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Nowadays, there are a lot of works concerning application of modern methods of the control theory to problems of aircraft
landing and take-off under wind disturbances.

Among Russian scientists, V. Kein was the first who investigated such problems.
Our work is devoted to application of differential game methods developed in the Ekaterinburg school to a landing

m problem.




Aircraft landing stages 3
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|. Descent till passing the runway threshold — the problem
under investigation

ll. Levelling till contact with the runway (the stage of flare)
lll. Running on the main wheels
V. Running on all wheels

In this work, we consider the time interval of descent from the altitude 400 m until passing the runway threshold at the
m altitude 15 m. Duration of this stage for a midsize aircraftis approximately 120 sec.




Aircraft landing problem 4
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At this stage of descent, the aircraft moves along a rectilinear )

glide path. Deviation from it is not too large. So, for mathematical
investigations, a linearization of the dynamics is reasonable. After
linearization of the original nonlinear system, the resulting dynamics is disjoined into two independent subsystems of the lateral and
vertical motions. For both of them, we consider auxiliary linear differential games with fixed terminal time. A terminal set for the lateral
channel is defined as a convex set in the plane of two phase coordinates, namely, lateral deviation and its velocity. Aterminal setin the
vertical channel is constructed similarly. The controls for the lateral channel are the scheduled aileron and rudder angles. For the
vertical channel, the controls are the scheduled thrust deviation from the nominal value and the scheduled elevator angle. Some
geometric constraints on the controls are given a priori.

Control laws obtained in the framework of the linearized dynamics are tested further in the original nonlinear system.

Conceptual difference between this presentation and works made in Ekaterinburg twenty years ago is that earlier there was a
requirement for the geometric constraint on the wind disturbance in the formulation of the problem. In engineering practice,
defining such a constraint is quite problematic. Formulation of this work does not include such a demand.
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So, we shall speak about a robust control, which should work satisfactorily in a wide interval of wind disturbance.

Our concept of robustness is close to the one in works by V. Turetsky and V.Glizer.




Robust formulation 6

x = A(t)x + B(t)u + C(t)v,
xeR™ teT=[9y,9], MCR"
u€e P CRP, velR?

We call a feedback control U(t, x) robust in the following case:

1) if the second player's control (that is a disturbance) is weak, then the
first player (that is our useful control) should lead the system to the
terminal set as close to its center as possible and, additionally, the
realization of its control should be weak too;

2) if the second player's control is stronger, then the first player should
still provide successful termination of the process by means of its
stronger or even extremal control;

3) if the second player's control is too strong to be successfully parried
within the first player's constraint, then some miss from the terminal
set is allowed. This miss should be minimized by the first player.

We clarify the concept of the robust control in the following way.




Equivalent system ’

By means of the standard transformation, we pass
to the system

T = B(t)u + C(t)v,
rxeR" teTl, M CR",
we PCRP, veRY

The transformation is defined as follows:
z(t) = Xpnm (9, 1)x(1),
B(t) — Xn,m(ﬁv t)B(t),
C(t) = Xpnm(9,t)C(2)
Here, X, (¢, t) is the matrix combined of n selected rows

(corresponding to the terminal set M subspace)
of the fundamental Cauchy matrix.

Because of linearity of the dynamic system and fixed time of termination, we can pass to a system without the state
variable in the right-hand side. This standard transformation is made by means of corresponding rows of the fundamental

m Cauchy matrix. In our case, the state vector of the new system is two-dimensional.




Stable bridges 8

i = B(tyu+ C(t)o,
reR™ teTl, M,
ueP, ved

(P, Q, M) — game parameters

This system is very attractive because we have a computer algorithm for fast construction of maximal stable bridges for
the case when geometric constraints are given on both players controls. The maximal stable bridge (in the space of time and
m state vector) is the discriminating kernel by the viability terminology. Abridge and tube are the same notions in our talk.




Idea of robust control 9
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The main idea is the following. Let us consider a family of differential games, where the constraints for the players' controls, the
terminal set and, consequently, the maximal stable tube are parametrized by a positive number. This family of tubes is ordered by
inclusion with increasing the parameter. The first player guarantees keeping the system inside any tube if a realization of the second
player's control is of the corresponding level. With that, the control applied by the first player belongs to the constraint corresponding to

the stable tube. This family of tubes can be considered as a definition of a Lyapunov function in the game space. It allows to construct
afirst player's feedback control and to evaluate the guaranteed result provided by this control.

In our case of linear dynamics, we can store only one stable bridge. We call it the main bridge. This bridge corresponds to

the maximal constraint for the first player's control. All the tubes inside are calculated by means of homothety. One additional
m bridge gives the basis for the construction of stable tubes outside the main bridge.




Switching surfaces 10

Using specifics of the equivalent
game we compute the switching
surfaces a priori on the basis

of the main bridge and some
additional stable bridge

Objects required to
calculate control:

1. The main stable bridge
2. Switching surfaces \—)

Since the components of the control vector are independently constrained in our problem, we can compute switching
surface for each component. So, we need to store the main bridge and two switching surfaces for two control components for
the lateral channel. Here, we show one of this surfaces. For the vertical channel, we need to store one main bridge and two

m switching surfaces also.




Behavior of trajectories 11
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Let our robust feedback control is used. In the case when the wind disturbance is weaker than actually applied useful
control, the motion goes to lower level of our tubes. In the case of stronger disturbance, the motion goes to some greater
m level. Since the disturbance is bounded, the level of its realization stops to grow along the motion.
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When testing the robust control we suggested, we use several variants of wind disturbance model. One of them is
m definition of the disturbance by means of a wind microburst model from the paper by M.Ivan.
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