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Abstract- A car-like nonholomonic robot moves in a plane
and is subject to an upper bound of curvature for its turning.
In this paper, we discuss a novel dynamic path planning
algorithm by which the car-like robot could reach any oriented
point from another oriented point via the shortest path. The
approach features the construction of a pair of accommodation
circles describing the left and right turn minimum radius
paths of the vehicle. Utilizing this construction, a weak control
Lyapunov function is constructed and used to generate a

control law. This motion planner provides a real-time state
dependent solution with a convergence guarantee.

Index Terms - Motion planning, shortest path, curvature
constraints.

I. INTRODUCTION

This paper considers the path planning problem for a

nonholonomic robot moving in the plane without obstacles
but subject to velocity and turning radius constraints. The
goal of this work is to offer a solution to this problem that is
continuous and implementable in real-time. Given an initial
configuration and a goal configuration, the shortest path
planning problem for this type of robot plays a crucial role
in motion planning.

Numerous results have been achieved on the shortest
path planning problem. Without considering obstacles,
pioneer Dubins [1] first addressed this issue: the shortest
path consists of at most three sequentially connected either
arcs or straight line segments. Reeds and Shepp [2]
extended this result to vehicles which can move both
forward and backward. Besides these analytic works,
Sussmann and Tang [3], and Boissonat et al. [4] proved
Dubins' and Reeds and Shepp's work using ideas from
control theory. Based on these works, Bui and Soueres [5]
then provided a shortest path synthesis for Dubins
nonholonomic car. The literature, such as [6][7], is rich in
making extensions of shortest path planning without
obstacles, to that in the presence of obstacles.

We consider the problem of the shortest path planning
for Dubins' nonholonomic robot having a constant linear
velocity in the absence of obstacles. Instead of solving this
problem in an analytic manner, we try to design a real-time
implementable control law by which the robot will be
moving along the optimal, or at least a feasible and
reasonable suboptimal path, from one configuration to
another configuration. As a sub-module, this method can

then be utilized to plan shortest path segments in the
presence of obstacles in future work. In order to avoid
obstacles, a set of way points would be provided by some
existing obstacle detection algorithm. Our algorithm can
then operate as a local path planner to follow these way
points one by one.

Instead of searching paths for the car's trajectory itself,
we propose a novel method of decomposing the car's
position and orientation into center points of a pair of
accommodation circles which define the left and right
minimum turning radius paths. Artificial potential field
induced forces' [8], positive and negative, are generated
between matched (e.g. left goal and left initial) or
unmatched circle centers (e.g. left goal and right initial). A
control Lyapunov function (CLF) is then constructed via
these potential forces. A control law is designed such that
the CLF is always non-incrementing. At every instant of
time, the control variable is simply computed based on the
vehicle's states, without the need for a global map analysis.
The work presented here is motivated by the need to
formulate a method general enough in its construction to be
capable of being extended to solve the considerably more
complicated input constrained 3-D nonholonomic path
planning problem, especially for UAV applications.

The paper is organized as follows. Section 2 gives
definitions and remarks regarding Dubins' shortest path
problem. The constructions of attractive potential forces and
a Lyapunov stability function are described in section 3.
Also in section 3, an additional repulsive potential force is
introduced, and consequently the controller is modified in
the case where the initial and goal positions are very close.
The control law is presented at the end of this section.
Finally, section 4 gives some simulation results and
discussion.

II. PROBLEM STATEMENT

A. Dubins'Car
A well known model of a simple nonholonomic system,

or so called car-like robot, is shown in Figure 1. The robot
moves in the 2-dimensional plane in which its position is
IThis "force" is not a true force in the Newtonian sense. In the remainder of
the paper, it will be referred to as simply a "force" in this non-strict sense.
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determined by the coordinates of the rear wheels (x, y),
while 0 is the heading angle with a range of [-T, ;T]. If the
turning radius is lower bounded, as in [11], r is defined as
the minimum turning radius. The car's configuration is
determined by the triple (x, y, 0) .

y

defined in a symmetric manner. The accommodation circles
are defined in the global reference frame, as seen in Fig. 3.

Using two accommodation circles, the robot's
configuration is decomposed to the center positions of CL
and CR, which can be easily obtained from the original
configuration (x, y, 0):

{ XL =X - r sin(S) fXR =x + r sin(0)

YL = y + rcos(O)JYR = y - r cos(0)

/

xI >
x

Fig. 1. Model of Dubins' Car

The dynamic model of this nonholonomic system
considered in this paper is written in the following form,

Sx(t) = cos H(t) ul (t)
jy(t) = sin 0(t) ul (t) (1)

0 (t) = U2 (t)
where ul (t) is the linear velocity and u2 (t) is the angular
velocity. For Dubins' car, ul (t) 1 and U2 (t) E (- 1, 1) for all
time t. As a result, the lower bound on the turning radius is
r = 1. For convenience, we simplify the robot as a particle
which has the same properties as those described above.

B. Accommodation Circles
Since the car always turns by the maximum turning

rate, it will move on the circle of the lower bounded radius
r =1 . Bui et al [5] have proven that all shortest path
families end with an arc (referred to as "C") or a straight
line regressed from such an arc. Inspired by finding the
ending circle belonging to this arc, we propose the concept
of the accommodation circle.

Fig. 2. Decomposing the robot's configuration into
left and right accommodation circles.

Definition 2.1: CL donates the left accommodation
circle with center point (XL, YL) where subscript L denotes
an extreme left-hand turn with minimum turning radius
r = 1. The robot lies on the circle during a saturated left-
hand turn, u2 =1 in Equation (1), and its linear velocity
vector is tangent to the circle. See Figure 2. CR can be

(2)

The position and orientation of the robot are uniquely
determined by the positions of its two accommodation
circles, and vice versa. The accommodation configuration is
thus given by (XL, YL, XR , YR, 0) and encodes not only the
car's current configuration, as the original triple did, but
also encodes the turning rate constraints. In the rest of this
paper, L and R denote the center of the car's instant left and
right accommodation circle respectively, and L' and R'
denote the left and right centers of the goal configuration's
accommodation circles respectively.

C. Shortest Paths
For Dubins' car, it has been proven [1][4] that, for any

given initial and final configuration, the shortest path
consists of a combination of at most three C or S maneuvers
that are continuously connected. Work by Bui et al [5] then
proved that the shortest paths exist and are one of the 6 path
types of CCC and CSC families. Within the context of the
work presented here, C can be represented by L and R
which respectively denote turning on the left and right
accommodation circle. As denoted in Figure 3, given the
initial and final configuration, finding the shortest path for
Dubins' car is our basic concern. Previous work
mostly

y

CR

C

DI

0, LL

Fig. 3. Shortest path: given initial configuration and goal configuration, the
shortest path continuously connects the two configurations.

studied this problem in a manner that would search and
analyze the entire remaining path. Here, we approach this
problem from a control point of view to arrive at a state-
dependent control law and, most importantly, give a general
real-time solution to this problem with the motivation of
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extending it to the considerably more difficult 3-
dimensional case in future work.

To introduce the perspective taken here to formulate the
problem, consider the case shown in Figure 3. The initial
configuration can be successfully transferred to the goal
configuration by moving the center point (xL 'YL) of CL
and (xR, YR ) of CR from their initial positions to (XL, YLE)
and (xR, YR ), respectively. Moreover, given that a constant
linear velocity is being considered, the best we can achieve
is to drive and hold either (XL,YL) equal to (XL, YL') or
(XR I YR ) equal to (XR, YR') for all time, but not both. This
characteristic of having to choose one or the other can also
been seen in the solution path - it is easy to see that the
minimum path length strategy for the configuration shown
is to hold the distance DRR constant or reduce it, without
regard to DLL . Had the initial configuration pointed in the
opposite direction than shown in Figure 3 (R and L
switched), the strategy of holding or reducing DRR remains
the optimal strategy even though DLL would increase
before it decreased. In both cases, DRR is always less than
or equal to DLL (equal when arriving at the goal
configuration). This observation, and similar observations,
will form the basis of the potential functions, and ultimately
the control Lyapunov function, chosen. Without loss of
generality, the final configuration is set to (0,0,1Z/2) in this
paper. As a result, L' and R' are always (-r,O) and (r,O)
respectively. The robot reaches the goal when
(XL ,YL ) =( r,0) and (XR,YR) = (r,0) .

III. PROBLEM FORMULATION AND ANALYSIS

As described in the previous section, the car reaches the
goal configuration from the initial configuration when its
accommodation circles fully overlap the accommodation
circles of the goal configuration. In other words, the
distances between the center points of corresponding circles
are simultaneously zero ( DLL = 0 and DRR = 0 ), and the
car reaches the final goal point with the desired orientation.
A corollary of this truth is that the distance between L' and
R, and between R' and L are ultimately equal to 2r in the
goal configuration. Motivated by this, we develop a real
time controller based on the distances between the centers
of the accommodation circles of car's current and goal
configurations.

A. Potential Forces
Based on the artificial potential field concept [10], the

goal generates an attractive force to pull the car moving
toward it. In this paper, the artificial potential forces are
generated by the goal's accommodation circles such that
car's instant accommodation circles are pulled by their
corresponding goal accommodation circles.

Definition 3.1: DLL is the distance between the car's left
accommodation circle center and that of the goal's left
accommodation circle center.

DLL, = V(XL -XL ) + (YL YL )2

Since the final configuration is set as (0,0,T/2) without
loss of generality,

DLL = (x- rsin0+r)2 +(y- rcos0)2 (3)
Similarly,

DRR -(x±rsinH r)2 +(y+rcosS9)2 (4)

Besides the attractive forces between LL' and RR'
repulsive forces between R and L', L and R' exist under
certain condition.
Definition 3.2: Along the goal's orientation direction, the
projected distance between R and L' is (see Figure 4),

dRL' YL' YR
We will define a potential repulsive force to exist only if

° < (YL' -YR)< 2r (5)
otherwise it vanishes. Thus the potential distance is

DRL = 2r 4dj, (6)
DLR can be similarly obtained,

DLR 2r (YR' YL) when ° < (YR' -YL)< 2r (7)

Fig. 4. Repulsive force between right and left accommodation circles

The basic idea behind the potential forces is to make
the car avoid some non-optimal paths, which will be
discussed in section B2. The potential force pushes the
overlapped circles away until they are not overlapped
anymore.

B. Control Lyapunov Function
In this section, we build a weak control Lyapunov

function (CLF) for controlling the trajectory of Dubins' car.
In our system, the time varying variables that we want to
control are the distances defined in the previous section.
The CLF is thus designed to control them in a proper
manner.
Definition 3.3: (see [12]) A control Lyapunov function
(CLF) for system (1) is a positive-definite, decrescent,
radially unbounded function in the time domain.
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For our system, the CLF's intrinsic property is to drive
all distances to zero. One can easily see those distances
become zero when the system reaches the equilibrium point:
the goal configuration for our system. We propose the
following CLF which satisfies the above requirements, and
thus the following candidate function is considered.

V(x,y) [(x), + (I1/y) ] (8)

where x, y are positive, and n -> oo . One can show that
V(t) will be significantly closer to the smaller of the two
positive independent variables as n is increased. We call this
type of function a vote function by which the shorter
distance is selected. V(x,y) will be decrescent while the
shorter element is decrescent. Using this vote function, if
the smaller of the two distances defined above is decreased,
V itself will be decreased) regardless of whether the larger
distance is made to decrease or not. The connection between
this property and the characteristics of the problem
discussed in section IIC provides a central feature of the
proposed method.

B]. Attractiveforces
In the case that only attractive forces exist, the

V(x, y) can be represented as

VA(t) [(i/DLL')n + (I/DR) ]n (9)

Bui et al [5] proves that, in this case, the shortest path is
one type of CSC family, which means the repulsive force
will not exist from this point forward along the optimal
path. As a result, the vote function selects the shorter
distance of DLL' and DRR' By carefully designing the
control law, VA(t) is always decrescent or semi-decrescent
until both distances come to zero, in other word, the car
reaches the final configuration. In order to achieve this goal,
we have to make DLL' <0 or DRR' < 0 when one of them is
selected.

Differentiating (3) gives

DLL = V(x-rsino+r)2 y2 (xcosO+ysinO+rcosO) (10)
As shown in Figure 3, aL is the angle of line L -> L', and

cos CL = (XL -XL') IDLL, (1 1)
Substituting and rearranging,

DLL, =-(I + rO)COs(aL 0) (12)
where aL -0 E (-1T, 1T] is the angle difference between line
L -> L' and car's heading angle.

Choosing the control signal only from the set of {-1, 0,
1 is motivated by the Dubins' result that the optimal path
will only use these control signals. Since 0 can only be one
2This function is sometimes referred to as a weak CLF in that there will
exist points in the control formulation where V is only made equal to zero
and not strictly less than zero, which is not a strict CLF.. However, this
function can select the smaller distances and converge both attractive
distances to zero.

of the set {-1,0,1} , (1 + rH) is {0,1,2} respectively, which
are all positive. For different ranges of aL- 0 , we have

{-1 <cos(aL -0) < 0

O< cos(aL -0) <1
when ;I2<IaL -01<

|aL t0<;T/2
Consider each situation.

a) -2T 2<aaL -0 < T/2, where DLL, < 0 . In order to move
the car in a CSC manner [5], aOL - = 0 is preferred. The
controller is designed as

F1, aL->0
H=0, aL- 0 0

-1, at-H0<0

(13)

b) ;l 2<I aL 0 1< 1, where DLL > 0. The only way to

prevent DLL' from increasing is if 1 + r = 0, that is

O l, Z-XaL 0< 71?2 orZl>aL -0>zc/2 (14)
The control law is obtained in the same way in the case

that DR is selected:

aRa -H>
0= 0, ARa =0 -2ZI2<aR -0<r /2 (15)

0-1, aR - 0<
and:

O 1, z-<aR 0< z; 2 or z?>aR -0>zc/2 (16)
With the control laws described above, the controller

always tries to first turn the car's heading angle so that
aOL - = 0, which is a C. Once this is done, the car can
move along the line LL' toward a tangent point on the left
prime circle, which is an L movement. Finally, if the tangent
point is not the goal, it can take a C along the circle to reach
the goal. Overall, this path is typically CSC [1] [5], which is
the optimal or sub-optimal path. If the first or last step is not
needed, the path is a sub family of CSC. More importantly,
it can be geometrically proved that the path always exists
using this control law when the goal and initial
configurations are adequately separated. We will show in
simulation that, by selecting the shorter distance, the
optimal path is obtained by these control laws.

B2. Repulsiveforces
The purpose of the repulsive forces is to eliminate the

non-optimal paths generated by the control laws described
in last section under certain conditions. Consider the
situation shown in Figure 4 for instance. According to the
control laws in the last section, if DRR, < DLL, then the path
will be RSL and u + v > 27c which is not the shortest path,
where u and v are the angles on the left and right turn arcs
[5]. The repulsive forces should then be designed to avoid
this solution. The CLF for repulsive force is based on the
attractive force version as follows.

VR(t) = e-V(t) (17)
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VA0=t [kL ( IIDLL, )n + kR 1IDR )n ] (18n
where kL =1 if (5) is satisfied; otherwise kL =o. kR =1 if
(7) is satisfied; otherwise kR 0 When both kL =kR =1

VA (t) works as same as VA (t) .

Differentiating (17), we have
VR(t) VR (t)VA(t) (19)

VA(t) selects the shorter distances, and gives the proper
control input. The repulsive forces invert the control law
given in section B 1 under conditions 0 < (YL' - YR) < 2r
or 0 <(YR' -YL) < 2r . For example, in Figure 4, if
DRR' < DLL, the corresponding controller is 0 1. The
repulsive force makes 0 1 which "pushes" the right
accommodation circle away.

B3. Synthesis ofattractive and repulsiveforces
According to the definitions of potential forces, it can

be seen that the attractive forces exist for all time, while the
repulsive forces exist only if 0 < (YL' - YR) < 2r
or 0< (YR' - YL )< 2r . Again, we can use the vote function
idea to select the attractive distances or the repulsive
distances that we want to address.

V(t) rK[( )J+ K( ) i (20)

Where n is a natural number with n -* oo providing a more
accurate solution, A is zero if both the repulsive forces do
not exist andA= 1 otherwise. From (9) and (18), it can be
seen that VA (t) and VR (t) select the same distance, but (17)
makes VR (t) much less than VA (t) unless VA (t) is very close
to zero. The shortest path and sub-shortest path is then
significantly close. In other words, VR (t) is selected if only
it exists, otherwise V(t) = VA (t) .

In this way, if the repulsive forces exist for a given
initial configuration, V(t) will select the smaller repulsive
force and the corresponding control law takes effect until
the repulsive force disappears. After this, V(t)= VA(t) for
the rest of the trajectory.

C. Planning Algorithm
Based on the above discussion, we come to the

proposed algorithm which is simple and fast. Given the
initial configuration and goal configuration, we first
calculate four potential distances. Second, k1, k2 are
obtained by (5) and (7). These results are then put into (9),
(17) and then (20) which gives the distance which we want
to decrease. The corresponding control law is then
implemented.

Our algorithm only needs to do a simple computation
instead of, as many other algorithms do, searching the plane
for the shortest path a priori. Moreover, the CLF will
converge to zero when the car reaches the goal.

IV. SIMULATION EXAMPLES AND DISCUSSION

The proposed planning algorithm has been verified by
simulation. Setting the goal configuration to (0,0, ;/2), we
have tried as many different initial configurations as
possible, and the all paths are the shortest. Here we select
two initial configurations to discuss our algorithm: the first
one does not have repulsive forces (Figure 5) and the
second one has both attractive and repulsive forces (Figure
6).

23 -2 -1 0 2 3 °3

Fig. 5. A case w~here the car moves w~ith only the attractive
forces. a) Trajectory of the car receiving only the attractive
forces, b) The CLF for attractive distances

The car moves on the LSL type shortest path in the first
example, as shown in Figure 5. Equation (9) gives the
shorter distance DLL', and then, according to
(13), 0 = -1 and DLL' consequently remains unchanged until
aOL - = 0 . DLL' then is decreased along the line of
aOL - = 0 until it is zero. Since DLL' =0 < DRR', it will
remain unchanged by moving along the left accommodation
circle. DLL' and DRR' then both reach zero leading to the
final goal configuration.

It can be seen from Figure 5 b) that The CLF for
attractive forces is always semi-positive and semi-descent.
One can see that a L -0 = 0 is a necessary condition which
leads the car's instant configuration to the final
configuration when only the attractive forces exist. Since
the tangent line between two same-side accommodation
circles always exist, turning to a proper side will certainly
make aOL - = 0 . In other words, the CLF for attractive
forces consequently goes to zero.

As we have seen in the last section, the repulsive
distances are always smaller than the attractive distances
until they disappear. In the second example shown in Figure
6, the repulsive forces exist before 1.5]s. The left
accommodation circle of the vehicle will be pushed away
first because DLL' is shorter. The right accommodation
circle will be pushed away after this and then the repulsive
forces disappear. The attractive forces then try to reduce
DLL' because it is still shorter than DRR'. Actually, if the
repulsive force exists, it will be selected because we set it
significantly smaller than the attractive force. From b) and
c) of Figure 6, we can see that the CLF of the repulsive
forces converge first while it makes that of the attractive
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forces increase. Once the repulsive forces vanish, the
system converges as in the first example.

a) Trajectory of the car receiving both attractive and repulsive forces

b) Repulsive forces vs. time c) Attractive forces vs. time

Fig. 6. A case where both attractive and repulsive forces exist (The difficult
three-turn solution).

Fig. 7. Other Examples: 1) top left is the RS type shortest path;
2) the top right is the LSL type shortest path; 3) the bottom left
is the RSR shortest path; 4) the bottom right is the LSR type
shortest path.

Figure 7 shows some other examples which have
different types of shortest paths. These results along with
the two former examples together are the full families of
shortest paths described in [5].

V. CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of planning
trajectories of Dubins' car in the plane. Feasible control

laws are obtained by reducing the distances between
corresponding accommodation circles. Some simulation
examples have been detailed or briefly shown to verify this
new planning method.

Operating as a local planner, this method can be easily
adapted to obstacle avoidance based on distance
measurement methods [6]. Other applications include
following waypoints using this path planning method. This
method is also desirable when the goal position is varying
or when there are disturbances in the system. This algorithm
has a low complexity and is able to be computed in real-
time using state-variables. However, the local minima
problem might be a concern when our algorithm is applied
to avoid obstacles.

Future work is to study the 3-dimensional path planning
problem by extending the concepts presented in this work.
Unmanned aircraft vehicles would benefit from a

computationally fast real-time path planner for agile
replanning in the face of changing conditions. Such path
planning is much more complicated than 2-D version, but
the hope is that similar CLF's using vote functions and
generalizations of accommodation circles can be
constructed for UAVs and other problems.
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