenko, E.F., 1962,\The Mathematical Theory of Optimal Processes",Interscience, New York.3. Isaacs, R., 1965,\Di�erential Games", Wiley, New York.4. Krasovskii, N.N., and Subbotin, A.I., 1974,\Positional di�erential games", Nauka, Moscow (inRussian).
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