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A GENERAL PROBLEM
" Given nXxX1

x = f(x,u,v) , ’
initial state xo

where the control sets U, V are independent of the state x, find the control
histories wu,v to be chosen by players 1 and 2, so as to minimize and maximize
respectively the value of a certain function M(x.) of the "terminal state" X,
at the moment t, when the state reaches a certain "terminal manifold” C(x) = 0.

(Let us assume that all possible paths reach this terminal manifold in finite time.)

OUTLINE OF THE SOLUTION
Let J(x) denote the value of M(xf) resulting from "optimal play"” by both

players when the initial state is =x. Then (this is Isascs' "main equation”)

0 = Min Max fo(x.u,v) = Min Max g% (1)$
uel vey u€ey VEV

thereby defining optimal controls (not necessarily unique) in the "closed~1loop"
form u = u*(x), v = v*(x). The optimality is an immediate consequence of (1):
Player 1 by using u*(x), can prevent the path from moving off of the surface
J(x) = J(xo) towards higher J-values; 2fnce he can prevent M(xf) from exceeding
J(xo). Similarly, player 2, by using v (x), can prevent M(xf) from falling
below J(xo). The determination of the optimal controls u*(x), v*(x) rests on
the solution of the partial D.E. (1) for the function J(x), subject to
J(x) = M(x) on C(x) = 0.

Suppose now that J(x) is twice~differentiable inside some region @R. Partial
differentiation of (1) w.r.t. x at any point in the interior of @R shows that

* * * *
0 = J FGu(x),v(x) +J (£ 4 Taty + 2wy <
But J.f su' = J £ " 0, wheth t u * 11
u x u*ux = J v*vx = » whether or not u (x), v (x) e on the
.boundaries of sets U, V. Hence
3 (: Jxxf) = -3z, @)

as long as the optimal path remains in the interior of R
If C(x) = 0 is a smooth (n-1)-dimensional manifold, the terminal gradient

I T A R

Jx(xf) at any Xe is uniquely determined by (1) together with J(x) = M(x} on
C(x) = 0. The "adjoint equations" (2) may be integrated backwards from t, alon
with the path equations x = £(x,u’,v’) , with u* and v determined by (1)
in terms of x and Jx. In this way J(x) and the optimal controls u*(x),
v*(x) can be constructed in the interior of a region @R bordered by C(x) = O.
(If C(x) =0 1is a manifold of dimension = n-2, the terminal gradient Jx(xf)
and L will together still involve just n-1 free parameters, and the backward
construction may proceed.)

Remark, Typically, the state-space will be divided into regions @® in which J(x
is twice-differentiable, separated by '"singular surfaces" across which the gradie

J is discontinuous. The determination of such singular surfaces is crucial to
X

the solution of most problems.

EXAMPLES:

Example 1 (cf. Isaacs [1], p. 76)

x = A(x,y)v - B(x,y)sin u
} = =1 « B(x,y)cos u N lvl = 1, Yo >0
C(y) = y (the terminal surface 1s the x-axis); M(x,y) = some M(x);

suppose further 0 < B(x,y) <A(x,y) <1, so that termination, starting with

y0 > 0, 1s assured.

0

L}

Min Max [JX[A(x,y)v ~ B(x,y)sin u] + Jy[—l - B(x,y)cos u])
u v
lvl§1

*
v = 8gn Jx

(sin u*,cos u*) H to (Jx,Jy)

U

. * *
A(x,y)lsin u | = cos u + B(x,y)
This result could have been obtained geometrically by obéérving that player 2
can dictate the sigﬁ of x to his advantage, and that player 1 therefore strives
i

‘ *
minimize Ig%l. To do this he must choose u = u so that (see Fig., 1) the direc
.« . *
(sin u*,cos u*) is 1 to the resultant (x,y). This determines u

*
A(x,y)|sin u*] ~cosu = B(x,y) .



Figure 1,

On. the x-axis, Jx = M'(x), which determines the sign of sin u. Figures 2 a,b,c,
show the general appearance of the optimal paths for various types of function
M(x); 1in 2a, M(x) has a single minimum, and the paths move right or left accord-
ing as the position lies to the right or left of a certain "dispersal line," on
which player 2 can choose either direction, with player 1 reacting as soon as he
becomes aware of player 2's choice. Note that, in this two-dimensional state-space,
the paths are the "surfaces" J(x,y) = constant, and that the gradient (Jx,Jy),
which determines player 2's choice of direction (sin u*,cos u*), is discontinuous
across the dispersal line. In Fig. 2b, M(x) has a single maximum, and there is a
whole region (shaded) of positions from which player 2 can achieve Max M(x).

In Fig. 2c, M(x) has one local maximum and two local minima; there are now

three different dispersal lines as well as a finite region (shaded) from which

player 2 secures the local maximum value of M(x).
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Example 2 "Lady in the Lake"” ([1], reprinted edition, p. 386)

P has speed 1, confined to the perimeter of a circle, radius R
E has speed y < 1, swimming inside the circle.

E wishes to land on the perimeter as far as possible from P.

Figure 3 shows the appropriate coordinate

system, 8 denoting the angular position of E
relative to P, (~n= 65 n), and the angle

¥ determines E's direction.

pa sin s
R i LS
r o= ycos ¥
mo= Je,l .
0 = MinMax'cho'é\y+J (M-E)
r 2] r R
s N l
|s|=l
Figure 3.
*
. s = sgn Je—constuntzsgn ef
* *
(cos ¥ ,stn vy || to 0, L u))
r r 6
= T-%sinﬂ/*sgnef = 0

Hence E runs in a straight line tangent to a circle of radius YR (see Fig. 4).
This result could have been obtained geometrically by noting that E's motion in the

)

relative coordinate system attached to P 1s the vector sum of his own velocity
;E and a velgcity ¥ obtained by rotation about the center, opposite to P's
motion, with angular velocity % . As in Exsmple 1, the optimal direction for
is 1 to the resultant velocity V} + ii Since W’ is L to E's radius vecto
and since |;;|/|;n = %E , E's velocity must be along a tangent to the yR-circl

and the resultant path, whose tangent is along ;}

+ 7. is an evolute of this
circle.

This construction for E's optimal direction fails if E 1lies inside the y
circle. However, E can always start by moving to the relative position 6 = r«
first inside and later on the yR-circle, inside of which she has angular advant
Strictly speaking, E, not knowing P's instantaneous choice of direction, cann
maintain © = g, even inside the yR-circle. However, she can keep within an
arbitrarily small angle ¢ of the position © = 5 as she moves outward toward
r = YR, From the position r = yR, 6 = g she then breaks right or left along
the tangent. Assuming that Y > .217, she does achieve a positive terminal

2

angular separation: Bf = 7+ Cos-ly - % -y .

From some starting positions E can do better (see Fig. 5). The right and
left evolutes intersect on 6 = y, a dispersal line. The shaded region consist:
of positions from which E must return to the inside of the yR-circle.
with Lion, the

James Flynn has considered a relsted game "Lion and Man,"

pursuer, slower than Man, the evader, and both p-P.

confined to a circular arena. In particular,

if Man is constrained to remain on the peri-
meter of the arena [2], the problem is

essentially the same as "Lady in the

Lake;" E, in trying to reach the

shore as far as possible from P, is

in effect trying to come as close as
possible to the position P' opposite to
P. Now, however, the closest approach

occurs before L reaches the perimeter (see

p'
Fig. 6), in fact, on the tangent from M Figure 5.

to the yR-circle, this distance of closest
approach being D = R(A/l—y2 - YCos—lr). Again, L can do better than D from
some starting positions, and the cross-hatched region indicates positions which

are initially closer than D but from which the distance increases immediately.



Figure 6.

"
Example 3 "Homicidal Chauffeur' and Related Games (in the plane)

Suppose P has speed 1 and maximum turn-rate 1

E has speed y < 1 and can change direction at will

P wishes to come as close as possible to E, who wishes to maximize the distance
of closest approach. (This 1s really the "Game of Kind" in Isaacs' terminology
’

as opposed to the "Game of Degree" in which the payoff is the time taken to come
within a specified capture distance.)

-
If r denotes the P ~
position of E relative to P, up, g denote unit-

vectors H to the motions of E,P, & denotes the direction of GP, measured from
some fixed
ed reference direction, UP denotes P's turn-rate, then:

P ~ a
= TuE - uP(Ct)
a = wy oo el = 1
fhe main equation (1) becomes
0 = Min Max lJ - (yi - 4_(a
" S p(@) + Ty,
P E
w_[=
ol
ar 1s |
s t
. E o J? )
mt
p = - sgn Ja

he =adjoint equations (2 h i
) show that the gradient J;) is constant implying that E

Funs in a straight line (at least, as long as the path remains inside a region Q
\n which J dis twice-differentiable).
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The motion can be described in a relative coordinate frame centered at P

and oriented along P's direction of motion., If, in this frame, E's bearing fr

)

§

lh\
1

p is © and E's heading is H (see Fig. 7), then

r = -cos © + ycos(H-8)
¥ Figure 7. )
5 = 8in 0 _ ¥ sin@m-0)
r P r P
*
The main equation in these variables shows that mP = sgn Je and
* - *
H =6 + Tan 1(Je/rJr). ”P is plecewise constant, equal to + 1 (unless Je we
*

to remain zero for some interval of time), while H in this coordinate system
not constant, but (sin H*,cos H*) rotates at a rotate opposite to the rate wp
of the frame.

In this game M = r, so that at termination: Jr =1, Je= g, Hf = Bf.
The game ends at } = 0; i,e., C= ;lﬂ=e= y-cos ©; hence ef =4+ Cos™ T

The paths may be constructed backwards for any final separation Tl Je i
found to have the sane sign &s ef immediately prior to termination. Hence P
turns towards E who runs in a straight line which is directly away from P at
closest approach. The paths of E 1in the relative frame may be easily construc
Alternatively, we may note that the relative coordinate frame is rotating at uni
angular rate, clockwise about the right turn-center C+ or counter-clockwise
about the left turn-center C_. This angular rate is the same as in the game
"Lady in the Lake" if R, there, is taken to be unity. Hence the paths in the
relative frame are again evolutes of circles, now having radius 7y and centered
at C+ or C_, according as P is turning right or left ([1],[3]). This constru

clearly fails if r2 + YZ > 1., This case will be discussed later,

£
Figure 8 shows the paths for various rf, with ri + 72 <1, all terminati:

at ef = + Cos—lr. 1f Te = YSin-lr +~/1~;2 ~ 1, the paths originate on the
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dispersal line © = 0, on which E has a choice as to whether to break right or
left. There is a finite "capture region" corresponding to any such rei if E
is outside this region he can prevent approach to within less than rf, simply by
running 1 to the contour for this r whenever the relative position reaches

£
this contour. However, E cannot prevent approach to within any r exceeding

the critical value (rf)c = TSin-lr + 1—72 -1, since P can movef E onto the
line © = 0 and hold him there until r = Y by first-of-all, if necessary, running
away to sufficiently large r, (rf)c is both the closest approach that P can
achieve from Ell starting positions and the largest separation that E can guarantee
from all starting positions except those within a finite capture region in front of
P. Note that E's optimal strategy, assumning that © = 0 for r > Y, 1s to wait
until r =y and then break right or left perpendicular to the relative position
at this instant , at which Jr = 0.

Figure 9 shows the capture region for a rectangular car, assuming a typical

relatively large turn-radius

Figure 9,
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Figure 10 shows the capture region for a similar rectangular car for the gan

"Suicidal Pedestrisn,” in which E is now trying to be captured and P to prev«

capture W 18 now -Je, but Je changes sign from + to - shortly before
° P
termination of the grazing path at a rear corner of the car; P turns initially

away from E, but near termination he turns towards E to prevent the rear corn

of the car from striking P.

Figures 11 a,b,c show the Surveillance Region in the game 'Surveillance

strives to minimize the maximum separation rf and

Evasion” [4 ], in which P
indicates those

E to maximize it. The Surveillance Region, for given Tos

positions from which the maximum separation does not exceed rf, so that P can

keep E within a surveillance range Toe Figure 1lla 1is applicable if

£ Ji? -1 le if
f3(T) =1 +/1-y" + y(4Sin "y) < T Figure 1lb 1is applicable

Jl—rz + y(n+ZSin-lr) < Ty < fs(r). Here Je changes sign at the point |
followed at !/

ne

f, )
and the right barrier, for example, starts with a left turn by P,

by a right turn.

\
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Figure 10.
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Figure lla.

Figure 1l1b,

2

- R -1

v o+ 1+ 7 - 28in 1) < T < fz(T): the Surveillance

'lustrated in Fig. 1llc. Here P's 1left turn is followed
-

but the barrier direction is now discontinuous at B.

'ro as the path approaches B (in forward time), E cannot
osite barrier [ 5],

81

Figure 1lc.

1f, on the other hand, we attempt to define a larger Surve
bounded by a composite with a corner at B' in Fig. llc, so the
a switch to a right turn by P, together with a continuation of
i to the arriving barrier, will lead to %E (J7) >0 and %T
a direction at B' (indicated by a dotted arrow) leading to ers
for Surveillance Region.

Returning to the "Homicidal Chauffeur” game, we look final

2

2
when r, +y > 1, It follows from the main equation that as

£
Jgo 0 of 8- 0. As shown by Isascs [1], 1t is not possible

with [7.], =0 if > +y>> 1, since this leads to ¥| <
o't £ ty

therefore, the terminal condition is one of relative equilibriv
positive ef, for example, this requires Hf > ef.> Cos_lr. 1
configuration, P and E are describing concentric circles, a
rate, of radii 1 and Yy respectively. The critical capture
moreover, is again reached by £ running L+ to the initial pc
© = 0, since E optimizes the range for his initial break to
implying that Jr is initially zero. Figure 12 shows the pat?

tm thie raca: T haae moved unit distance in reaching eguilib



T=1/Y

Figure 12,

Example 4 "Game of Two Cars" ([17, P.237)
of example 3 also has a maximum turn-rate, say w ,

Here the evader of E

vith ®W> 1. The heading H now becomes a third state variable, and the complete

squations are:

r = =-cos © + y cos(H-0)
(w)) =1

M P

e = —S—il—e - w4+ r sin(H-6)

r P r ’

(W) = w

. E

H = LuE - Lup

* *
‘he optimal turn-rates are Wp = sgn(Je+ JH), wE = W sgn JH a3 long as Je+ Iy

nd :’}l do not remain zero. The optimal paths of example 3, for which wE =0

nd Wp = + 1, are again optimal, being now "singular arcs” along which I
femains zero. However, from most initial states (r,8,H) a singular arc must

{e preceded by a "tributary arc" on which lel = w
In particular, the critical capture radius is now reduced to

(r )c =y Sin-lr +A/l-yz -1 - E (g - 1)

£

) [ 2
£ (case I) this doesn't exceed 1-y , as is evident from Fig. 13; E loses time
towards his optimal

tn turning from a neutral initial heading H =0 or H = n
Mrection which is again perpendicular to the initial relative position.

If (rf)c exceeds 1-72 (case I1) the situation shown in Fig. 12 must be

{imilarly modified, as shown in Fig. 14, The critical capture radius is now:

2
(rf)c =./1 + ¥ - 2y sin

DA

Figure 14 Critical Trajectories in Region Il

85
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Finally, if oS v <sin b (Case III1),
the minimum range occurs while E 1is still
surning toward his optimal direction, i.e.,
here is.no singular arc, and the following

'‘quations hold (see Fig. 15):

Q)c+ 1-cos 1= E (1 - cos wry)

sin 1 = y sin wey ,

Since Ty =0 and, as in Case 1,

Jo?¢, =0, H =6, and the final
nlatfve positi

Gitial one.

on is perpendicular to the

Note that as the product yw, which

Fig. 1 i 3
Yd E's lateral acceleration, approaches 1, 8. 15 Critical Trajectories in

Region III
ich is P's lateral acceleration ,
+ 0 and (rf)C 2 0. This agrees with a result due to Cockayne [6], proving that
(%
= 1- (r.) = 0.

£'c

IL Contours of constant (rf)c are shown in a parameter space (y

*k
*Se contours pass smoothly in and out of all 3 regions I, 11, III.

It remains to demonstrate that (rf) corresponds to the largest closed

;rier J(r,6,H) = constant. Backwards

struction of all the optimal paths,

Winating with r = (rf) y and with
c — — Boundaries of Regions

9, or He # 0. (no singular 1.0 L

aqct £

reveals that the surface formed by

paths does not reach the symmetry

14

kt% = 0 except at the neutral

lﬁ‘ H=0 and H = 4 This is

strg ed by 3 sections of this

AT
ace shown in Figs. 17 a,b,c.

iéglirely equivalent analysis
“béen carried out by S. Sharma
T, Miloh, not yet published. Vo
ond

Fig. 16 Variation with Sneede ana me..

) -i—;) in Fig. 16,

il itial states from which E can barel return to a neutral heading
those initial t y

or

reduce 6 O ZzZero tr h a head H = 0 before
to zero and E mus eac h ing

. on tu a e ar, ame terminating a H = e =
Y s constitutes preliminary g i g ’
- T Thi 1 t ti t 0

\
Ny
(Jl

e
e

(¢}
= 180
)H =0° b) H = 90° e)
a =

ig. 7 e er for Paramete on I
Fi 1 Appearanc of Barri f am rs in Region
g

= i g
e rrier e C € gs other than H =0 and x, by findin
The ba must b losed, at headin v

Thus if E wishes to return to H = 0, P will

5 before it is "too late.

= 0, for

which the terminal gradient l J 1 no longer unique, and the critical
g ( 2o ) s g ’

6 H

Y The paths of this preliminary game may be con-
trajectories end at r =7y - = .

see ref.
tructed backwards and P's strategy can be quite complex (

s

reaching the decision point (y - o
or

point (v + L, 0,m.

[7]). After

X 0,0) E then decides whether to break right
’

e m ar u on arises wishes to retur to t - decision
left A imil ituati i f E 1 t turn to the Thead-on
s s a s i s

Naturally E chooses the more accessible of the two decision

po O o [} e Ccr ca arrier he can barely reach one of them.
from points on h i
ints, and int t tical b i h b 1 h f th

P W . 18 a,b,c.
Typical composite barrier sections are shown in Figs b,
Y
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of the composite barrier are either dispersive (marked & in Figs. 18) or constitute
the paths themselves, so that Bernhard's conditions are met [SL
A more complicated barrier in a game with identical equations of motion
occurs in the "Role Determination" problem in which one airplane can destroy another
if the latter comes directly in front of the former. A compogite barrier separates
states (r,06,H) leading to victory by one or the other, Space does not permit
fqrther discussion of this interesting problem, but ip is described in ref, [8].
Example 5 The "Deadline Game” (l1], p. 265) and related problems.

For what initial positions of pursuer P (speed 1) and evader E (speed w > 1)
can E pass between P and the x-axis (see Fig. 19), moving in the positive x-direction
without coming closer to P than a specified distance £ ? The answer to this "game
of kind" is obviously obtainable if we can solve the following equivalent "game of
terminal payoff:" What is the distance £
of closest approach from any given starting y
position, assuming that P minimizes £ and E
maximizes £ while passing between E and the
x-axis?

The positions corresponding to any particular E,
value. of £ will lie on a surface in the 3~ \\\\\___?

dimensional state-space (x,yP,yE), where x x

xp-xE, and the limiting surface as

£ 5 0 can be obtained by purely geometrical
reasoning: £ > 0 provided that the Apollonius circle (of positions which E

denotes
Figure 19

can reach before P) does not reach the x-axis. As £ - 0 this circle must tend
to tangency with the x-axis (Fig. 20); 1.e., ¥, o ~/(EC)(PC) . But

Yp=y.
P "E EC PC EP 2
Ve =¥t —3 and —5 =~ = . Hence, in the limit, w Yp~¥g = W(EP),
w -1 w w -1

Figure 20
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which defines an ellipse, eccentricity 1/w, focus at P and minor axis along the
x-axis (dotted in Fig. 20).
Isaacs analyzes the optimal paths in this game and concludus that

For £ > 0,
PE

they have two phases: a first, straight-line phase during which the distance
is decreasing, and a second, curved, phase during which the distance PE remains

The second phase terminates with E's path tangent to the x-axis at

equal to £.
Ef(see Fig, 21) after which the

E, and P, now at Pf, moving directly towards

f :
distance PE increases. P's curved path is determined by the maximization of

dyE
- —— subject to

de
phase straight paths are tangent to the second phase curved paths.

PE = £, which determines, in turn, E's curved path. The first

y

X
E
Figure 21 f
FE roach distance
To verify these features, let J{:E,rp) éﬁncte the closest app :
i respectively.
£ corresponding to initial positions rE and rP of E and P, P

A d P
1f éE and BP denote unit-vectors parallel to the velocities of E an

respectively, the main equation is:

0 = Max Min (Jﬁ . wﬁE+ qq . BP)
T,
Pe Pp g P
= W Jﬂ - q; y
'E P
8 - tively.
with B, BP parallel to J_, J, respec y
T r
E P
tant along unconstrained
The gradient vectors Ja ’ {4 are, furthermore, cons
g Tp

S S .
paths, implying straight-line motion. Moreover, J(rE,rp) is a function J(x,yp,yE
' "
It now follows that the "controls” Y¥,¢

where x = Xp=Xg, SO that Jx = = Jx .

E P
(see Fig. 21) satisfy:
w 1 Ay
sin ¥ ~ sin ¢




During the final phase, however, E must observe the “"state constraint” that
EP not be allowed to decrease further. This requires that E's control Y be a

function ?(o,e) defined by
w cos(¥-6) = cos(¢-0) . (B)

[1f an objection is raised to this implicit assumption that E knows P's present
control ¢, E can achieve as small a change in EP as he pleases by utilizing
knowledge of P's control in the recent past, as close as necessary to the present, )

The constrained main equation, using coordinates r,e,yE in place of x,yp,yE

where r = EP, is:

Min (Jee(e,o,‘l) + Jy y5(6,4,¥)) = 0 ,
L] E
¥=¥(4,0)
dyg dyg
which implies the stationarity of ) w.r.t. o, [Obviously, T should be

maximized.] It is also easily verified, by comparing constrained and unconstrained
main equations in coordinates r.e,yE. that Y and ¢ must be continuous at
Junctions of the unconstrained and constrained paths. This proves that the
unconstrained paths are straight tangents to the second phase curved paths.

The curved path directions V¥,¢ are determined by (A) and (B) (see [9]) and it 1is

shown in (1] equation (9.5.9) that the resulting paths, for given £, are given

b,
Y L 2 )

Yp = 3 (kv -~ wO ~ w cosg)
w1
£
Yp = 3 (kw -~ w9 - cos@)
w -1 N
x = (wzsine w) + x > )
E w2_ 1 Ef
x = 2 (sin® - w) + x
P 2 E 4

w =1 £ )
where k = sz— 1+ Sin"1 % .

These paths may be constructed geometrically by rolling the Apollonius circle, now

2
of radius w{/(w -1), along a line through Ef parallel to the y-axis (see Fig. 22).

Indeed, the instantaneous center of rotation of the frame, rigidly attached to

E and P during the curved phases, must lie on this Apollonius circle. P, wishing

to maximize _ dyE where © measures the orientation of this frame, chooses the
B de .

instantaneous center as far to the right as possible in Fig. 22, Hence the above

geometrical construction.

The inclusion of the first phase straight tangents gives yp(s,r)=yp(8)—TYé(8).
in terms

etc,, as in [1], equation (9.5.10). This expresses yE,yp,xE—fo, xp—xpf

Lot

Figure 22,



Figure 23,

£ 2
Yg = -3 {kw - w6 - w®cose + wr(l - w s1ing)]
-1
£
Yp = 3 fkw ~ WO - cosO + T(w - sine)f
w -1
2
g = £ *w sing -~ w - w21 cose} + x
N E
w -1 £
Xp = 7, {sing - w ~ ¢ cose} +x,

£

A section,

for fixed Ypr of the surfaces corresponding to various £, 1s sketched

escape (without coming closer to P

NP

'E

~

*p

ol

be expressed in the symmetric form:

51, 52)_ ), 52)
Bg '+ Bg - Byt Pp

Patrolling a Channel

a channel," also discussed in [1].
channel (to the right in Fig.
1s less than a critical width:

2ty [f]//@ﬂ&@

in Fig. 23, E's optimal direction, indicated by arrows, being perpendicular to the L - 28w (I N k) )
local £-contour. ¢ w2-1 2

A somewhat similar problem arises if E wishes to pass between two slower \55: the surfaces s1 and Sz,
pursuers. Again the final phase is one of curved motion, in this case by E and S

the closer pursuer, and the state-space is again essentially 3-dimensional, Space

does permit further elaboration, but the complete solution appears in reference [IOL
Appendix A lists certain errata in reference [10].

Returning to the deadline game, suppose that E 1is permitted to escape in

either direction along the x-axis. This is the two-sided deadline game, [1], p. 260.

Figure 24 shows a section of the surfaces

El

Sl, S2 corresponding to a fixed Yp

and a single value of

and to escape to the right, left respectively. The

‘surfaces

Sl' 82 in the 3-dimensional state-space (x,yp,yE)

"dispersive edge," designated by () in Fig. 24, with the following property:
if E at (:) chooses, for example, to escape to the right, he will remain on
sl S2
longer be in a position to escape to the

intersect along a

but will move off of surface to the "capture" side, i.e., he will no

left.

The surfaces their junction C) ,

SI'SZ together with form a composite

form with the

25) above or below P.

corresponding to passage below or above

Figure 24.

than £), Analytically this is expressed by

5;1) < 0 at <:) , which, because of the main equation, may

< 0 at (:) .

An interesting extension of the one-sided deadline game is the game: ''patrollin

Here E can choose whether to pass along the

If the width L of the channel

P respectively.

£-circle around P the boundary of a capture region (shaded).

R
3

.,

2

\\ \\\\\\\\\\\ p

)
|

\!

A,
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rvperedge (:) to attractive hyperedge (:) , satisfy:

A (1), 2(2)_ 2 (1), 2(2) _
Bg By -Bp "By = 0 .

s straightforward to verify that this implies: T T Ty = 1 and 92 = —31

, being measured from the x-axis rather than the y-axis), and that the P - and
S1 L -.;Iori, sketched in Fig. 28, are given by:
wz— 1 _*
) xp = kw + w91— cose1 + W+ sin91
. wz— 1 * s

1 7 yp = kw — wsl— cose1 + W~ 51n61
wz; ! x; = kw + wel— w2cose1 + W o+ wzsinel
Figure 26. w%; 1 y; - kw - w61~.w200591 W - wzsinel

If, however, L> Lc’ the surfaces S1 and S2 intersect outside the [-cir:
in an "attractive edge,” designated by A  (see Fig. 26), which is such that if, y

for example, E chooses to pass above P, E remains on 52 but moves off of S1

to the escape side, 1.e., éél)' ééz)— éél)- ééz) >0 at (A) . The surfaces
S1 and 82 thus clearly fail to form a composite semi-permeable surface -- if
P guards against passage above P, E can pass below P.

The Cornered Rat
A further extension is the "cornered rat" game, also mentioned by Isascs in (!

The state-space is now essentially 4-dimensional and the locus of E's positions

for fixed P, corresponding to given £ and to escape along the x or y directi

is sketched in Figs. 27 a,b,c, For P sufficiently close to the corner, as in

Figure 28,

*_k
It may further be easily verified that P E = £ /2 and the arc-lengths of these
loci satisfy 'd?:l = w,d;:,. We anticipate that for positions P outside of the

Fig. 27a, the hypersurfaces S1 and 82 do not intersect., For P somewhat

further from the corner they intersect in two "dispersal hyperedges,”" denoted by (:)
in Fig. 27b. But for P sufficiently far from the corner, as in Fig. 27c¢, S

1 and

. R *
" i -locus there is a locus of positions E inside the E -locus from which P
and S, intersect in an "attractive hyperedge" (:) . The hypersurfaces thus

* *
b move in straight lines towards a decision surface consisting of the P - and E -loc
again fail to combine into a composite semi-permeable hypersurface.
N P N P YP . for various £, at which time E chooses which side of P to pass. If so, the
The critical positions P and E corresponding to a change from dispersive .
? ’ P 3 g P directions during the "delayed option" phase of the game are determined by:

* '
) qv (3), = (3), o*
y («) R A R
1 e P
*hich may be rewritten:
(3), =+ 2(3), 2 - 0
Bg » Tp (8 - WA T T, (6 '

the superscript (3) denoting the delayed-option phase. Together with the arc-length 0

relation this implies that the delayed-option phase straight paths make egual angles v}
S8y @, with the E*- and P*—loci, as indicated in Fig. 28. 1In particular,

for
Mo Wimguric Yoo £ Gud Po He hn planers mueve ety }W“’(d




1er before E decides which way to pass. v
2> locus of positions E corresponding to
jelayed option strategy, when P is
:side the P*-locus, can now be computed. e

rure 29 shows a sketch of how this locus /

>ulé look. Note that the last equation / ’/
page 24 is satisfied automatically by
;326;35= (ééi)yégi)), i=1o0r2,

. sk
1ce (rE(Gl). PP(OI)) belongs to both

sersurfaces S1 and 52 for all el. *
3 surface S3 thus joins smoothly Figure 29.
0 the surfaces s1 and Sz.

ture 29 replaces Fig. 27c and, together with Figs. 27 a,b, defines a composite
. * *
‘rier. Note that on the E - and P -loci the quantities

')'wéé3)(a) + ij)'éés)(a), i = 1 and 2, which are homogeneous linear in sinQ

: Tp
' cosq, vanish for two distinct «o's not differing by wx, and therefore vanish
‘ntically. The delayed-option paths thus arrive tangentially to both hyper-

faces S1 and Sz, thus fulfilling necessary conditions described in [5].
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APPENDIX A ERRATA IN REFERENCE [10]

(14): é = ; + [ws/3¢l—w2c2 ;1]

1
(27): delete the terms -2scrt
2
(29), 2nd line: + (2¢7-1)7

(31), left member: 'y (¢1,T) = e

Py

2
(33): replace each z. by z,
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