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1. Problem statement

M-approaching DG with simple motions:

ẋ = p+ q, x ∈ Rn, t ∈ [0, ϑ] (fixed time),

p ∈ P (1st player), q ∈ Q (2nd player),

P , Q are closed convex sets in Rn.

M is a closed terminal set:
the 1st player aims x(ϑ) ∈ M , the 2nd player aims x(ϑ) ̸∈ M .

Consider the set

W := {(t0, x0) ∈ [0, ϑ]× Rn : the 1st player guarantees that x(ϑ) ∈ M}.

W is widely known as the maximal stable set (Krasovskii bridge),
or viability kernel, or Pontryagin’s alternating integrals.

How to describe exactly and constructively the t-sections W (t), t ∈ [0, ϑ],
of the set W?
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2.1 Some known results: Cauchy problem for HJBI equation

wt(t, x) +H(wx(t, x)) = 0, t ∈ (0, ϑ), x ∈ Rn,

w(ϑ, x) = σ(x), x ∈ Rn,

H(s) = max
q∈Q

⟨s, q⟩+min
p∈P

⟨s, p⟩ = ρ(s;Q)−ρ(s;−P ), σ(x) :=

{
0, x ∈ M,

+∞, x ̸∈ M,

ρ(s;A) := sup{⟨s, a⟩ : a ∈ A} (support function).

There exists a unique lower semicontinuous generalized solution w(t, x)

(minimax or viscosity) [Subbotin: 1995], [Bardi, Capuzzo-Dolcetta: 1997]
and

W = {(t, x) ∈ [0, ϑ]× Rn : w(t, x) = 0}.
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2.2 Some known results: Hopf formula for convex M

M is convex ⇒ σ(x) is convex.

The Hopf formula:

w(t, x) = sup
s∈Rn

inf
y∈Rn

[σ(y) + ⟨s, x− y⟩+ (ϑ− t)H(s)] =

= sup
s∈Rn

[⟨s, x⟩+ (ϑ− t)H(s)− σ∗(s)] =

=
[
σ∗(·)− (ϑ− t)H(·)

]∗
(x),

σ∗(s) = sup
s∈Rn

[⟨s, x⟩ − σ(x)] (the Legendre conjugate)

[Hopf: 1965], [Bardi, Evans: 1984], [Ishii, Barron, Alvarez: 1999]
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2.3 Some known results: Pshenichnyi – Sagaidak formula

[Pontryagin: 1967], [Pshenichnyi, Sagaidak: 1970]

M is convex ⇒ W (t) = (M − (ϑ− t)P ) ∗− (ϑ− t)Q.

Here,

A+B := {d : d = a+ b, a ∈ A, b ∈ B} is an algebraic (Minkowski) sum,

A ∗− B := {d : d+B ⊆ A} is a geometrical (Minkowski) difference.

Define the operator

M → Tτ(M) := (M − τP ) ∗− τQ, τ = ϑ− t

(Tτ is known as the “programmed absorption operator”.)

We have

W (t) = Tϑ−t(M) = {(t, x) : sup
s∈Rn

[ ⟨s, x⟩ − ρ(s;Tϑ−t(M)) ] 6 0} = . . .

= {(t, x) : sup
s∈Rn

[ ⟨s, x⟩−ρ(s;M)+(ϑ−t)H(s) ] 6 0} = . . . = {(t, x) : w(t, x) 6 0}.
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2.4 Some known results: semigroup property of Tτ

[Pshenichnyi, Sagaidak: 1970] M is closed (nonconvex) ⇒

W (t) =
∩

τ1+τ2+···+τm=ϑ−t

Tτ1(Tτ2(. . . Tτm(M) . . . )) =: T̃ϑ−t(M).

(Operator T̃τ is called an operator with multiple recomputation
or “positional absorption operator”.)

Operators Tτ and T̃τ are equal if we have

Tτ1(Tτ2(M)) = Tτ1+τ2(M) (1)

∀ τ2, τ1 + τ2 ∈ [0, τ ] (semigroup property).

We have
M is convex ⇒ (1).

Our problem is reduced to the following one: how to formulate conditions
for M , P , Q, and τ1, τ2, which provide equality (1).
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3.1 Our results: Theorem ( R2; nonconvex M )

Suppose

(T1) M ⊂ R2 is closed & bounded & simply connected (without holes);

P ⊂ R2 is a convex k-polygon, k ≥ 2 (a segment if k = 2);

V is a set of external normal vectors to P (for k = 2: V = {ν,−ν}, ν⊥P );

for any x ∈ M and ν ∈ V, the set

ΠM(x, ν) := M ∩ {z ∈ R2 : ⟨z, ν⟩ 6 ⟨x, ν⟩}
is connected;

(T2) for any τ ∈ [0, ϑ], the set Tτ(M) ̸= ∅ is connected; and for any
ν ∈ V, the function

τ 7→ δν(τ) := ρ(−ν;M)− τH(−ν)− ρ(−ν;Tτ(M))

is non-decreasing in [0, ϑ].

Then the operator Tτ has a semigroup property over the segment [0, ϑ].

(And, consequently, W (t) = Tϑ−t(M), t ∈ [0, ϑ].)
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3.1 Our results: the main geometrical assumption
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3.2 Our results: Proposition (if M is a polygon)

Suppose M is a non-degenerate polygon and condition (T1) of
the theorem is satisfied.

Then ∃ ϑ̄ > 0 such that

Tτ1(Tτ2(M)) = Tτ1+τ2(M), τ2, τ1 + τ2 ∈ [0, ϑ̄].

(And, consequently, W (t) = Tϑ̄−t(M), t ∈ [0, ϑ̄].)
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3.3 Example 1: ∃ ν ∈ V ∃x ∈ M : ΠM(x, ν) is not connected
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3.3 Example 2: Tτ2(M) is not connected
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3.3 Example 3: δν(τ2) > δν(τ1 + τ2)

δν(τ) := ρ(−ν;M)− τH(−ν)− ρ(−ν;Tτ(M))
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3.3 Example 4: δν(τ2) > δν(τ1 + τ2)

δν(τ) := ρ(−ν;M)− τH(−ν)− ρ(−ν;Tτ(M))
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