Д.А. Бедин

Дополнительная программа: **Стохастические дифференциальные уравнения,** фильтрация Калмана, предельные теоремы теории вероятностей.

Экзамен по специальности 01.01.02 «Дифференциальные уравнения».

1.1	Случайные	Определение случайной функции.	Лоэв,
1.1	функции	Определение случаиной функции. Конечномерные распределения случайной функции. σ-алгебры, порождаемые случайной функцией. Предел в точке и непрерывность в различных смыслах.	с. 519-527. Оксендаль, с. 25-27.
		Выборочные пределы и выборочная непрерывность. Теоремы о соответствии различных видов непрерывности. Содержательные примеры случайных функций.	
1.2	Броуновское движение	Определение через закон конечномерных распределений. Свойства, характеризующие броуновское движение: п.н. непрерывность, независимость приращений; теорема Дуба. Свойства дисперсии и ковариации. Броуновское движение как мартингал. Оценка вероятности выхода за определённый уровень.	Оксендаль, с. 27-31. Гихман- Скороход, с. 8-11.
1.3	Интегрирование по Ито	Модель белого шума в дифференциальных уравнениях, приводящая к идее интеграла Ито. Определение F_t -согласованности (неупреждаемости). Пример существенности F_t -согласованности для интегральных сумм. Изометрия Ито для ступенчатых по времени функций. Определение интеграла Ито как предела интегральных сумм.	Оксендаль, с. 38-47. Гихман- Скороход, с. 12-16.
1.4	Свойства интеграла Ито	Простейшие свойства. Свойство математического ожидания. Измеримость интеграла по σ -алгебре F_t . Изометрия Ито. Оценка выхода модуля интеграла за определенный уровень.	Оксендаль, с. 49. Гихман- Скороход, с. 12-16.
1.5	Мартингалы и интеграл Ито	Определение мартингала относительно неубывающего потока обративней выпублительно Дуба для мартингалов. Теорема о п.н. непрерывности траекторий интеграла Ито. Теорема о том, что интеграл Ито — мартингал. Теорема о представлении мартингала (без доказательства).	Оксендаль, с. 49-53.
1.6	Другие виды интегралов от случайных функций	Интеграл Стратоновича и стохастические <i>θ</i> -интегралы. Интеграл от случайной функции по времени. Стохастический интеграл по ортогональной мере. Интеграл в среднеквадратическом.	Оксендаль, с. 55-57. Лоэв, с. 493-496. Гихман- Скороход, с. 249-265. Миллер-Панков, с. 157-161, 212- 217, 305-307.

1.7	Процессы Ито, формула Ито	Определение процесса Ито. Теорема о формуле Ито, схема доказательства. Многомерная формула Ито. Пример многомерной формулы Ито: процесс Бесселя.	Оксендаль, с. 64-72.
1.8.1	Стохастические дифференциальные уравнения	Определение стохастического дифференциального уравнения. Переход от детерминированного дифференциального уравнения к стохастическому.	Пугачёв, с. 259-267. Оксендаль, с. 86-91.
1.8.2		Теорема о существовании и единственности решения стохастического дифференциального уравнения.	Оксендаль, с. 91-97.
1.8.3		Различные варианты ослабления условий теоремы существования и единственности. Понятия сильного и слабого решения, сильной и слабой единственности. Уравнение Танаки.	Оксендаль, с. 97-99.
1.8.4		Примеры решения задач: рост популяции, процесс Орнштейна-Уленбека, «Броуновский мостик», броуновское движение на окружности, решение линейного уравнения с постоянными коэффициентами.	Оксендаль, с. 100-106.
2. Фі	ильтрация Калма	на	
2.1	Постановка задачи непрерывной фильтрации	Уравнение процесса и уравнение измерений. Определение наилучшей оценки. Лемма о проекции.	Оксендаль, с.107-110.
2.2.1	Частный случай линейных стохастических дифференциальных уравнений — фильтрация Калмана	Лемма о нормальном распределении состояния и измерения в случае нормального распределения начального состояния. Лемма о нахождении оптимальной оценки в пространстве линейных комбинаций измерений $L(Z,t)$.	Оксендаль, с. 110-116.
2.2.2	Калмана	Лемма о представлении элемента пространства $L(Z,t)$. Обновляющий процесс и броуновское движение, связанное с ним. Представление пространства $L(Z,t)$ через броуновское движение от обновляющего процесса. Формула ортогонального проектирования состояния на пространство $L(Z,t)$.	Оксендаль, с. 116-122.
2.2.3		Вывод стохастических дифференциальных уравнений на оптимальную оценку и дисперсию отклонения от истинного состояния.	Оксендаль, с. 122-126.
2.3	Примеры решения модельных задач	Наблюдение постоянного процесса на фоне шума. Наблюдение броуновского движения на фоне шума. Наблюдение роста популяции.	Оксендаль, с. 127-132.

		Общее решение одномерного уравнения в случае	
		постоянных коэффициентов.	
2.4.1	Дискретный	Уравнения движения и измерения в дискретном	Барабанов
	фильтр Калмана	случае.	
		Наилучшая линейная оценка.	
2.4.2		Оптимальное прогнозирование на шаг вперёд.	Барабанов
		Корректирование прогноза, шаг коррекции.	
		Уравнения фильтра Калмана для дискретного	
		случая.	
2.4.3		Монотонность решений стационарного уравнения	Барабанов
		Риккати.	
		Устойчивость фильтра Калмана.	
3. П	редельные теорем:		<u> </u>
	<u> </u>		T
3.1	Исторически	Схема Бернулли: теорема Бернулли, теорема	Лоэв, с. 20-31,
	первые предельные	Муавра-Лапласа.	283-286.
	теоремы	Схема Пуассона: теорема Пуассона.	
		Доказательство теорем с помощью	
		характеристических функций.	
3.2	Предельные	Теорема о независимых, одинаково	Лоэв, с. 253-254,
	теоремы для	распределённых случайных величинах.	288-292.
	независимых	Усиленный закон больших чисел Колмогорова.	
	случайных величин	Теорема о независимых, центрированных	
		случайных величинах с условиями на моменты	
		(теоремы Чебышева, Маркова, Ляпунова как	
		частные случаи).	
		Теорема о независимых, центрированных и	
		ограниченных случайных величинах.	
3.3	«Классические»	Теорема классической вырожденной сходимости.	Лоэв, с. 292-296.
	предельные	Критерий классической нормальной сходимости	
	теоремы	(Линдберга-Феллера).	
		Теорема нормального приближения Ляпунова.	
3.4	Законы	Понятие о вероятностном законе для сечений	Лоэв, с. 560-576.
	распределения	непрерывных процессов с независимыми	
	процессов с	приращениями.	
	независимыми	Критерий нормальных и пуассоновских	
	приращениями	процессов.	

Литература

- 1) Оксендаль Б. Стохастические дифференциальные уравнения. Введение в теорию и приложения: Пер. с англ. М.: Мир, ООО «Издательство АСТ», 2003. 408 с.
- 2) Лоэв М. Теория вероятностей. М.: изд. Иностранной литературы, 1962. 719 с.
- 3) Гихман И.И., Скороход А.В. Стохастические дифференциальные уравнения. Киев: изд. «Наукова думка», 1968. 354 с.
- 4) Миллер Б.М., Панков А.Р. Теория случайных процессов в примерах и задачах. М.: ФИЗМАТЛИТ, 2002. 320 с.
- 5) Пугачёв В.С., Синицын И.Н. Стохастические дифференциальные системы. Анализ и фильтрация. М.: Наука. Гл. ред. физ.-мат. лит., 1990. 632 с.
- 6) Барабанов А.Е. Лекции по дискретному фильтру Калмана. Электронный документ.