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It is known that time-optimal control problems with dynamics that describe a realistic inertial car possessing
variable magnitude of the velocity are very complicated to study. In the work, a relaxed case where instantaneous
variations of the velocity magnitude are allowed is considered.

A pursuit-evasion problem that is analogous to the famous “homicidal chauffeur” game by R.Isaacs is studied.
Note that the classical statement of this problem assumes a constant magnitude of the linear velocity of the car.
In the case of the variable magnitude of the linear velocity, the pursuer becomes “more dangerous”.

Numerical algorithms are applied to the computation of level sets of the value function (of solvability sets of the
pursuit-evasion problem). The dependence of these sets on a parameter that defines the bounds on the magnitude
of the velocity is investigated.

Also, families of smooth semipermeable curves related to the dynamics under consideration are explored.
The knowledge of these families allows to verify the correctness of the numerical construction of lines on which
the value function is discontinuous.

Together with the pursuit-evasion game, control problem corresponding to the immovable evader is considered.
Both time-limited reachable sets and reachable sets at a given time are computed.

The results presented in this work are based on the methods being developed by the Ekaterinburg scientific school
on optimal control and differential games.
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Collection of
survey papers

This book edited by J.-P. Laumond from LAAS laboratory
in Tolouse was published in 1998. It contains many
models of robot car dynamics.
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On this slide, the simplest model is shown. Here, xp, yp are geometric coordinates of the car, θ is the angle between
the velocity vector and the vertical axis. The magnitude of the velocity vector is constant. R. Isaacs used intensively
such a model in his works on differential games.
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Report by
R. Isaacs, 1951

This is the title page of Isaacs´ report on pursuit
games issued in 1951.
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Book by
R.Isaacs, 1965

The cover of the famous book by R. Isaacs, 1965.
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In papers on theoretical robotics, the car model with constant magnitude of the linear velocity is often referred as
Dubins´ car. The name is due to L.E.Dubins whose paper of 1957 contains a theorem on the number and type of
switches of an open-loop control that brings the object from a given state with a specified direction of the velocity
vector to a terminal state for which the direction of the velocity vector is also prescribed.
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The paper by A.A.Markov

Four problems related to R.Isaacs and L.E.Dubins’ car have been already considered
by A.A.Markov in the paper “Some examples of the solution of a special kind of
problem on greatest and least quantities”published in “Soobscenija Charkovskogo
matematiceskogo obscestva", Ser.2,1, NN5,6 (1889) pp. 250-276 (in Russian).
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Reeds and Shepp´s car

The next, more complicated, model described in the book “Robot Motion Planning and Control” is called Reeds and
Shepp´s car. The new factor w is a control which can change instantaneously the magnitude of the linear velocity.
If w switches from a positive value to a negative one, then the direction of the velocity vector changes as well. In
this model, θ is the angle between the vertical axis and the direction of forward motion that corresponds to w =1.
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a is a fixed parameter of the problem

In this paper, an intermediate model between Isaacs-Dubins´ car and Reeds and Shepp´s car will be investigated. The
constraint on the value of the angular velocity u does not depend on the magnitude of the linear velocity. The value w of
the linear velocity can change instantaneously within the bounds where a is a fixed parameter that fulfils
the condition . If a = 1, we have Isaacs-Dubins´ car. For a = -1, we arrive at Reeds and Shepp´s car.
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Classical homicidal chauffeur game

Here, the dynamics of the classical “homicidal chauffeur” problem by R.Isaacs is shown. Pursuer P controls the car
whose linear velocity has constant magnitude. Evader E is a non-inertial object that can change the value and direction
of his velocity v=(v1,v2)T instantaneously. The maximal possible value of the velocity is specified. By a given circular
neighborhood of his current geometric position, player P tries to capture player E as soon as possible.
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From Isaacs-Dubins´ car to Reeds and Shepp´s

car in the homicidal chauffeur problem
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Dissertation by
A.W. Merz, 1971

A complete solution to the “homicidal chauffeur” problem
in the classical statement of R.Isaacs is obtained by
A.W.Merz in his PhD thesis supervised by J.V.Breakwell.
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Reinforced homicidal chauffeur

We will investigate the variant of the “homicidal chauffeur” game with the reinforced pursuer.
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Isaacs´ transformation

Let h be the standard direction from the back to the front of the car. Using Isaacs´ transformation, we pass to the above
two-dimensional dynamics. So, we deal with time-optimal problem in the plane.
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Level sets of the value function

We have developed an algorithm for
the computation of level sets of the
value function. In other words, our
numerical procedure gives isochrones
or wave fronts. The question is how they
are looking in the differential game under
study and how they depend on parameter a .
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Families of semipermeable curves

First of all, for dynamic problems in the plane, it is very useful to investigate families of semipermeable curves. These
families depend on system dynamics only. Based on the knowledge of families of semipermeable curves, one can
determine lines in the plane on which the value function of time-optimal differential game can be discontinuous.
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Roots of the Hamiltonian

Smooth semipermeable curves are constructed due to analysis of roots of the Hamiltonian. For every fixed ,
the dependency is analyzed and roots of the equation are considered. Thereby,
one can assume that .
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Separation of vectograms

Let be the root of equation . The root corresponds to the separation of vectograms of players P and E.
The half-plane which contains the vectogram of player P is labeled with “-”, the opposite half-plane containing the vectogram
of player E is provided with sign “+”. The semipermeable direction is orthogonal to . We distinct two cases. In the first case,
the semipermeable direction is obtained by rotating the vector through 90° clockwise; in the second case, the semipermeable
direction is produced using counterclockwise rotation of through 90°.
Smooth curve whose tangent vector at every point coincides with a semipermeable direction is called semipermeable.
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Strict roots of the first and second type

Assuming clockwise traveling around circumference of the unit circle, we have
strict root minus to plus in the first case and strict root plus to minus in the
second case.The picture on the right explains the role of semipermeable
curves in the time-optimal game. The capture set B is completely defined by
semipermeable curves of the first and second type emitted backward in time
from, respectively, points c and d of the usable part.

B

19



Families of semipermeable curves
in the classical homicidal chauffeur problem

For the classical homicidal chauffeur problem, smooth semipermeable curves are involutes of two thick arcs on the boundary
of circles B* and A* . The arrows correspond to traveling along semipermeable curves backward in time.
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Families of semipermeable curves for
homicidal chauffeur dynamics

In the classical problem, we have two families Λ(1),1 and Λ(1),2 of smooth semipermeable curves of the first type and two families
Λ(2),1 and Λ(2),2 of the second type. If player E is immovable, then ν = 0 and sets B* , A* become points. Thereby, the involutes
are replaced by semicircles.
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Basis for families of semipermeable curves
in reinforced homicidal chauffeur dynamics

For the reinforced homicidal chauffeur dynamics, the situation is more complicated. However, all families can be constructed.
On this slide, those arcs which are used for the construction of smooth semipermeable curves in the case are shown
in red. Semipermeable curves are involutes of these arcs.
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Families of semipermeable curves for
reinforced homicidal chauffeur dynamics ( )

Here, the families of smooth semipermeable curves of the first and second type corresponding to the extremal control u = 1 are
presented for the case . The families that correspond to u = -1 can be obtained using reflection about the vertical axis.
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Families of semipermeable curves for
reinforced homicidal chauffeur dynamics ( )

On this slide, those arcs which
are used for the construction of
smooth semipermeable curves in
the case are marked
with red color. Below, the families
corresponding to the extremal
control u = 1 are presented.
The other families can be
obtained by reflections about the
horizontal and vertical axes.
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Level sets of the value function

and reachable sets

Let us now present results of computation of level sets of the value function . Note that if
(player E is immovable), level set can be interpreted (for geometric coordinates) as a time-limited reachable
set of player P corresponding to time provided that the initial set is M and the initial direction h is oriented along axis y.
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Backward construction of level sets
of the value function

The collection of all points such that
is called the front corresponding to the

reverse time . Our computational procedure for
the construction of level sets runs backward in time on the
interval . The construction starts with the computation
of usable part on the boundary of the set M . We use
an automatic adjustment of the step width ∆ of the backward
procedure. The initial value of ∆ which is usually equal to 0.01
can decrease up to ten times in the course of construction.
On the next slides, the fronts are depicted with the step being
a multiple value of the initial step ∆ . For example, the fronts
on slide 28 are shown with the step 0.1. The sets Q and M are
approximated by inscribed regular n-sided polygons. Usually,
n = 8 and n = 30 for Q and M, respectively.
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Computed variants

On the top, the dynamics and bounds on controls of the players are given once more. The terminal set is a circle of radius 0.3.
On the bottom, variants for which numerical results will be presented are listed. The variants of the right column correspond to
an immovable player E.
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Classical variant of the homicidal
chauffeur problem, ,

M

For the first variant (classical
homicidal chauffeur problem),
the value function is discontinuous
on two barrier lines emanating from
the right and left endpoints of the
usable part. One can verify that these
lines are semipermeable curves of
families Λ(1),1 and Λ(2),2 , respectively.
After the termination, the barriers are
continued by the lines formed of the
corner points on the fronts of the level
sets. The value function is not
differentiable on these lines.
After bending round the right and left
barriers, the right and left parts of the
front meet on the vertical axis at time

. A united front occurs.
Further constructions until the time

are done for the inner
part of the united front only.
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Isaacs-Dubins´ car

The principal difference between results for variants 1 and 2
is the absence of corner points on the fronts after bending
round the barrier lines in variant 2. The barrier lines
terminate on the horizontal axis.
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In the computations, the circular constraint Q on
the control of player E is approximated by a regular
octagon. This slide presents results for variant 3.
An enlarged fragment on the right shows additionally
sets and . These sets are octagons as well.
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In variant 4, player E is immovable. The computation shows that the value function is continuous everywhere outside set M.
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In variant 5, the value of parameter a is negative. Note that
barrier lines become shorter than those ones in variant 3.
The knowledge of families of semipermeable curves allows us
to predict this fact before computing level sets. After bending
round the barrier lines, the ends of the front go down along the
negative sides of the barriers and then move along the boundary
of the terminal set. Parts of the front near the right and left sides
of the terminal set and far from it move with different velocities.
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If we consider immovable player E for the same value a = -0.1,
an additional usable part in the form of lower semicircle occurs
on . The upper usable part is the upper semicircle on .
Parts of the fronts above set M and below it propagate at different
velocities.

M
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For variant 7, there is also an additional lower usable part.
However, both lower and upper usable parts are smaller
than a semicircle. The right and left barriers emanating from
the endpoints of the upper usable part are semipermeable
curves of the families Λ(1),1,1+ and Λ(2),2,1+ , respectively.
They terminate, as expected, on horizontal line y = 0.3.
The left and right barriers emanating from the endpoints of
the lower usable part are semipermeable curves of the
families Λ(1),1,2− and Λ(2),2,2− . They terminate on horizontal
line y = -0.3.

Fronts generated by the upper and lower usable parts
encounter at time .
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Here, we see that lower parts of the fronts propagate more rapidly comparing to variant 6 where
as well but the value of a is greater.
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Reeds and Shepp´s car

Here, computation results for variants 9 and 10 are presented.
The level sets are symmetrical with respect to both horizontal
axis x and vertical axis y. For variant 9, there still exist
discontinuity lines of the value function near the set M.
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Reachable sets for a point initial state

Let us now present results of construction of level sets for a point terminal set. It will be assumed that player E is
immovable. As it was already mentioned, in this case, level sets of the value function coincide with reachable
sets of player P written in geometric coordinates.
Due to specifics of our numerical procedure, the terminal set is considered to be a small circle of radius 0.01
instead of a point.
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Car with the reinforced dynamics

The dynamics of player P in original and reduced coordinates are presented.
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Families of semipermeable curves
for the reinforced car

Here, families of semipermeable curves of the first and second type are shown for a > 0. Every semipermeable curve is a
semicircle. Those curves of the family Λ(1),2,2 which come to the interval (-a,a) on the horizontal axis are smoothly glued
to curves of the family Λ(1),1,2. Similarly, curves of the family Λ(2),1,2 are smoothly glued to curves of the family Λ(2),2,2.

If a = 0, the shape of the families remains the same but the above mentioned smooth junction is not possible.

If a < 0, semipermeable curves do not exist.
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Isaacs-Dubins´ car

On this and two next slides, one should pay attention to
the size of the area which is centered at the origin and where
the value function is discontinuous.
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Here, the value of a is close to zero. As a consequence,
barrier lines are absent.
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For negative values of a , the level set of the value function
grows in all directions (although with different velocities)
as increases.
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For a = -1, we obtain Reeds and Shepp´s car.
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In some papers, the reachable sets for Reeds
and Shepp´s car are studied analytically.
Here, an abstract of the paper by P.Soueres,
J.-Y.Fourquet, and J.-P.Laumond is presented.
Also, a figure showing reachable sets for
different time instants is given (in our notation,
axis y corresponds to the horizontal axis).



Reachable sets at a given time for a > 0

For a < 0, reachable sets at a given time coincide with time-limited reachable sets. For a > 0, they are different.

Let us show how the reachable sets are looking for a > 0.
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For the case a =1 (Isaacs-Dubins´car),
a theoretical investigation of the structure
of reachable sets at a given time is done
in the paper by E.J.Cockayne and W.C.Hall.
Here, an abstract of this paper and a figure
showing a reachable set are presented.
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On this and two next slides, computed reachable sets at a given time are presented for three values of parameter a.
The computation is done up to tf = 1.8.
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Influence of parameter a
on the size of reachable sets

The final group of figures shows the influence of parameter a on the size of both reachable sets at a given time and
time-limited reachable sets. Three values of a are used: a = 1, 0.8, 0.2. On each slide, the time instant for which the
reachable sets are computed is given at the upper line.
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Reachable sets at given time,
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Reachable sets at given time,
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Reachable sets at given time,
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Reachable sets at given time, 57



Reachable sets at given time,
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Reachable sets at given time, 59



Time-limited reachable sets,
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Time-limited reachable sets,
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