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It is known that time-optimal control problems with dynamics that describe a realistic inertial car possessing
variable magnitude of the velocity are very complicated to study. In the work, a relaxed case where instantaneous
variations of the velocity magnitude are allowed is considered.

A pursuit-evasion problem that is analogous to the famous “homicidal chauffeur” game by R.Isaacs is studied.
Note that the classical statement of this problem assumes a constant magnitude of the linear velocity of the car.
In the case of the variable magnitude of the linear velocity, the pursuer becomes “more dangerous”.

Numerical algorithms are applied to the computation of level sets of the value function (of solvability sets of the
pursuit-evasion problem). The dependence of these sets on a parameter that defines the bounds on the magnitude
of the velocity is investigated.

Also, families of smooth semipermeable curves related to the dynamics under consideration are explored.
The knowledge of these families allows to verify the correctness of the numerical construction of lines on which
the value function is discontinuous.

Together with the pursuit-evasion game, control problem corresponding to the immovable evader is considered.
Both time-limited reachable sets and reachable sets at a given time are computed.

The results presented in this work are based on the methods being developed by the Ekaterinburg scientific school
on optimal control and differential games.



Collection of J.-P. Laumond (Ed)

SUIVEY papers Robot Motion
Planning and Control

This book edited by J.-P. Laumond from LAAS laboratory
in Tolouse was published in 1998. It contains many
models of robot car dynamics.
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Simplest car model
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On this slide, the simplest model is shown. Here, x , y, are geometric coordinates of the car, & is the angle between
the velocity vector and the vertical axis. The magnitude of the velocity vector is constant. R. Isaacs used intensively

such a model in his works on differential games.



Report by
R. Isaacs, 1951

This is the title page of Isaacs’ report on pursuit
games issued in 1951.

GAMES OF PURSUIT

R. P. Isaacs

P-257

17 November 1951
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Book by
R.Isaacs, 1965

The cover of the famous book by R. Isaacs, 1965.

Differential
Games

A Mathematical Theory with Applications
to Warfare and Pursuit, Control and Optimization

Rufus Isaacs

Office of the Chief Scientist
Center for Naval Analysis

John Wiley and Sons, Inc., New York - London - Sydney




AMERICAN
JOURNAL OF MATHEMATICS

FOUNDED BY THE JOHNS HOPKINS UNIVERSITY

Volume LXXIX, Number 3
JULY, 1957

ON CURVES OF MINIMAL LENGTH WITH A CONSTRAINT ON
AVERAGE CURVATURE, AND WITH PRESCRIBED INITIAL
AND TERMINAL POSITIONS AND TANGENTS.*!?

By L. E. DuBins.

We have now established our main result:

Tueorem I.  Fvery planar R-geodesic s necessarily a continwously
differentiable curve which s either (1) an arc of a circle of radius R,
followed by a line segment, followed by an arc of a circle of radius R,
or (%) a sequence of three arcs of circles of radws R; or (3) a subpath of
a path of type (1) or (R).

In papers on theoretical robotics, the car model with constant magnitude of the linear velocity is often referred as
Dubins’ car. The name is due to L.E.Dubins whose paper of 1957 contains a theorem on the number and type of

switches of an open-loop control that brings the object from a given state with a specified direction of the velocity
vector to a terminal state for which the direction of the velocity vector is also prescribed.



The paper by A.A.Markov

Hberompko mpumbpoBt phmeHis ocobaro
polia 3aJadyb 0 HaWOOAPMXD W HAWMEHb-
MAXD BEINIMHAXE.

A. A Mapxrosa

BATATA 1.

Mexay zamHEuME ToukaMs 4 w B (cw. dur. 1-10) mposecTs kpaTiaiimymn
EDHBYD) THHID UDH CIBIyOmMUIE ABYXH yeAoBinX®: 1) pajiycs EDHBHSHH
Hame# EpHBofl moBcHAY Jonmens GHTH He MeHbIDe JAHHOH BENWYHHH (0, PE—

2) pp TouEE A RacarerrEas K mamell EkpHBod xoamma HMbBTE nammOe /" ] “‘\
manpasierie AC. / \

PRINEHIE, | k

Hycrs. M ofgna us® ToUexs Hamed kpuBoi, a mpamaa NMT coorwbr-

¢TBYNIAA EACATENBHAL.

Four problems related to R.Isaacs and L.E.Dubins’ car have been already considered / | \
by A.A.Markov in the paper “Some examples of the solution of a special kind of \ \L___
problem on greatest and least quantities”published in “Soobscenija Charkovskogo . /

matematiceskogo obscestva", Ser.2,1, NN5,6 (1889) pp. 250-276 (in Russian). —



Reeds and Shepp's car

Ty = wsind

Yp = W CoS O
0 = u
ul <1, w[ <1

The next, more complicated, model described in the book “Robot Motion Planning and Control” is called Reeds and
Shepp’s car. The new factor w is a control which can change instantaneously the magnitude of the linear velocity.
If w switches from a positive value to a negative one, then the direction of the velocity vector changes as well. In

this model, @ is the angle between the vertical axis and the direction of forward motion that corresponds to w =1.



Intermediate car model

Ty = wsind

Yp = W COS 0
0 = u
ul <1, a<w <1

d 1s a fixed parameter of the problem, a < [ 1, 1]

In this paper, an intermediate model between Isaacs-Dubins” car and Reeds and Shepp’s car will be investigated. The
constraint on the value of the angular velocity u does not depend on the magnitude of the linear velocity. The value w of
the linear velocity can change instantaneously within the bounds a < w < 1 where a is a fixed parameter that fulfils
the conditiona € [—1,1]. If a = 1, we have Isaacs-Dubins’ car. For a = -1, we arrive at Reeds and Shepp’s car.
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Classical homicidal chauffeur game

P: x,=wsind
Yp = W oS 0
0 =wu/R, |u| <1

E Te = V1

Ye = V2, vl < v

Here, the dynamics of the classical “homicidal chauffeur” problem by R.Isaacs is shown. Pursuer P controls the car
whose linear velocity has constant magnitude. Evader E is a non-inertial object that can change the value and direction
of his velocity v=(v,,v,)T instantaneously. The maximal possible value of the velocity is specified. By a given circular

neighborhood of his current geometric position, player P tries to capture player E as soon as possible.
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From I|saacs-Dubins’ car to Reeds and Shepp’s

car in the homicidal chauffeur problem



Dissertation by
A.W. Merz, 1971

THE HOMICIDAL CHAUFFEUR -~ A DIFFERENTIAL GAME

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AXND ASTRONAUTICS
AND TEE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UKIVERSITY
IN PARTIAL FULFILLMENT OF THE EEQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Antony Willits Merz
%& -
March 1971

A complete solution to the “homicidal chauffeur” problem
in the classical statement of R.Isaacs is obtained by
A.W.Merz in his PhD thesis supervised by J.V.Breakwell.




Reinforced homicidal chauffeur

P : ZI.Z‘p:‘LUSiIlQ

UYp = W cos

6 =u, |ul <1, a<w<1
E 'j/;e:'vl
y.e:’Ugj |’U|§V

We will investigate the variant of the “homicidal chauffeur” game with the reinforced pursuer.
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Isaacs’ transformation

X

—Yyu Uy
Y= T uU—W-+ U,

ul <1, a<w<1, v=(vg0,), p|<v

Let h be the standard direction from the back to the front of the car. Using Isaacs” transformation, we pass to the above
two-dimensional dynamics. So, we deal with time-optimal problem in the plane.

14



Level sets of the value function

Wi(r,M) ={(z,y): V(r,y) <7}

W(r, M)

We have developed an algorithm for

the computation of level sets of the

value function. In other words, our

numerical procedure gives isochrones

or wave fronts. The question is how they

are looking in the differential game under
study and how they depend on parameter a.

15



Families of semipermeable curves

First of all, for dynamic problems in the plane, it is very useful to investigate families of semipermeable curves. These
families depend on system dynamics only. Based on the knowledge of families of semipermeable curves, one can
determine lines in the plane on which the value function of time-optimal differential game can be discontinuous.

16



17
Roots of the Hamiltonian

% = f(x,u,v), x ER*, ue P, ve Q

min max ¢ f(x,u,v) = maxmin ¢’ f(x,u,v)
ucP veo veQ uep

H(¢,x) = mi /" —
(6,x) = minmax £* f(x,u,v),  H(l,x) =0

Smooth semipermeable curves are constructed due to analysis of roots of the Hamiltonian. For every fixed x € R?,
the dependency ¢ — H (¢, x) is analyzed and roots of the equation H (¢, x) = 0 are considered. Thereby,
one can assume that|¢| = 1.
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Separation of vectograms

7O = fsx, 0 (), v (0,) /.

f(x,u®M (e, %), Q) \ £ = r(x,u@ (., x), v (L)

Let ¢.. be the root of equation H (¢, x) = 0. The root corresponds to the separation of vectograms of players P and E.

The half-plane which contains the vectogram of player P is labeled with “-”, the opposite half-plane containing the vectogram

of player E is provided with sign “+”. The semipermeable direction is orthogonal to ¢,.. We distinct two cases. In the first case,
the semipermeable direction is obtained by rotating the vector £, through 90° clockwise; in the second case, the semipermeable
direction is produced using counterclockwise rotation of ¢,. through 90°.

Smooth curve whose tangent vector at every point coincides with a semipermeable direction is called semipermeable.



Strict roots of the first and second type

Assuming clockwise traveling around circumference of the unit circle, we have
strict root minus to plus in the first case and strict root plus to minus in the
second case.The picture on the right explains the role of semipermeable
curves in the time-optimal game. The capture set 4 is completely defined by
semipermeable curves of the first and second type emitted backward in time
from, respectively, points ¢ and d of the usable part.
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Families of semipermeable curves

In the classical homicidal chauffeur problem
a =1, ‘U|§V7 1/6(071)

B*:{(Qjay) —Y + vy =0, IL’—l—|—”Uy:O, |U|§V}

A, ={(z,y): y+v, =0, —x —1+v, =0, v| < v}

For the classical homicidal chauffeur problem, smooth semipermeable curves are involutes of two thick arcs on the boundary
of circles B, and A, . The arrows correspond to traveling along semipermeable curves backward in time.



Families of semipermeable curves for
homicidal chauffeur dynamics

A A

In the classical problem, we have two families A1 and A2 of smooth semipermeable curves of the first type and two families
A@1and A@-2 of the second type. If player E is immovable, then v=0 and sets B, , A, become points. Thereby, the involutes
are replaced by semicircles.

21



Basis for families of semipermeable curves
In reinforced homicidal chauffeur dynamics

Bf ={(z,y): —y+v,=0, 2—1+v,=0, |v| <v}

A+:—B+
B ={(z,y): —y+v,=0, x—a+uv, =0, [v]| <v}
A- — B>

For the reinforced homicidal chauffeur dynamics, the situation is more complicated. However, all families can be constructed.
On this slide, those arcs which are used for the construction of smooth semipermeable curves in the case a > —v are shown
in red. Semipermeable curves are involutes of these arcs.



Families of semipermeable curves for 23
reinforced homicidal chauffeur dynamics (a > —v)

A(1),1,2 A1+

AD),1,1-

S

A(2),1,2 m

A(2),1,14

(2),1,1—

A2)2.04  A(2).21- A(2):2.2  A1)2.14  A(1).2.1-

Here, the families of smooth semipermeable curves of the first and second type corresponding to the extremal control u = 1 are
presented for the case @ > —wv . The families that correspond to « = -1 can be obtained using reflection about the vertical axis.



Families of semipermeable curves for 24
reinforced homicidal chauffeur dynamics (e < —v)

On this slide, those arcs which A 1.2+

are used for the construction of A1+
smooth semipermeable curves in L .

the case a < —v are marked W

with red color. Below, the families
corresponding to the extremal

control u = 1 are presented.
The other families can be AD),1,2— ()11
obtained by reflections about the . A

horizontal and vertical axes. wmw



Level sets of the value function

and reachable sets

Let us now present results of computation of level sets 1 (7, M) of the value function V' (x, y) . Note thatif v = 0
(player E is immovable), level set W (7, A1) can be interpreted (for geometric coordinates) as a time-limited reachable

set of player P corresponding to time 7 provided that the initial set is M and the initial direction h is oriented along axis y.

25



. 20
Backward construction of level sets

of the value function

[o = cl{x € IM : minmax ¢’ f(x,u,v) <0
0 = cl{x min max f(x,u,v) }

WA,M)CWRAM)C...CW(GHEA, M) C...C W(rs, M)

The collection of all points (x, y) € OW (1, M ) such that
V(x,y) = 7 is called the front corresponding to the
reverse time 7 . Our computational procedure for

the construction of level sets runs backward in time on the
interval [0, 7] . The construction starts with the computation
of usable part Iy on the boundary of the set M. We use
an automatic adjustment of the step width A of the backward
procedure. The initial value of A which is usually equal to 0.01
can decrease up to ten times in the course of construction.
On the next slides, the fronts are depicted with the step being
a multiple value of the initial step A. For example, the fronts
on slide 28 are shown with the step 0.1. The sets Q and M are
approximated by inscribed regular n-sided polygons. Usually,
n=38and n =30 for Qand M, respectively.
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Computed variants

T = —Y U+t v, ul <1, a<w<1
Y T U— W+ Uy o] < v
Yy
M
/\ "
\ r = 0.3
1. a=1, |v] <0.3; a=1 v=0;
3. a=0.25, |v|<0.3; 4. a=0.25, v=0;
5. a= —0.1, |v] <0.3; 6. a=-0.1, v=0;
7. a= —0.6, |v]<0.3; 8. a=—0.6, v=0;
9. a=—1, |v|<0.3; 10. a=—-1, v=0.

On the top, the dynamics and bounds on controls of the players are given once more. The terminal set is a circle of radius 0.3.

On the bottom, variants for which numerical results will be presented a
an immovable player E.

re listed. The variants of the right column correspond to



Classical variant of the homicidal 2

chauffeur problem, 7 = 10.3, v = 0.3

T I | 1 1 I I I
For the first variant (classical Y
homicidal chauffeur problem), 6
the value function is discontinuous
on two barrier lines emanating from 5L
the right and left endpoints of the
usable part. One can verify that these
lines are semipermeable curves of
families A®-1and A@2, respectively.
After the termination, the barriers are
continued by the lines formed of the
corner points on the fronts of the level
sets. The value function is not
differentiable on these lines.
After bending round the right and left
barriers, the right and left parts of the  ©
front meet on the vertical axis at time

7 = 7.82 . Aunited front occurs. A+ |
Further constructions until the time
7¢ = 10.3 are done for the inner 2+ |

part of the united front only.

/I"
et
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The principal difference between results for variants 1 and 2

is the absence of corner points on the fronts after bending

round the barrier lines in variant 2. The barrier lines
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the control of player E is approximated by a regular

In the computations, the circular constraint Q on
octagon. This slide presents results for variant 3.
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0, 7/ =38

£

a= 0.29. v

In variant 4, player E is immovable. The computation shows that the value function is continuous everywhere outside set M.



In variant 5, the value of parameter a is negative. Note that
barrier lines become shorter than those ones in variant 3.

The knowledge of families of semipermeable curves allows us

to predict this fact before computing level sets. After bending
round the barrier lines, the ends of the front go down along the
negative sides of the barriers and then move along the boundary
of the terminal set. Parts of the front near the right and left sides
of the terminal set and far from it move with different velocities.

-0.2 |

-0.4

-0.6 |

-0.8
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If we consider immovable player E for the same value a =-0.1,
an additional usable part in the form of lower semicircle occurs

on JM . The upper usable part is the upper semicircle on IM . o, b

Parts of the fronts above set M and below it propagate at different
velocities.

a=—0.1, v=0

Tf —

33




For variant 7, there is also an additional lower usable part.
However, both lower and upper usable parts are smaller
than a semicircle. The right and left barriers emanating from
the endpoints of the upper usable part are semipermeable
curves of the families A1+ and A@-21+ respectively.
They terminate, as expected, on horizontal line y = 0.3.

The left and right barriers emanating from the endpoints of
the lower usable part are semipermeable curves of the
families A-12- and A@-22- They terminate on horizontal
line y=-0.3.

Fronts generated by the upper and lower usable parts
encounter attime 7 = 1.41.

0.4

0.2

-0.2

-0.4
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=0, 7/ =3

a= —0.6, v

0

Here, we see that lower parts of the fronts propagate more rapidly comparing to variant 6 where v

as well but the value of a is greater.
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Y
a=—1, v=20.3

Tr = 3.28

| Reeds and Shepp’s car

=

=—1,v=0
7= 2.25

Here, computation results for variants 9 and 10 are presented.
The level sets are symmetrical with respect to both horizontal
axis x and vertical axis y. For variant 9, there still exist
discontinuity lines of the value function near the set M.
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Reachable sets for a point initial state

Let us now present results of construction of level sets for a point terminal set. It will be assumed that player E is
immovable. As it was already mentioned, in this case, level sets of the value function coincide with reachable
sets of player P written in geometric coordinates.

Due to specifics of our numerical procedure, the terminal set is considered to be a small circle of radius 0.01
instead of a point.
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Car with the reinforced dynamics

Tp = W SIn @
UYp = W COSs 0

0 = u ul <1, a<w<l1

Lpo =0, Ypo =0, 0, =0

r = —Y U

Y= T u—w u| <1, a<w<1

Y
M — {0} % X

The dynamics of player P in original and reduced coordinates are presented.



Families of semipermeable curves
for the reinforced car

A(l)’1’2

Here, families of semipermeable curves of the first and second type are shown for a > 0. Every semipermeable curve is a

semicircle. Those curves of the family A™-22 which come to the interval (-a,a) on the horizontal axis are smoothly glued
to curves of the family A(-12 Similarly, curves of the family A@-12are smoothly glued to curves of the family A(2-22,

A(2),1,2

If a =0, the shape of the families remains the same but the above mentioned smooth junction is not possible.

If a <0, semipermeable curves do not exist.
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On this and two next slides, one should pay attention to
the size of the area which is centered at the origin and where
the value function is discontinuous.

|Isaacs-Dubins’ car
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18
16
14

1.2 |

0.8 -
0.6
0.4

0.2

-0.2 U
-1.5

Here, the value of a is close to zero. As a consequence,
barrier lines are absent.

Yy

1
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Lo =—0.001, t; =18

-0.2

I
-0.15

I
-0.1

I
-0.05
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0.05
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I
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Ly = 1.8

a = —0.2,

[y

Y .

a=—-0.6, tr =18 |




Y

For a = -1, we obtain Reeds and Shepp’s car.

a=—0.8, ty =1.8

46
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IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 8, AUGUST 1994

Set of Reachable Positions for a Car

Philippe Souéres, Jean-Yves Fourquet, and Jean-Paul Laumond

Abstract-—This paper shows how to compute the reachable positions
for a model of a car with a lower bounded turning radius that moves
forward and backward with a constant velocity. First, we compute the
shortest paths when the starting configuration (i.e., position and direction)
is completely specified and the goal is only defined by the position with the
direction being arbitrary. Then we compute the boundary of the region
reachable by such paths. Such results are useful in motion planning for
nonholonomic mobile robot.

1630

In some papers, the reachable sets for Reeds | =
and Shepp’s car are studied analytically. ; '
Here, an abstract of the paper by P.Soueres,
J.-Y.Fourquet, and J.-P.Laumond is presented.
Also, a figure showing reachable sets for
different time instants is given (in our notation,
axis y corresponds to the horizontal axis).

Fig. 7. Variation of the set of reachable positions.
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Reachable sets at a given time for a > 0

For a <0, reachable sets at a given time coincide with time-limited reachable sets. For a> 0, they are different.

Let us show how the reachable sets are looking for a > 0.

48



49

SIAM J. ConTROL
Vol. 13, No. 1, January 1975

PLANE MOTION OF A PARTICLE
SUBJECT TO CURVATURE CONSTRAINTS*

E. J. COCKAYNE anp G. W. C. HALLY}

Abstract. A particle P moves in the plane with constant speed and subject to an upper bound
on the curvature of its path. This paper studies the classes of trajectories by which P can reach a given
point in a given direction and obtains, for all ¢, the set R(t) of all possible positions for P at time ¢,
thus extending the results of several recent authors.

216 E. J. COCKAYNE AND G. W. C. HALL

Appendix. Diagrams of R(¢) drawn by computer plotter.

For the case a =1 (Isaacs-Dubins’car),

a theoretical investigation of the structure

of reachable sets at a given time is done

in the paper by E.J.Cockayne and W.C.Hall.
Here, an abstract of this paper and a figure
showing a reachable set are presented.

FIG. A.1. Region R(t) for vt/p = Tn/8
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a=0.999, 7, = 1.8
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On this and two next slides, computed reachable sets at a given time are presented for three values of parameter a.
The computation is done up to t,=1.8.
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a=038, tr=1.238

Y

— t=0.2
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Influence of parameter a
on the size of reachable sets

The final group of figures shows the influence of parameter a on the size of both reachable sets at a given time and
time-limited reachable sets. Three values of a are used: a =1, 0.8, 0.2. On each slide, the time instant for which the
reachable sets are computed is given at the upper line.
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Reachable sets at giventime, ¢ =0.3
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Reachable sets at given time, ¢
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