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Abstract— We consider finding a time-optimal trajectory for

an airplane from some starting point and orientation to some

final point and orientation. Our model extends the Dubins

car [15] to have altitude, which leads to Dubins airplane.

We assume that the system has independent bounded control

over the altitude velocity as well as the turning rate in the

plane. Through the use of the Pontryagin Maximum Principle,

we characterize the time-optimal trajectories for the system.

They are composed of turns with minimum radius, straight

line segments, and pieces of planar elastica. One motivation

for determining these elementary pieces is for use as motion

primitives in modern planning and control algorithms that

consider obstacles.

I. INTRODUCTION

One can simplify the aircraft control and planning prob-

lem, usually in the presence of obstacles, by piecing together,

in an appropriate way, a set of elementary trajectories chosen

from a library. Such pieces of trajectories that can be com-

bined sequentially to produce more complicated trajectories

are called motion primitives [5], [18], [19]. They may even

be computed and stored offline, in particular when there are

symmetries, to yield speedup in online motion planning ap-

plications such as computer games. Finding suitable motion

primitives for a robot is an area of recent, active research.

One approach is using the optimal trajectories as motion

primitives [3].

Many motion planning approaches have relied on good

motion primitives, including optimal kinematic trajectories.

Latombe successfully used Reeds-Shepp curves in a fast path

planner for an indoor mobile robot among obstacles [23].

Conner et al used a set of continuous local feedback control

policies and a discrete automaton to plan verifiably correct

motions for a mobile robot in a changing environment [14].

Mehta and Egerstedt used optimal control for constructing

control programs from a given collection of motion primi-

tives, and also for augmenting the motion primitive set [25].

Frazzoli et al proposed a set of motion primitives, for a

six-dimensional aircraft, which contains pieces of optimal

trajectories called trim trajectories [18]. Particularly, the

optimal trajectories for an aircraft may yield a useful set of

motion primitives. We study the time-optimal trajectories for

a simplified airplane model in this paper. The time-optimal

trajectories play also a crucial role in air traffic management

systems [22], [34], [42], e.g. in detecting the safety regions.
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Our model is a natural extention of the Dubins car [15],

and extends it with an additional configuration variable for

the altitude. We consider a simplified kinematic model of

the airplane. It always flies forward and the system has

independent bounded control over the altitude velocity and

the turning rate in the plane. We call such system the Dubins

airplane.

The first work on time-optimal paths for a simple air-

plane model was done by L.E. Dubins [15]. Dubins gave a

characterization of time-optimal trajectories for a car with

a bounded turning radius. The car always moves forward

with constant speed. He used a purely geometrical method

to characterize such shortest paths. Later, Reeds and Shepp

solved a similar problem in which the car is able to move

backward as well [28]. Shortly after Reeds and Shepp, their

problem was solved and also refined by Sussmann and Tang

[33] and by Boissonnat, Cérézo, and Leblond [7] with the

help of optimal control techniques. Souères and Laumond

classified the shortest paths for a Reeds-Shepp car into

symmetric classes and gave the control synthesis [32]. Balk-

com and Mason characterized the time-optimal paths for the

differential drive [4], and Chitsaz et al gave a characterization

of minimum wheel-rotation paths for the differential drive

[11], [12]. In all of those works, the environment is assumed

to be unobstructed. The problem becomes more difficult

when there are obstacles in the environment. The shortest

paths for the Dubins and Reeds-Shepp car and the differential

drive among obstacles have also been studied [1], [2], [6],

[8], [10], [17], [20], [24], [26], [29], [35], [36], [39].

Walsh, Montgomery, and Sastry used Pontryagin Maxi-

mum Principle to plan optimal paths on matrix Lie groups

[38]. Specifically, they plan optimal paths for an airplane in

SE(2), SO(3), and SE(3). Their cost function is quadratic

in the input. In this paper, we consider a different problem

in which we minimize time for a system in SE(2) × R.

For algorithms for steering on matrix Lie groups see [30],

[37], and for optimal path planning for UAVs with tactical

constraints see [40], [41].

The approach that we use to derive optimal trajectories is

similar in spirit to the ones used before [4], [7], [12], [13],

[31], [33], [38]. The existence of optimal paths in this case

follows from Filippov’s theorem [9]. We use the Pontryagin

Maximum Principle as a necessary condition to rule out non-

optimal paths. We distinguish three cases: low, medium, and

high goal altitudes of the airplane. Intuitively, if the goal

altitude is low, the airplane has to follow the shortest path

for the Dubins car with an unsaturated altitude velocity. If
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Fig. 1. The Dubins airplane model

the goal altitude is high, the altitude velocity gets saturated

and the system has to maneuver until it reaches the goal

altitude. For medium altitudes in between low and high, the

time-optimal path is either a locally longest curve for the

Dubins car or a path composed of turns and pieces of planar

elastica [21] with saturated altitude velocity.

Locally longest curves for the Dubins car, which cannot

be infinitesimally elongated, play an important role in the

airplane time-optimal trajectories for medium altitude. An

example of such locally longest curves is a short arc of a

circle. Dubins proved that a short arc of a circle is isolated

in the space of all bounded curvature plane paths [16]. As a

by-product, we characterize locally longest Dubins curves.

II. PROBLEM FORMULATION

The Dubins airplane is a four-dimensional system with

its configuration variable denoted by q = (x, y, z, θ) ∈

C = R
3 × S

1 in which x, y, and z are the coordinates

of the airplane in the three-dimensional Euclidean space,

and θ ∈ [0, 2π) is the angle between x-axis of the frame

and the airplane local longitudinal axis in x − y plane (see

Figure 1). Equivalently, the Dubins airplane is the Dubins

car, (x, y, θ) ∈ R
2 × S

1, with an additional configuration

variable for altitude, z. This model is a simplified model of

a real airplane.

The system has independent bounded control of θ̇ and ż.

In other words, the system is

q̇ = f(q, u) = f0(q) + uzf1(q) + uθf2(q) (1)

in which f0, f1, and f2 are vector fields in the tangent bundle

TC of the configuration space. We assume the minimum

turning radius and the maximum altitude velocity of the

airplane are 1. In this case, f0, f1, and f2 are

f0 =









cos θ

sin θ

0

0









, f1 =









0

0

1

0









, and f2 =









0

0

0

1









. (2)

We assume that |uz|, |uθ| ≤ 1. Thus, the control region is

U = [−1, 1]2 and (uz, uθ) ∈ U . The cost functional J to

be minimized is time, i.e. J(u) =
∫ T

0
dt. For every pair

of initial and goal configurations, we seek an admissible

control, i.e. a measurable function u : [0, T ] → U , that

minimizes J while transferring the initial configuration to

the goal configuration. Without loss of generality we may

assume, throughout this paper, that the initial configuration

of the system is (0, 0, 0, 0) ∈ C. We also denote the goal

configuration by (xg, yg, zg, θg). Throughout the paper sgn

is the sign function.

The existence of optimal paths in this case follows from

Filippov’s theorem [9]. Thus, it is viable to use the Pontrya-

gin Maximum Principle (PMP) for this problem.

III. PONTRYAGIN MAXIMUM PRINCIPLE

Let the Hamiltonian H : R
4 × C × U → R be

H(λ, q, u) = 〈λ, q̇〉 (3)

in which q̇ is given in (1). According to the PMP [27], for

every optimal trajectory q(t) defined on [0, T ] and associated

with control u(t), there exists a constant λ0 ≥ 0 and an

absolutely continuous vector-valued adjoint function λ(t) =

(λ1(t), λ2(t), λ3(t), λ4(t)), that is nonzero if λ0 = 0, with

the following properties along the optimal trajectory:

λ̇ = −
∂H

∂q
, (4)

H(λ(t), q(t), u(t)) = max
z∈U

H(λ(t), q(t), z), (5)

H(λ(t), q(t), u(t)) ≡ λ0. (6)

Def 1. An extremal is a trajectory q(t) that satisfies the

conditions of the PMP.

In this section, let q(t) be an extremal associated with the

adjoint λ(t) and the control u(t). Equation (4) can be solved

for λ to obtain

λ(t) =









c1

c2

c3

c1y − c2x + c4









, (7)

in which c1, c2, c3, and c4 are constants. Along an extremal,

(5) yields the extremal control law

uz = sgn(c3) if c3 6= 0 (8)

uz ∈ [−1, 1] if c3 = 0 (9)

uθ = sgn(c1y − c2x + c4) if c1y − c2x + c4 6= 0 (10)

uθ ∈ [−1, 1] if c1y − c2x + c4 = 0. (11)

If c3 = 0, then (8) implies that uz can have any value

within [−1, 1]. In this case, the following two propositions

show that the projection of q(t) onto the (x, y, θ)-space is

an extremal for the Dubins car.

Proposition 1. If c3 = 0 and λ0 6= 0, then the projection of

q(t) onto the (x, y, θ)-space is an extremal for the Dubins

car, i.e a trajectory of the Dubins car that satisfies the PMP.

Proof. Since c3 = 0 and H = λ0 6= 0, the vector

(λ1, λ2, λ4) is nonzero. Hence, the projection of q(t) onto
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(x, y, θ)-space satisfies the PMP. Thus, it has to be an

extremal for the Dubins car.

Proposition 2. If both c3 = 0 and λ0 = 0, then q(t) has

zero duration.

Proof. In this case, conditions (6) and (5) imply that

λ1 cos θ + λ2 sin θ + |λ4| ≡ 0. Thus, the projection of q(t)

onto the (x, y, θ)-space is an abnormal extremal for the

Dubins car. Abnormal extremals for the Dubins car have

zero duration.

If c3 6= 0, then the duration of q(t) is |zg| in which zg is

the final altitude, because uz ≡ 1 or −1, depending on the

sign of c3, by (8). It is possible to have c1 = c2 = c4 = 0

because c3 6= 0. In that case, uθ can have any value within

[−1, 1], by (8). This means that the projection of q(t) onto

the (x, y, θ)-space can be any feasible path for the Dubins

car. However, the length of such path must be |zg|. When

does there exist a path of given length for the Dubins car?

We will study this question in the following section.

IV. PATHS WITH GIVEN LENGTH FOR THE DUBINS CAR

We desire to plan a path for the Dubins car with prescribed

length. Lemma 5.3 in [16] proves that a short arc of circle (of

radius 1) is isolated in the space of all admissible paths for

the Dubins car. Intuitively, there are no feasible trajectories

for the Dubins car between the end points of the arc with

a length slightly more than the length of the arc. Whenever

there exists a desired path, we pick the one which minimizes

a quadratic cost.

Equations of motion for the Dubins car are

ẋ = cos θ, (12)

ẏ = sin θ, (13)

θ̇ = u. (14)

Following [38], we pick the path that minimizes
∫ T

0
u2dt

with given length for this system. If there exists such path, it

should satisfy the PMP. Let the Hamiltonian F : R
3× (R2×

S
1) × [−1, 1] → R be

F (γ, (x, y, θ), u) = 〈γ, (cos θ, sin θ, u)〉 + γ0u
2 (15)

in which γ0 is a constant. For every desired path p(t) =

(x(t), y(t), θ(t)) defined on [0, T ] and associated with con-

trol u(t), there exists a constant γ0 ≤ 0 and an abso-

lutely continuous vector-valued adjoint function γ(t) =

(γ1(t), γ2(t), γ3(t)), that is nonzero if γ0 = 0, with the

following properties along p(t):

γ̇1 = −
∂F

∂x
, (16)

γ̇2 = −
∂F

∂y
, (17)

γ̇3 = −
∂F

∂θ
, (18)

F (γ(t), p(t), u(t)) = maxz∈[−1,1] F (γ(t), p(t), z), (19)

F (γ(t), p(t), u(t)) ≡ K, (20)

for some constant K. Regular and abnormal extremals,

corresponding to γ0 6= 0 and γ0 = 0 respectively, are studied

in the following two sections.

A. Regular Extremals

We may now scale F and assume γ0 = − 1
2 . Rewriting

the Hamiltonian we get F = γ1 cos θ + γ2 sin θ + γ3u− u2

2 .

Maximization of F in (19) implies that

u =







−1 if γ3 < −1

γ3 if −1 ≤ γ3 ≤ 1

1 if γ3 > 1

. (21)

Equations (16), (17), and (18) can be solved for γ to obtain

γ(t) =





e1

e2

e1y − e2x + e3



 , (22)

in which e1, e2, and e3 are constant. All ei’s cannot be zero,

otherwise the extremal is a straight line. Let ℓ : e1y− e2x+

e3 = 0, ℓ+ : e1y−e2x+e3 = 1, and ℓ− : e1y−e2x+e3 = −1

be three lines in the plane. The control law (21) says that

u = γ3 if the car is moving between ℓ− and ℓ+. Otherwise,

u = 1 or −1 depending on the position of the car with respect

to the lines. Figures 2 and 3 show a few examples of curves

that satisfy such control law. These paths are composed of

turn with minimum radius, straight line segment, and elastica

[21], [38].

B. Abnormal Extremals

Abnormal extremals correspond to γ0 = 0. If K = 0

in (20), then the extremal is of zero duration. If K > 0,

then the extremal is a time-extremal for the Dubins car.

If K < 0, then the extremal is also an extremal of the

functional I(u) =
∫ T

0
−dt. We call such extremal a locally

longest curve, because it can be a local minimum of I(u),

or equivalently a local maximum of the length functional.

Further analysis of (19) leads to the following control law:

u = sgn(γ3) if γ3 6= 0, (23)

u ∈ [−1, 1] if γ3 = 0. (24)

Depending on the sign of K, there are two different sets

of extremals: time-extremals and locally longest curves.

1) K > 0, time-extremals: In this case, F = e1 cos θ +

e2 sin θ + |e1y − e2x + e3| = K > 0. Moreover, all ei’s

cannot be zero. Thus, the extremal satisfies the PMP with

the length cost functional
∫ T

0
dt. Thus, it is composed of

turn with minimum radius and straight line segment. The

extremal can tangentially join ℓ or diverge from ℓ. Figure 4

depicts two examples of time-extremals.
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(A)

ℓ

ℓ+

(B)

ℓ

ℓ+

ℓ
−

(C)

ℓ
ℓ+

ℓ
−

(D)

ℓ
ℓ
−

ℓ+

Fig. 2. Some examples of curves with prescribed length for the Dubins

car; see also Figure 3

2) K < 0, locally longest curves: The following con-

straint holds:

F = e1 cos θ + e2 sin θ + |e1y − e2x + e3| = K < 0. (25)

In this case, the extremal cannot tangentially join ℓ unless

it violates the constraint. Hence, either u ≡ 0 or u(t) =

sgn(e1y(t) − e2x(t) + e3) and e1 cos θ + e2 sin θ + |e1y −

e2x+e3| < 0. More precisely, either the extremal completely

lies on ℓ, or it is composed of consecutive arcs of circle of

length less than π. In Figure 5, the line ℓ and an example of a

locally longest curve is shown. Figure 6 shows an elongation

(E)

ℓ

ℓ
−

ℓ+

(F)

ℓ
ℓ
−

ℓ+

(G)

ℓ+

ℓ

ℓ
−

Fig. 3. Continued from Figure 2

ℓ

ℓ

Fig. 4. Two time-extremals

ℓ

Fig. 5. Locally longest curves for the Dubins car
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r(t)

p(t)

Fig. 6. Elongation of a Dubins shortest path r(t) to a locally longest curve

p(t)

from r(t), a Dubins shortest path, to a locally longest curve.

V. TIME-OPTIMAL TRAJECTORIES FOR THE AIRPLANE

Going back to our original quest, which was to find time-

optimal paths for our airplane, recall that the final altitude

plays a major role. We distinguish three cases: low, medium,

and high goal altitude. In order to precisely define each case

we give the following definition.

Def 2. Let ∆ be the Dubins distance of (xg, yg, θg) from

(0, 0, 0). More precisely, let ∆ denote the duration, or

equivalently the length, of the shortest Dubins curve from

(0, 0, 0) to (xg, yg, θg). We call the final altitude low if

|zg| ≤ ∆, medium if ∆ < |zg| < ∆ + 2π, and high if

|zg| ≥ ∆ + 2π.

A. Time-optimal Trajectories for Low Goal Altitude

As we mentioned before, following the shortest Dubins

curve with an unsaturated altitude velocity is a time-optimal

strategy for low goal altitudes. This case corresponds to

c3 = 0 in the PMP analysis in Section III. Note that the

duration of such trajectory is ∆. It is obvious that there exists

no trajectory transferring the system faster from the initial

configuration to the goal configuration.

Lemma 1. For a low goal altitude, a time-optimal trajectory

for the system (1) consists of the shortest Dubins curve with

altitude velocity uz =
zg

∆
.

B. Time-optimal Trajectories for High Goal Altitude

If the goal altitude is high, the system has enough time to

follow a helix once it reaches the goal point in the plane and

goal orientation. Hence, the shortest Dubins curve followed

by a helix all with saturated altitude velocity is a time-

optimal strategy in this case. This case corresponds to c3 6= 0

in Section III. The duration of such trajectory is |zg|. There

exists no trajectory taking the system faster from the initial

to the goal.

Lemma 2. For a high goal altitude, a time-optimal trajectory

for the system (1) is composed of two pieces. Along both

pieces uz = sgn(zg). The projection of the first piece onto the

(x, y, θ)-space is the shortest Dubins curve for (xg, yg, θg).

The second piece is a helix. The control is uθ =
2π

|zg| − ∆
along the second piece.

The system first traverses the shortest Dubins curve with

saturated altitude velocity along such time-optimal trajectory.

It then traverses a helix, i.e. a full circle in the plane with

saturated altitude velocity.

C. Time-optimal Trajectories for Medium Goal Altitude

If there is a path for the Dubins car from the initial

configuration to the goal configuration in time |zg|, then the

time-optimal trajectory for the system corresponds to c3 6= 0

in Section III. In this case, the altitude velocity is saturated.

If there is no path for the Dubins car from the initial

configuration to the goal configuration in time |zg|, then

the time-optimal trajectory for the system must correspond

to c3 = 0. The altitude velocity is not saturated in this

case. Thus, the projection of the time-optimal trajectory onto

the (x, y, θ)-space is a Dubins time-extremal. Dubins time-

extremals are composed of turn with minimum radius and

straight line segments. We presented both cases in Section

IV.

VI. CONCLUSIONS

We introduced the Dubins airplane which extends the

Dubins car with altitude. We gave a characterization of

the time-optimal trajectories for the Dubins airplane. For

low and high final altitudes, the time-optimal trajectories

respectively consist of the Dubins curve with unsaturated

altitude velocity, and the Dubins curve followed by a helix

with saturated altitude velocity. For medium altitudes in

between low and high, different cases were recognized. The

time-optimal trajectory is either a Dubins extremal (not the

shortest) with unsaturated altitude velocity or a Dubins path

of certain length with saturated altitude velocity. We gave

a method to find a Dubins path with prescribed length if it

exists. We also gave an analysis of locally longest curves for

the Dubins car, i.e. those paths that may not be infinitesimally

elongated. Numerical techniques can be used to compute

the control synthesis. Analytical solution for the control

synthesis remains open for this problem.
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[33] Héctor Sussmann and Guoqing Tang. Shortest paths for the Reeds-

Shepp car: A worked out example of the use of geometric techniques

in nonlinear optimal control. Technical Report SYNCON 91-10, Dept.

of Mathematics, Rutgers University, 1991.

[34] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic

management: A study in multiagent hybrid systems. IEEE Trans. on

Automatic Control, 43(4), 1998.

[35] M. Vendittelli, J.P. Laumond, and C. Nissoux. Obstacle distance

for car-like robots. IEEE Transactions on Robotics and Automation,

15(4):678–691, 1999.

[36] M. Vendittelli, J.P. Laumond, and P. Souères. Shortest paths to

obstacles for a polygonal car-like robot. In IEEE Conf. Decision &

Control, 1999.

[37] G. Walsh, A. Sarti, and S. Shankar Sastry. Algorithms for steering on

the group of rotations. Technical Report UCB/ERL M93/44, EECS

Department, University of California, Berkeley, 1993.

[38] G. C. Walsh, R. Montgomery, and S. Sastry. Optimal path planning

on matrix Lie groups. In IEEE Conf. Decision & Control, volume 2,

pages 1258–1263, 1994.

[39] H. Wang and P. K. Agarwal. Approximation algorithms for curvature-

constrained shortest paths. In Proc. Annual ACM-SIAM Symp. on

Discrete algorithms, pages 409–418, 1996.

[40] H. Wong, V. Kapila, and R. Vaidyanathan. UAV optimal path planning

using c-c-c class paths for target touring. In IEEE Conf. Decision &

Control, pages 1105–1110, 2004.

[41] G. Yang and V. Kapila. Optimal path planning for unmanned air

vehicles with kinematic and tactical constraints. In IEEE Conf.

Decision & Control, pages 1301–1306, 2002.

[42] Y. Zhao and R. L. Schultz. Deterministic resolution of two aircraft

conflict in free flight. In AIAA Guidance, Navigation, and Control

Conference AIAA-1997-3547, 1997.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 ThPI20.9

2384


