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A problem which has to be solved in air traffic control of civil aircrafts is considered. For a system of several observing 

radars, it is necessary to identify the systematic azimuth errors in measurements of each radar. Such an error leads to a shift 

in the observed track of the aircraft. A mathematical formulation of the problem is suggested as a problem of estimation of a 

random vector on the basis of a nonlinear equation of observation. An analytical solution is presented as a law of posterior 

distribution. The analytical solution is difficult to implement in practice because of its complexity. As a result, a simplified 

solution is introduced that uses computational formulas on the basis of the Kalman filtering. The algorithm of simplified 

solution has been tested on model and real radar data. 

 

1. Introduction 
 

The case is considered when several radars observe an aircraft and, at discrete instants, measure the slant 

range to the aircraft and its azimuth. It is assumed that the radar system is such that the Earth surface can be pre-

sented by a plane (denote it as Π) in a zone of its operation. The results of measuring are marks that are drawn in 

the plane Π by the measured range and azimuth from the point of the radar.  

The range and azimuth measurements have errors. These errors are classified as systematic and random. Dis-

tribution laws of random errors can be assumed as normal with zero means. Systematic errors are stipulated by 

corruptions of other nature. The error in azimuth can be of significant value. If the radar system has several 

(more than two) radars, an opportunity of determination of their systematic errors appears, since directions of 

shifts in measurements are different for different radars [1]. 

 

2. Radar observation model 
 

Denote by ix  the vector of the true aircraft position in the plane Π at the instant it . Assume that at each in-

stant it only one radar implements its measuring; the radar number is given by the function )(ik and the radar is 

placed at the point )(ikl  of the plane Π. Introduce symbols (Fig. 1) 1ie , 2ie , which are the unit vectors showing 

the direction of acting the errors in the range and azimuth, correspondingly, ir  is the true range between the ra-

dar and aircraft, rσ  is the mean-square deviation of the random error in range, ϕσ  is the mean-square deviation 

of the random error in azimuth. Take these deviations to be equal for different radars; but the systematic errors 

denoted by kλ  are assumed to be different. 

 
Fig. 1: Model of observation; the radar is placed at the point (0, 0) 

                                                 
1 Researcher 
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The equation of observation has the form  

iikiiii
r
iriii rerwewexz )(221 λ⋅+σ⋅+σ⋅+= ϕ

ϕ . (1) 

Here, 
ϕ
i

r
i ww ,  are scalar, independent, normally distributed values with zero means and unit variance.  

Let us assume that the observed aircraft has straight-line and steady speed motion. In this case, the aircraft 

position in the plane Π at the instant it  is a linear function of the initial position and velocity. Denote by 

m
Ry ∈  the column vector including both these parameters and all unknown systematic errors kλ . Relation 

between ix  and y  has the form 

yAx ii = , (2) 

where iA  is a matrix depending only on the time instants it . Since parameters 1ie , 2ie , ir  depend on ix , equa-

tion (1) can be presented as follows:  

iiiiiiiiiii wyADyyACwxDyxCz )()()()( +=+= . (3) 

Here, )(⋅iC and )(⋅iD  are matrix functions of the variable ix ; iw  contains the random values 
ϕ
i

r
i ww , . 

 

 

3. Nonlinear filtration 
 

Using the nonlinear observation equation (3), the problem is reduced to estimation of unknown random 

value Y , which values are all possible vectors y . The a priori distribution of Y  is assumed to be given, for 

example, as the density distribution function 0ρ . The density ρ′  (without normalization) of the posterior distri-

bution on the basis of measurements { }kzz ,,1 …  is described [2] as follows: 
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The final posterior density distribution is calculated by normalization of expression (4).  

Formula (4) completely characterizes the posterior distribution of the random value Y  obtained on the basis 

of measurements { }kzz ,,1 … . But significant difficulties arise with its application. Consider a simplified version 

of relation (4) based on substitution of ix  by iz : 

)()()( iiiiii zCxCyAC ≈= , )()()( iiii zDxDyAD ≈= . (5) 

The approximate distribution function (without normalization) has the form 
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In (6), functions if
~

 are positive defined quadratic forms of y . If the a priori density 0ρ  has the normal dis-

tribution, the ρ′~  will correspond to the normally distributed random value kY
~

 that is an approximation to Y on 

the results of k  measurements. The value kY
~

 is completely characterized by its mean km  and covariation ma-

trix kP  that can be recurrently calculated by the following formulas (for simplicity, the arguments in )( kk zC  

and )( kk zD are omitted): 
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Formulas (7) correspond to the observation equation (3), in which substitution (5) is performed: 

iiiiii wzDyzCz )()( +=  .  (8) 

Relations (7) coincide with expressions of the Kalman filter [2] that could be written out for (8) in the case 

of absence of dependence on iz  in the right-hand side.  

 

 



 232

4. Program implementation 
 

Algorithm (7) was implemented in a research program and has demonstrated good results in its applications 

to model and real radar data [1]. Fig. 2 shows a sample of three radar tracks corresponding to motion of the same 

aircraft. One track with large systematic error in azimuth outstanding far from other tracks is seen. In Fig. 3, the 

tracks turned by their found systematic errors in azimuth are presented. 

 
 

Fig. 2: Initial tracks from three radars  

 
 

Fig. 3: Three radar tracks after processing  

 

The work was performed under Program “Mathematical Control Theory” of RAS and supported by Project 
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