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Abstract. Time-optimal problem for linear differential games in the plane is considered. An algorithm
for the construction of level sets of the value function is proposed. Numerical examples are presented.
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INTRODUCTION

Linear stationary time-optimal control problems in
the plane are canonical problems in the theory of
optimal control (see, for example, Tsien (1) and Pon-
tryagin et al (2)). Many textbooks contain pictures
related to the construction of switch lines which de-
termine the optimal feedback control in such prob-
lems. Also, the level sets W(#, M) of the optimal
result function (value function) can be constructed
very easily in many cases. The set W (6, M) is the
set of all initial points for each of which the optimal
time needed to bring the system to the terminal set
M does not exceed time 6. A totality of such sets
gives some geometrical image of the value function.
The construction of the level sets can be considered
as the basis for finding optimal feedback controls.

The theory of differential games (Isaacs (3),
Krasovskii and Subbotin (4), Krasovskii and Sub-
botin (5)) is a natural extension of optimal con-
trol theory. In this paper, we consider a conflict-
controlled system with linear dynamics and geomet-
rical bounds on controls

t=Ax+u+tv, (1)

r€R ueP veQ.

Here P and @ are convex closed polygons in the
plane. The terminal set M (a convex polygon in
the plane) is given. The first player who governs
the control parameter u seeks to minimize the time
of attaining M from some initial point xg, the aim
of the second player governing the control vector v
is opposite. It is known (see (4),(5)) that optimal
guaranteeing results of the players coincide in feed-
back (positional) controls for such problem.

We are interested in finding the sets W (6, M), 6 > 0.
Each of them is the set of all initial states xg such
that the first player guarantees the transition of the
state vector to M by the time 6. The set W (6, M) is
the level set (the Lebesque set) of the value function
of the minimum-time game problem.

In terms of the works (4), (5), the set W (6, M) is
also called ¢-section of the maximal u-stable bridge
corresponding to t = 6.

The paper i1s devoted to the numerical construction

of W(8, M).

If there exists a polygon D such that P = —@Q + D,
the game (1) can be reduced (see (4), (5)) to the

control problem
r=Ar+w, weD.

The most interesting cases are that ones where
such reduction can not be done. In these cases
the sets W (6, M) can only be found numerically
even for very simple examples (for instance, #; =
Tat v, da= u, |ul<1l, |v|<]).

To find the sets W(0, M), we use backward proce-
dures. The application of backward procedures is
the typical way for solving control and differential
game problems. Essential role in the theory of dif-
ferential games belongs to the backward procedures
considered in the papers by L.S.Pontryagin (6) and
B.N.Pshenichnii (7).

The most developed results related to the algorith-
mic implementations of backward constructions to
differential games were obtained for linear differen-
tial games with fixed terminal time and convex tar-
get set (Subbotin and Patsko (8), Zarkh and Patsko
(9), Taras’yev et al (10), Botkin and Ryazantseva
(11), Zarkh and Ivanov (12)). In this case, the ap-
plication of the backward procedure gives t-sections
of the maximal u-stable bridge. The algorithms use
the property: the convexity of the target set implies
the convexity of the t-sections of the maximal stable
bridge. This makes the problem easier and enables
to apply numerical methods to some important prac-
tical problems (see, for example, Patsko et al (13),
Sokolov and Turova (14)).

The above mentioned feature is not inherent to dif-
ferential games with nonfixed time of termination:
as a rule, t-sections of maximal stable bridges are
not convex. Numerical methods for solving prob-
lems with nonfixed time of termination and noncon-
vex problems with fixed time are studied in papers
by V.N.Ushakov and his collaborators (see Ushakov
(15), Tvanov et al (16)). Recently, numerical meth-
ods for constructing value functions and their level
sets based on the notion of viscosity solutions of
Hamilton-Jacobi (Bellmann-Isaacs) equations were

developed (Subbotin (17), Bardi and Falcone (18)).

The principal notion of our algorithm is the notion
of a “front”. Let A be the time step of constructions



and let W(iA, M) be the level set corresponding to
the time ¢A. The front F; is the set of all points
on the boundary of the set W(iA, M) such that the
minimum guaranteeing time of the attainment of
the previous set W((i — 1)A, M)) is exactly equal to
A. When operating with fronts, we use the ideas of
the algorithms for constructing ¢-sections of maximal
stable bridges proposed in (8) for linear games with
fixed time of termination.

STATEMENT OF THE PROBLEM

We now define the set W(#, M) more precisely (see
(4), (5)). Let U be the set of all positional strate-
gies U of the first player. Namely, this is the set of
all functions defined on [0,60] x R? and taking the
values in P. Let ¢ be an arbitrary partition of the
segment [0, 0] formed by the points 0 = 1] < {3 <
o <ty =0, let d(o) be its diameter, and let v(-) be
a measurable function of time with values in @. Let
y(-;0,20,U,v(+)) denote the solution of system (1)
emanating from the point 2y with the control v(+) of
the second player and with the control u of the first
player which is constant on each interval [t;,¢;41) of
the partition ¢ and is chosen as v = U(t;, z(¢;)). We
denote by W (@, M) the set of all points xq € R? for
each of which there exist a strategy U € U and a
mapping £ — 6(¢) from Ry to Ry such that for any
£ > 0, any ¢ with the diameter d(o) < é(¢), and any
function v(-) with values in @ there exists a time
t € [0,6] at which y(t;0,20,U,v(-)) belongs to the
e-neighborhood of the set M.

Such a definition is equivalent to other well-known
definitions (see, for example, (5), (17)) of the solv-
ability set W (8, M) of the time-optimal game prob-
lem. We give this definition because it shows the
properties of the optimal guaranteeing strategy of
the first player in terms of the bundle of motions
generated by different controls of the second player.

THE IDEA OF THE ALGORITHM

The set W(0, M) is formed via step-by-step back-
ward procedure giving a sequence of embedded sets

W(A, M) C W(2A, M)C WA, M) (2)

C..CWEAM)C..CW(,M).

Fach set W(iA, M) consists of all initial points such
that the first player brings system (1) into the set
W((i — 1)A, M) within the time duration A. We
put W(0,M)= M.

Before doing the first step of the backward proce-
dure, we find a usable part I'g of the boundary of M.
In accordance with R.Isaacs (3), the usable part is a
curve or several curves on the boundary of M attain-
able for trajectories of system (1) from points lying
in the exterior of M close to the boundary of M. The

usable part i1s defined by the following formula

Ty=c{zedM: mi})lmaé((ﬁ,Ax—l—u—i—v) <0,Vle Ky}.
ue vVE

Here K, is the cone of outward normals to the set M
at z. Since M is convex, each curve of the usable part
is locally convex in the following sense: the normal
to the curve at a point x keeps its rotation in only
direction when z moves along the curve.

Suppose the usable part of M consists of one curve
only. Let us introduce the term “front”. We put
Fy = I'y. The front F; 1s the set of all points on
the boundary of the set W(iA, M) for which the
minimum guaranteeing time of the attainment of
W((i—1)A, M) is equal to A. For other points of the
boundary of W(iA, M) the optimal time is less than
A. The line OW (iA, M)\ F; possesses the properties
of barriers defined in (3). The front F; is designed
using the previous front F;_;.

WA, M)
@ﬂ’ F;

Fig. 1. Construction of the sets W(iA, M).
“Convex” case.

Due to the linearity of system (1), the fronts
Py, Fa, ..., Fi,...inherit (Fig. 1) the property of the
local convexity of [y at the initial stage of construc-
tions, and this property is kept until the current front
F; does not meet the set W((i — 1)A, M). Straight
lines connecting endpoints of F; with the correspond-
ing endpoints of F;_; give the extension of the barrier
lines. The boundary of the set W(iA, M) is formed
by the front F;, the above mentioned extensions of
the barrier lines, and the line SW ((i—1)A, M)\ F;_1.
The property of the local convexity of fronts enable
us to employ, with small modifications, procedures
for the construction of ¢-sections of maximal stable
bridges which were developed in (8) for linear dif-
ferential games with a convex target set and fixed
time of termination. An example of computing the
sequence (2) for oscillating system in the case where
the fronts do not meet the already constructed set is
shown in Fig. 2. Here, the lines ac, bd are barriers.

If the next front F; meets the already constructed set
W((i — 1)A, M), we say that the front collides with
the set W((i — 1)A, M). The situation of “collision”
means that the current front meets the barrier part of

the boundary of W((i—1)A, M) or the part 9M \Tg



of the boundary of M. To construct the next front
Fit1, we should take into account that F; and the
boundary of W((i—1)A, M) have the nonconvex con-
junction (Fig. 3). Due to the properties of the plane,
the complement of W(iA, M) is locally convex near
the conjunction point. So, assuming that the second
player seeks to bring the system to the complement
and the first player has the opposite objective, we
can use the ideas of the “convex” algorithms. After
combining the curve which is the result of construc-
tions from the convex part of the front with that one
from the nonconvex conjunction, we obtain a new
front F;y1 that may be not locally convex.

T2

1 = —0.3501 + 22+ u1 + v1

Tz = —T1 + U2 + v2

Fig. 2. Level sets of value function for oscillating
system. Initial stage of constructions.

The continuation of computations depicted in Fig. 2
is given in Fig. 4. The first nonvexity appeared in the
construction process due to the collision is shown
within the enlarged square. The computations are
carried out up to the reverse time 7 = 7.2 when
the current front meets the barrier line marked
as bd in Fig. 2.

The barrier lines of the set W(iA, M) are stored in
the corresponding computer program as ordered col-
lections of points. Updating these collections is easily
done if not too many collisions happen. The pro-
gram is not applicable to very complicated cases of
collisions whose processing require the exhaustion of
significantly large number of variants.

If the usable part of M consists of several fragments
on the boundary of M, then our constructions can be
carried out independently for each fragment until in-
tersections of the sets sprouting from these segments
do not occur.

So, the algorithm consists of the following opera-
tions:
1) Finding the usable part on the boundary of M.

2) Constructing the next front using the previous
one.

3) Testing the intersections of the current front with
the barrier part of the already constructed set and
the boundary of M. If the intersection is detected,
further computations are being carried out with
taking into account the arising nonconvex conjunction
and possible splitting of the front into several parts.

W((i + A, M)

Fig. 3. Construction of the sets W(iA, M).
“Nonconvex case”.

Fig. 4. Level sets of value function for oscillating
system. Solution at 7 = 7.2.

EXAMPLES

1. The canonical example of the minimum-time
problem in the theory of optimal control has the fol-
lowing form:

i‘l = X2

We add the disturbance v to the first equation and



consider the following differential game:

l.‘lI o+ v
132 = u, |U |§ 1a |U |§ L. (4)

The first player minimizes the time of the attain-
ment of M, the aim of the second player is opposite.

Let M be the regular octagon inscribed into the circle
of the radius 0.1 and with the center at the point
(0,2). Here and below, we put A = 0.05. The sets
W(r, M) (W(r) briefly) for the time instants 7 =
k-4A, k = 1,55, are shown in Fig. 5.

Qo

)

=

Fig. 5. Differential game (4). Solution at 7 = 11.
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Fig. 6. Differential game (4). Solution at r = 20.

We denote by a, b the endpoints of the usable part
I'g of M. The curves ac and bd formed by the end-
points of fronts are barriers. The value function 1is
discontinuous on these curves and also on the line
OM \ Ty. The line ¢f formed by corners of fronts is
the equivocal (see Ref. (3)) line. The value func-
tion is not differentiable on ¢f. The first situation of
collision happens at 7 = 6.6, the set W(6.6) is con-
toured. The fronts can be constructed analytically
up to 7 = 6.6. After this time, it can not be done.

The sets W(r) for 7 = k- 20A, k = 1,20, are given
in Fig. 6. For 7 > 20, the front’s endpoint r which

moves along the upper barrier overtakes another end-
point d. The upper barrier ceases to grow when r
coincides with d, and this barrier (as well as the lower
barrier ac) is extended by an equivocal line. Even if
the level sets in the problem (4) look similar to the
sets in the problem (3), they can not be calculated
“by hand” because of the presence of equivocal lines.

2. Consider the oscillating system

21 = 0.35z1+ 25+ (5)
i‘z = —0.81‘1 + u,
—2<u<lh —-61<v<—4.

The terminal set M is a regular octagon with the
center at the origin. The level sets W(r) for r =
k-A, k=1, 189, are given in Fig. 7. Up to 7 = 5.7,
the front moves between the left and the right bar-
rier lines emanating from the set M. The left barrier
terminates at 7 = 5.7. For 7 > 5.7, the front be-
gins to go around this barrier so that one of its end-
points slides along the outward side of the barrier.
At 7 = 8.15, the front collides with the initial part of
the left barrier from outside. For 7 > 8.15, the left
and the right endpoints of the front move towards
each other along the left barrier. The constructions
are finished at 7 = 9.45.

In this example, the set filled up with the fronts by
the time 7 = 9.45 is the set where optimal guaran-
teeing time 1s less than infinity. The first player can-
not guarantee the transfer to M within any finite
time from the initial points lying outside this set.

The singular lines for the game (5) are depicted in

Fig. 8. The barrier line acde f terminates at the point
f. After that it is continued by the equivocal line
fg which splits into the switch line ge of the first
player and the switch line gr of the second player
at the point g. The curve bhkprs is the barrier, the
curve dk 1s the equivocal line, and the curve ec is the
switch line of the second player. The singular lines
listed above divide the set where the problem has a
solution into subsets so that the optimal controls of
the players take constant values in the interior parts
of the subsets. These constant values are equal to the
minimal and maximal values of controls: u, = —2,
u* =15, v, = —6.1, v* = —4. On the boundaries
and near the boundaries of the subsets, the optimal
controls are defined in a special manner.

For the example in Fig. 9, the bounds on controls are
the same as in the previous one, but the dynamics is
of the form

1.‘1: 0.69:1—1—9:2—1—1}
i‘z: —r1 +u.

The sets W(r), 7 = k- 2A, k = 1,130, are shown.
The peculiarity here is that the barrier lines are prac-
tically tangent at 7 = 2.4. So, the very narrow chan-
nel connects the set where the optimal time is less
than 7 = 2.4 with the set where the optimal time
is more than 7 = 2.4. If we do small changes of the






parameters of the problem (for example, if we reduce
the set M), then the channel vanishes. As a result,
the set where the optimal time is finite changes in a
discontinuous manner.

Figures 10-12 correspond to the system with the dy-
namics .
r1=  Tatur+u
Ty = —x1+uz+ s,
u=(u,uz) € P, v=(v,v2) €Q.

The set P is the vertical segment with the endpoints
(0,—2.5), (0,2.5), and @ is the segment with the
apexes (=5, 1.5), (=1, —1.5). In Fig. 10, the calcula-
tions are carried out up to 7 = 6.6. At 7 = 6.6, the
front collides with the terminal set M and 1s divided
into two parts. Further constructions are made in-
dependently from these two parts. In Fig. 11, the
constructions from the upper part are carried out
until 7 = 8. The constructions are continued up
to 7 = 11.6 in Fig. 12, and we are filling up the
gap (. The front which corresponds to the maximal
7 = 11.6 is about the middle of GG. In Fig. 12, only
two fronts constructed from the lower part are shown.
The accumulation of the fronts generates the dark re-
gions in Figs. 10-12; that means very fast changing
of the value function (though it is continuous).

CONCLUSION

The main difficulty in solving the minimax time-
optimal problems is the necessity of doing (one way
or another) the operations which are equivalent to
the operations of summation and intersection of non-
convex sets. In the paper presented, the arising diffi-
culties are overcome due to specific properties of the
plane and dynamics’ linearity. The level sets of the
value function are constructed using backward proce-
dures. On each step of the recurrent procedure, only
some part of the boundary of the current level set 1s
employed. The algorithm is fast enough. The com-
putation time for the examples presented 1s small.
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