
Proceedings of the Steklov Institute of Mathematics, Suppl. 1, 2005, pp. S163–S174.
Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 11, No. 1, 2005.
Original Russian Text Copyright c© 2005 by Kumkov, Patsko, Pyatko, Fedotov.
English Translation Copyright c© 2005 by MAIK “Nauka/Interperiodica”(Russia).

Construction of the Solvability Set in a Problem

of Guiding an Aircraft under Wind Disturbance

S. I. Kumkov1 V. S. Patsko1, S. G. Pyatko2, and A. A. Fedotov1

Received March 4, 2004

Abstract—A nonlinear system of the fourth order is used for simplified description of the
aircraft motion in the horizontal plane under wind disturbance. The aircraft control vector has
two components constrained in modulus. One component affects the velocity value, and the
second one defines variation of the direction of the velocity vector. The maximal value of the
wind disturbance is given. The problem of guaranteed guidance of an aircraft from the initial
position to a given terminal set at a fixed instant is considered. The motion is subject to the
phase constraints at the intermediate instants. Based on the game theory, an algorithm for
backward construction of the solvability set in a problem of guaranteed guidance is proposed.
Numerical simulation results of the solvability set construction are described.

INTRODUCTION

In aircraft collision avoidance systems, the problem of aircraft guidance from an initial position

to a given area at a prescribed instant is topical. Moreover, at some intermediate instants, the

aircraft trajectory must pass through other given spatial areas. The sequence of such instances

and areas along the trajectory of a standard maneuver are given by an operator of the air traffic

control system for providing safe fly-by of conflicting airplanes.

It would be useful to have some fast computational algorithm analyzing possibility of aircraft

guidance through the given areas but under presence of wind disturbance.

In the paper such an algorithm is suggested for the case of aircraft motion in the horizontal

plane. An interval of possible values of wind disturbance speed is known. The aircraft motion is

described by an ordinary differential equation system of the fourth order. Two phase coordinates

have the meaning of the geometric position of the aircraft, the third coordinate is the direction of its

velocity vector, and the fourth is the aircraft velocity value. Thus, constructions are implemented

in the four-dimensional phase space.

The problem under consideration is interpreted as a problem of finding the solvability set in a

differential game of guidance [1, 2] to the terminal set at the fixed instant under phase constraints

given at some intermediate instants. To solve the problem, the backward procedure is used based

on algorithms for constructing the attainability sets, operations of intersection and forming the

convex envelopes of sets. A similar procedure (but in the direct time) was used earlier [3, 4] for
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constructing the informational sets in a problem of aircraft tracking in the horizontal plane under

disturbed measurements of its geometric position.

1. PROBLEM FORMULATION

Assume that the aircraft motion in the horizontal plane (Fig. 1) is described by the following

ordinary differential equation system:

ẋ = V cos ϕ + v1,

ẏ = V sin ϕ + v2,

ϕ̇ =
ku

V
,

V̇ = w, V ≥ c > 0.

(1.1)

Here, x, y are coordinates of the aircraft geometric position; v1, v2 are components of the wind

disturbance velocity vector v; ϕ is the angle between the aircraft velocity vector and the X-axis

(heading); V is the aircraft velocity value (in the undisturbed medium); k is the value of the

maximal lateral acceleration of the aircraft; and u, w are controls. It is assumed that the controls

u, w and the disturbance v are subject to the geometric constraints

|u| ≤ 1, |w| ≤ µ, v ∈ Q ⊂ R
2,

where Q is a compact convex set.

In spite of the fact that system (1.1) is simplified (there are no factors connected with influence

of the wind disturbance on the aerodynamics of motion), it is widely applied (see, for example, [5])

in standard navigational computations for constructing reference trajectories, flight plans, etc.

Mathematical works are known [6, 7] where system (1.1) was used in the case v = 0 for solving the

optimal control problems related to motion of an aircraft or a car.

V

x

y

j

Fig. 1. The coordinate system.

We identify the values of the phase coordinate ϕ whose difference is an integral multiple of 2π.

Define Rc = {V : V ≥ c}.

Let

Φ = R
2 × [−π, π) × Rc

be the phase space of the problem.
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We shall say that the controls u, w belong to the first player, and the vector disturbance v belongs

to the second player.

The objective of the first player is to bring the phase vector of system (1.1) to the given

terminal set M ⊂ Φ at the fixed instant T satisfying the phase constraints H(t̃j) ⊂ Φ at the given

intermediate instants t̃j, j = 1, ω, for any behavior of the second player. We assume that

M = M# × M♦,

t0 ≤ t̃1 < ... < t̃j < ... < t̃ω ≤ T,

H(t̃j) = H#(t̃j) × H♦(t̃j), j = 1, ω.

Here, M# and H#(t̃j) are the convex compact sets in the plane x, y; M♦, H♦(t̃j) ⊂ [−π, π)× Rc

are the convex compact sets in the plane ϕ, V .

In the space [t0, T ]×Φ it is necessary to construct the maximal set W , from which such guidance

is possible. Using terminology of [1], we can say that the set W is the maximal stable bridge in the

differential game of guidance to the terminal set M .

Clarify now possible application of the computational program for constructing the set W .

Assume that an operator of the air traffic control system decided to change the route of an aircraft.

To do this, some standard maneuver in the plane x, y is appointed.

For example in Fig. 2, the S-shaped maneuver is shown (the solid curve). The operator estimates

how the chosen maneuver can be realized beginning from the initial position (x0, y0) at the instant

t0 with the initial values ϕ0 and V0.

The calculation is implemented taking into account the constraints |u(t) ≤ 1, |w(t)| ≤ µ, and

under the assumption of no wind disturbance. Further, on the chosen trajectory the operator

defines the terminal set M , connected with the terminal instant T , and the phase constraints

H(t̃j), j = 1, ω. By this, the tolerances on the aircraft deviations from the standard trajectory are

defined.

In Fig. 2 projections H#(t̃j) of the sets H(t̃j) and projection M# of the terminal set M on the

plane x, y are shown in dashes.
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Fig. 2. Projections of the standard trajectory, phase constraints, and the terminal set

in the plane x, y.
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The operator is interested in possibility of the aircraft flight near the given trajectory, but in

the presence of wind disturbance. Imposing the constraint Q on the wind disturbance (for example,

in the form |v| ≤ ν), the operator calculates the set W with the help of a computational program.

If the section W (t0) of the set W that corresponds to the initial instant t0 contains the point

(x0, y0, ϕ0, V0), then the choice of aircraft maneuver is correct. Otherwise, the maneuver is not

satisfactory and needs changing.

2. BACKWARD PROCEDURES FOR CONSTRUCTING THE SOLVABILITY SET:

GENERAL CONSIDERATIONS

In the differential game theory, significant experience was accumulated [8–19] for numerical

construction of the solvability set in the game problem of guidance to the given set M at the fixed

instant T . As shown in Section 1, the solvability set is also called the maximal stable bridge. The

algorithms for the backward construction of the maximal stable bridges both for linear problems

and for problems with nonlinear dynamics were elaborated (see, for instance, [12–15, 18, 19]).

Dimension of the phase vector in system (1.1) is four. For such a dimension, realization of

general algorithms is hampered by significant difficulties. However, the features of system (1.1)

taken into account allow us to overcome these difficulties.

Describe the scheme of the backward procedure applied. The numerical construction of cross

sections W (ti) of the maximal stable bridge W is carried out on the given grid of the instants ti,

i = 0, N, t0 < t1 < ... < ti < ... < tN = T . It is convenient to assume that the collection of

instants {t̃j}, at which the phase constraints are given, is included into the collection {ti}.

The passage from the cross section W (ti+1) to the cross section W (ti) is realized by the following

operations:

(A) construction of the attainability set G(ti ; ti+1,W (ti+1), v) of the considered system in the

back time at the instant ti with the instant ti+1 as the initial, the initial set W (ti+1), and under

fixed constant control v of the second player;

(B) intersection of the obtained sets over v ∈ Q, and intersection with the phase constraint H(ti)

W (ti) =
(

⋂

v∈Q

G(ti ; ti+1,W (ti+1), v)
)

⋂

H(ti). (2.1)

Here, we assume that H(ti) = R
4 if at the instant ti the phase constraint is absent, i.e., ti /∈ {t̃j}.

If the system under investigation were linear on the phase variable, then using convexity of

the terminal set M and convexity of the phase constraints H(t̃j), j = 1, ω, we would find the

attainability sets G(ti ; ti+1,W (ti+1), v), v ∈ Q to be convex as well. Thus, we could work with

operations of intersection of convex sets.

Intersection of convex sets is a significantly simpler operation in comparison with operation of

intersection of nonconvex sets. Moreover, in the absence of phase constraints in problems with

linear dynamics, we intersect the sets G(ti ; ti+1,W (ti+1), v), v ∈ Q that differ from each other

only by a shift, which is stipulated by various v ∈ Q. It also allows us to simplify the intersection

procedure.
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The nonlinear system (1.1) has one special property that allows us to use constructively the

mentioned simplifications, which are distinctive for linear systems.

3. BACKWARD PROCEDURE FOR CONSTRUCTING THE SOLVABILITY SET

IN THE GUIDANCE PROBLEM FOR SYSTEM (1.1)

The mentioned feature of system (1.1) consists in the fact that the variables x and y describing

the geometric position of the aircraft do not enter the right-hand side of the system. When

integrating the system motion, this allows one to consider the last two equations independently of

the first two. Moreover, for fixed functions ϕ(·) and V (·), the first two equations represent a rather

simple variant of linear dynamics. The first player’s control is absent here.

If in the time interval from the instant ti+1 to the instant ti the second player’s control is given

as a function of time v(·) (in particular, as a constant), then the set of positions in the plane x,

y that was given at the instant ti+1 will be directly shifted by some vector, which is a result of

integration of the right-hand side under given functions ϕ(·), V (·) and control v(·).

The cross sections W (ti) of the maximal stable bridge W will be constructed on the time grid ti
with sufficiently small step ∆ = ti+1 − ti, ti < ti+1. The set Q is substituted by a convex polygon

with a finite number of vertices. The sets M# and M♦, H#(t̃j) and H♦(t̃j) are also substituted

by convex polygons.

Due to the discretization, the cross sections W (ti) are constructed approximately. Moreover,

in the process of constructing the next cross section, we use convexification of some sets. This

leads to roughening from above the cross section under construction. (Detailed computer analysis

of influence of this additional convexification procedure shows that such roughening is “not too

large.”) To emphasize the approximate character of construction and application of operations

that roughen the result from above, we use the symbol W(ti) instead of W (ti) to designate the

cross sections that are constructed by the suggested algorithm.

3.1. Representation of four-dimensional sets. Description of the algorithm for construct-

ing the sets W(ti) is preceded by considering the technique of representation of the four-dimensional

sets.

A rectangular grid of nodes {ϕn} × {Vm} that does not depend on time is introduced in the

plane ϕ, V . On the coordinate ϕ the grid is built in the interval [−π, π]. On the coordinate V the

step of distribution of the grid nodes is given on the basis of the set M♦ taking into account the

rough estimate of possible variation of the velocity value V .

Let

L(T ) = {(n, m): (ϕn, Vm) ∈ M♦
⋂

H♦(T )},

Fn,m(T ) = M#
⋂

H#(T ), (n, m) ∈ L(T ).

It is seen that the set Fn,m(T ) is the same for each (n, m) ∈ L(T ).

The set of nodes (ϕn, Vm), (n, m) ∈ L(T ) together with the related sets Fn,m(T ) is considered

as the set W(T ). Thus,

W(T ) =
⋃

(n, m)∈L(T )

(

{(ϕn, Vm)} × Fn,m(T )
)

.

The sets W(ti) are given in the same form: the totality of nodes (ϕn, Vm), (n, m) ∈ L(ti) in

the plane ϕ, V together with the related convex sets Fn,m(ti) in the plane x, y. The recurrent

procedure for constructing the sets W(ti) is described in the next subsection.
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3.2. Passage from the set W(ti+1) to the set W(ti). Let the set W(ti+1) be constructed.

It is represented in the form

W(ti+1) =
⋃

(n, m)∈L(ti+1)

(

{(ϕn, Vm)} × Fn,m(ti+1)
)

,

where Fn,m(ti+1) are convex sets.

(A) Approximate construction of the sets G(ti ; ti+1, W(ti+1), v).

1. Consider an arbitrary node (ϕn, Vm) such that (n, m) ∈ L(ti+1). Let

B(ϕn, Vm) =

{

Pr (ϕn −
ku

Vm

∆, Vm − w∆): u ∈ {−1, 0, 1}, w ∈ {−µ, 0, µ}

}

.

Here, Pr (ϕ, V ) is the node of the grid {ϕn} × {Vm} nearest to (ϕ, V ). The set B(ϕn, Vm)

approximates with the help of the nodes of the grid {ϕn} × {Vm} the attainability set of the

system

ϕ̇ =
ku

V
,

V̇ = w, |u| ≤ 1, |w| ≤ µ
(3.1)

from the point (ϕn, Vm) at the instant ti = ti+1 − ∆. Under this, step ∆ agrees with the grid

parameters.

2. By the symbol Dn,m(ti) the numbers of those nodes from the instant ti+1 are designated,

which “passed” into the node (ϕn, Vm), i.e.,

Dn,m(ti) = {(n∗, m∗) ∈ L(ti+1): (ϕn, Vm) ∈ B(ϕn∗ , Vm∗)}.

Let

K(ti) = {(n, m): Dn,m(ti) 6= ∅.

The totality of nodes (ϕn, Vm), (n, m) ∈ K(ti) is (in the grid approximation) the attainability set

of system (3.1) at the instant ti under the initial set at the instant ti+1, which was composed of

the nodes (ϕn, Vm), (n, m) ∈ L(ti+1).

3. To each node (ϕn, Vm), (n, m) ∈ K(ti), the following union is put into correspondence:

An,m(ti, 0) =
⋃

(n∗, m∗)∈Dn,m(ti)

(

Fn∗,m∗(ti+1) − ∆Vm∗(cos ϕn∗ , sin ϕn∗)
′
)

.

Here, the symbol “ ′ ” means transposition. The set An,m(ti, 0) approximates the cross section of

the four-dimensional attainability set G(ti; ti+1,W(ti+1), 0) of system (1.1) under ϕ = ϕn and

V = Vm (for the case when v = 0). Since each set Fn∗,m∗(ti+1) in the plane x, y is convex, the set

An,m(ti, 0) is the union of convex sets in this plane.

The convex envelope is constructed:

Sn,m(ti, 0) = convAn,m(ti, 0). (3.2)

Let

G(ti ; ti+1,W(ti+1), 0) =
⋃

(n, m)∈K(ti)

(

{(ϕn, Vm)} × Sn,m(ti+1, 0)
)

.
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The set G(ti ; ti+1,W(ti+1), 0) approximates from above (taking into account the errors of the

discretization) the attainability set G(ti ; ti+1,W(ti+1), 0).

4. The mentioned specific properties of system (1.1) allow us to find easily the analogous set

G(ti ; ti+1,W(ti+1), v) for each v ∈ Q constant in time. Namely,

G(ti ; ti+1,W(ti+1), v) =
⋃

(n, m)∈K(ti)

(

{(ϕn, Vm)} × Sn,m(ti+1, v)
)

,

where

Sn,m(ti, v) = Sn,m(ti+1, 0) − ∆v.

(B) Construction of the set W(ti).

5. To find the intersection
⋂

v∈Q G(ti ; ti+1,W(ti+1), v), it is sufficient to construct the following

intersection for each (n, m) ∈ K(ti):

En,m(ti) =
⋂

v∈Q

Sn,m(ti, v).

Implementation of this operation is reduced to finding some positive-homogeneous function

γn,m(ℓ, ti) = min
v∈Q

ρ
(

ℓ, Sn,m(ti, v)
)

, ℓ ∈ R
2, (3.3)

where ρ
(

· , Sn,m(ti, v)
)

is the support function of the set Sn,m(ti, v), and to the subsequent con-

struction of the convex envelope conv γn,m(·, ti). By this, we obtain the support function

ρ
(

· , En,m(ti)
)

= convγn,m( · , ti)

of the set En,m(ti). When realizing the minimum in (3.3), we look through only the vertices of the

polygon, which approximates the set Q.

6. Let

L(ti) = {(n, m) ∈ K(ti): (ϕn, Vm) ∈ H♦(ti)},

Fn,m(ti) = En,m(ti) ∩ H#(ti), (n, m) ∈ L(ti).

Taking into account (2.1) and the way of representation of the four-dimensional sets, we have

W(ti) =
⋃

(n, m)∈L(ti)

(

{(ϕn, Vm)} × Fn,m(ti)
)

.

We emphasize that precisely on account of the operation of convexification in formula (3.2) do

we obtain the convexity of the sets Fn,m(ti). This fact together with application of the grid on

coordinates ϕ, V defines the simplicity of realization of the backward procedure. The operation of

convexification expands a little the constructed tube of the solvability set in comparison with the

true one.

The algorithm composed of steps 1–6 in many aspects is similar to the one elaborated

in [3, 4] for constructing informational sets in a problem of aircraft tracking in the horizontal plane.

In [3, 4], comparison of the exact attainability sets of system (1.1) with the sets obtained by the

operation of constructing the convex envelope of the union of convex sets was conducted. It was

shown there that the errors that appeared are insignificant from the practical point of view.

Remark. Construction of the feedback control that keeps the aircraft inside the solvability

set under the wind disturbance is a separate problem and is not considered in this paper.
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4. SIMULATION RESULTS

The following numerical data were taken for simulation of the described algorithm:

• the aircraft maximal lateral acceleration k = 4 m/s2;

• the maximal longitudinal acceleration (control) µ = 2 m/s2;

• the constraint on the wind disturbance is given in the form |v| ≤ ν and a value of the

parameter ν is taken from the interval 16 m/s–22 m/s;

• the initial instant t0 = 0 s;

• the whole time of motion T = 120 s;

• the aircraft initial position x0 = 0 m, y0 = 0 m, ϕ0 = 0◦, V0 = 200 m/s;

• the reference terminal point coordinates at the instant T are x
T

= 15216 m, y
T

= 8543 m,

ϕ
T

= 0◦, and V
T

= 200 m/s;

• the reference phase trajectory between the initial position and the reference terminal point

is constructed by means of program controls (with a “reserve” on unknown disturbances)

u = 0.8, w = −1.5 m/s2 at the time interval [0, 60) s and u = −0.8, w = 1.5 m/s2 on the

interval [60, 120] s;

• the terminal set M has a size ±300 m in the coordinate x, ±300 m in the coordinate y, ±20◦

in the angle ϕ, and ±20 m/s in the velocity V , and the centers of these intervals coincide

with the corresponding values of the reference terminal point;

• the instants for which the phase constraints were given are t̃1 = 20, t̃2 = 40, t̃3 = 60, t̃4 = 80,

and t̃5 = 100 s;

• the phase constraints H(t̃j), j = 1, 5, have a size of ±300 m in the coordinate x, ±300 m

in the coordinate y, ±20◦ in the angle ϕ, and ±40 m/s in the velocity V , while the centers

of these intervals coincide with the corresponding values of parameters of the reference

trajectory at the given instants;

• the time step ∆ in the backward constructions is 1 s; the size of the grid in the plane ϕ, V

is 720 × 64; the sets in the plane x, y are represented by convex polygons with the uniform

grid of normals (24 normals).

Dynamics of variation in time of the set W(t) for the case ν = 16 m/s is shown in Fig. 3. The

projections W#(t) of the four-dimensional sets W(t) in the plane x, y are marked by grey. It is

seen that the size of the cross section projection increases when moving in the back time from the

terminal set. After intersection with the phase constraint, the size of the cross section decreases.

Further, the process develops similarly. At the instant t0 = 0, the constructed cross section of the

bridge W(t0) contains the aircraft initial position.

The structure of the cross section W(t0) of the maximal stable bridge at the instant t0 = 0

is illustrated by Fig. 4. Here, the solid curve shows the initial part of the reference trajectory in

projection into the plane x, y, small square shows the aircraft position at the initial instant, and

the dashed square shows the first phase constraint at the instant t̃1. The projection W#(t0) of the

four-dimensional set W(t0) into the plane of geometrical coordinates x, y is shown in light grey. Its
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Fig. 3. Dynamics of variation in time of the set W#(t).

whole contour is seen. Inside this projection the projection of the three-dimensional layer, which

corresponds to the grid node {Vm} maximally close to the aircraft initial velocity V0 = 200 m/s, is

marked in white. Inside the projection of this layer, the two-dimensional layer, which corresponds

to the grid node {ϕn} maximally close to the initial value of the angle ϕ0 = 0◦, is shown in dark

grey.

Figure 5 shows images of the three-dimensional layers of the four-dimensional set W(t0). The

layers correspond to five different values of the velocity and are marked in grey of various depth.

Influence of the level ν of the wind disturbance maximal value on the size of the projection

W#(t0) is illustrated in Fig. 6. Here, the solid curve marks the initial part of the reference

trajectory, the small square shows the aircraft position at the initial instant, and the dashed square

shows the phase constraint at the instant t̃1.

In Fig. 7, the projection W#(t0) of the set W(t0) in the plane ϕ, V is shown for the same data.

As was mentioned above, the aircraft initial position belongs to the set W(t0) under the

constraint ν = 16 m/s (Figs. 6a, 7a). Therefore, the problem of guiding the aircraft to the terminal

set can be solved under this constraint on the wind disturbance values. But under the constraint

ν = 20 m/s (Figs. 6b, 7b) the cross section of the bridge does not reach the aircraft initial position.

This means that guidance of the aircraft from the initial position to the given terminal set is not

guaranteed. Under the constraint ν = 21 m/s (Figs. 6c, 7c) the cross section W(t0) of the bridge

at the initial instant is placed at a larger distance from the initial position of the aircraft and,

moreover, significantly decreases in size. Under further growth of the constraint ν, the set W(t0)

becomes empty.
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W ( )t0

#

H t1( )# ~

Fig. 4. The structure of the four-dimensional set W(t0) by layers in V and ϕ

(as projections in the plane x, y), the constraint on the wind value is ν = 16 m/s.

W( )t0

Fig. 5. The three-dimensional image of the four-dimensional set W(t0),

the constraint on the wind value is ν = 16 m/s.

The size and structure of the set W(t0) also depends significantly on the instants at which the

phase constraints are given and on the sizes of these constrains.
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Fig. 7. Comparison of the sets W♦(t0) for various values of the constrains on the wind:

a) ν = 16 m/s, b) ν = 20 m/s, c) ν = 21 m/s.
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