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Abstract— This paper presents a path planning approach for
achieving an optimal feasible path satisfying a maximum cur-
vature bound in three dimensional space, given initial and final
configurations specified by position and orientation vectors.
Based on Dubins strategy two types of solution approaches
will be discussed, the first is a numerical technique which
is computationally intensive and the second is based on 3D
geometry from which we will derive an analytical solution. In
the second approach, the computational time is very low and
the strategy can be implemented for real-time path planning
problems. Unlike the existing iterative methods which yield
suboptimal paths and are computationally more intensive, this
geometrical method generates an optimal path in lesser time.
Due to its simplicity and low computational requirements this
approach can be implemented on fixed wing aerial vehicles with
constrained turn radius.

I. INTRODUCTION

The shortest path calculation between any two given

configurations plays a key role in robotic path planning. In

2D plane, the smooth and shortest path for fixed initial and

final configurations is obtained geometrically by Dubins [1].

Reeds and Shepp [2] solve a similar problem using advanced

calculus in which a vehicle can move forward as well as

backward. Boissonnat et al. [3] prove the same result as

Dubins using the powerful Pontryagin’s minimum principle.

Shkel and Lumelsky [4] classify Dubins path for different

sets of initial and final configurations. Using Dubins result

in 2D plane optimal path planning is discussed in [5]-[10].

Wong et al. [11] determine C-C-C class of Dubins paths for

an Unmanned Air Vehicle (UAV) performing target touring.

McGee et al. [12] use Dubins path to explore the problem

of finding an optimal path for a UAV in constant wind

condition. In [13] Chitsaz et al. consider a problem of finding

a time-optimal trajectory for an airplane from some starting

point and orientation to some final point and orientation. This

model extends the Dubins car to include altitude information

and is called a Dubins airplane. It assumes that the system

has independent bounded control over the altitude velocity

as well as the turn rate of the plane. In [14], [15] the

proposed algorithm considers a suboptimal approach to solve

the problem of 3D path generation and tracking satisfying

arbitrary initial and final conditions. Yang and Sukkarieh [16]

present a 3D path planning algorithm for a UAV operating

in cluttered natural environments. In [17] Shanmugavel et

al. describe coordinated path planning of multiple UAVs

in 3D space when the UAVs fly between points which are

far apart. In their paper the path planning of UAVs in 2D
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plane is to 3D space and the suboptimal path of CCSC

type (C-Circular, S-Straight line) is generated. By using the

Maximum Principle on manifolds Sussmann [18] has shown

that every minimizer in 3D is either a helicoidal arc or

a concatenation of three pieces each of which is a circle

or straight line. An example given in [18] also shows that

unlike 2D Dubins path, when the distance between initial and

final points is small, there can exist a helicoidal path that is

shorter than any CSC path. In [19] and [20], 3D smooth path

planning has been discussed using two important properties

of 3D curves, curvature and torsion.

In this paper we discuss an efficient algorithm to compute

the optimal path with a prescribed curvature constraint in

3D space for a given initial and final configurations under

the assumption that the points are situated “sufficiently far”

from each other (same as [17]). The condition “sufficiently

far” will be clarified in Section III. For this case, the

path will be of CSC type and we will construct it using

the same principle as of Dubins curve in 2D. Unlike the

existing iterative methods which yield suboptimal paths and

are computationally more intensive, this geometrical method

generates an optimal path in lesser time. Due to its simplicity

and low computational requirements this approach can be

implemented on a fixed wing aerial vehicle with constrained

turn radius.

The organization of the paper is as follows: Section II

defines the problem in 3D space. Section III describes the

solution approaches. Simulation results are given in Section

IV. Finally in Section V concluding remarks are presented.

II. PROBLEM DEFINITION

The problem is to determine a curve of minimum length

between the initial point X1 (X1x,X1y,X1z) and final point

X2 (X2x,X2y,X2z). The orientation vectors at the initial and

final points are V1 (V1x,V1y,V1z) and V2 (V2x,V2y,V2z), re-

spectively (Fig.1). The problem definition is the same as

described by Sussmann [18], where a set of trajectories of a

control system Σ have been realized by writing the dynamical

equations as

Σ : x′p = yp, y′p = yp ×w (1)

where, the control w is restricted to taking values in B3, the

close unit ball in R3; xp and yp are the position and velocity

vectors, respectively.

The curvature (C) is defined as

C =
||x′p × y′p||

||x′p||
3

, and ||C|| ≤Cmax (2)
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Fig. 1. Problem definition: Initial and final conditions are given in terms
of positions and orientations

In this paper we will study the construction of optimal path

when the initial and final points are “sufficiently far” away

from each other.

In two dimensional plane we know that [1] the shortest

path for fixed initial and final positions and orientations

consists of three consecutive path segments of the Dubins

set, D, which includes six paths D={LSL, RSR, RSL, LSR,

RLR, LRL} (see Fig. 2), where left turn and right turn with

minimal allowed radius of turn are denoted by L and R,

respectively, and the straight line path segment is denoted

by S. In [4] it was proved that, for this problem, the optimal

time path is CSC and not CCC for the long path case. Here

C stands for a circular turn either to the right (R) or to the

left (L).

Using the same principle as of 2D plane we now attempt to

achieve a CSC path in 3D. Unlike the 2D problem the initial

and the final manoeuvres are not in the same plane. Hence,

the path generation in 3D is not as simple as in the case of

2D. In the following section we will discuss the methods to

generate this path.

III. 3D PATH GENERATION

A. Using numerical search approach

In the 2D plane there are only two possible ways of

taking a turn (either left or right) when the orientation

vector is given. But in 3D there are an infinite number of

ways in which a vehicle can turn from its initial orientation

and, thus, to reach its final orientation, many possible paths

exist. But we have to get a pair of circles, one at the initial

and the other at the final position and on which there exists

a common tangent. The tangent line between these two

circles will give a straight line path segment for the CSC

type path.

There are many ways by which a circular path in 3D space

α

β

γ

α

γ

CSC Dubins path

CCC Dubins path

Fig. 2. Dubins CSC and CCC Path in 2D plane

can be obtained. We will consider two of them here.

Method 1: Let the radius of the circle be r, the center

be (xa,ya,za) and let (a,b,c) be the unit vector normal to

the plane. The equation of the circle can be obtained by

considering the intersection of a sphere (of radius r, centered

at (xa,ya,za)) and a plane (passing through (xa,ya,za) and

orthogonal to the vector (a,b,c)). The following equations,

parameterized by s, represent the circle.

x(s) = xa +{acr cos(s)−br sin(s)}/
√

(a2 + b2) (3)

y(s) = ya +{bcr cos(s)+ ar sin(s)}/
√

(a2 + b2) (4)

z(s) = za − r cos(s)
√

(a2 + b2) (5)

Method 2: Another way to obtain a circular path is to

define two perpendicular unit vectors on the plane of the

circle as v and w. If the center of the circle is o, then the

equation of the circle, parameterized by γ (which is the angle

measured with reference to v) will be,

Xs = o + vr cosγ + wr sinγ (6)

In the 3D path following problem, the center of the circular

turn is not known. Only the position and orientation of initial

and final points are known. One can construct the possible

turn (see Fig. 3) at initial and final points and a tangent line

between these two circles. In other word, a feasible CSC

path between these two configurations can be obtained as

follows.

Step 1: Obtain the circle on which the centers of all the

circles at the initial position are situated. Similarly, obtain

the circle on which the centers of all the circles at the final

position are situated. This can be achieved by using method
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Fig. 3. A figure to illustrate circles formation at a point when the position
and orientation vectors are given
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Fig. 4. Illustration of the feasibility of the path

1.

Step 2: Obtain the group of circles which can be the possible

turn circles at the initial position. Similarly, obtain the same

for the final position. This can be achieved by using method

2.

Step 3: Search a common tangent from these two groups.

This common tangent should be along the intersecting line

of the initial and the final planes.

Step 4: Check the feasibility of the path. Cross product of

the tangent and the radius vector at the tangential point on

the first circle should be the same as the cross product of the

given initial orientation vector and radius vector at the initial

point. Cross product of the tangent and the radius vector at

the tangential point on the second circle should be the same

as the cross product of the given final orientation vector and

radius vector at that final point. In Fig. 4 it is shown that

P1P2 tangent is a segment of a feasible CSC path whereas

Q1Q2 is not.

Step 5: Check the minimum length path among all these

feasible paths.

B. Using a geometric approach

In this section we will construct the CSC path by using

3D geometry. The intersecting line between the initial and

final curve will be derived analytically. The 3D geometry

X1

X2

O
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P
2

V1

V2

w
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y
2
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X
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Fig. 5. Geometry of the CSC path in 3D

is shown in Fig. 5. The initial curvilinear path of minimum

radius (r) and the final curvilinear path of minimum radius

(r) are in different planes. The straight line path segment

between these two curves is the intersecting line between

these two initial and final maneuver planes. Let the vector

that is common for both of these two planes be X (Xx,Xy,Xz).
Then, the unit vector x (xx,xy,xz) along this direction is,

x =
X

||X ||
(7)

The unit orientation vector v1 (v1x,v1y,v1z) at the initial

position is given by,

v1 =
V1

||V1||
(8)

The vector perpendicular to the first plane is,

U1 = X ×V1 (9)

Define the unit vector,

u1 =
U1

||U1||
(10)

The radius vector that is orientated toward the center of the

first circle from its initial position is,

W1 = V1 ×U1 = V1 × (X ×V1) (11)

Define the unit vector,

w1 =
W1

||W1||
(12)

The center of the first circle is

o1 = X1 + rw1 (13)

Then, the radius vector orientated toward the center of the

first circle from the point where the tangent line meets the

first circle (this is, the point from which the vehicle will start
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to follow a straight line path that is tangential to the initial

and final circles) is given by,

Y1 = X ×U1 = X × (X ×V1) (14)

We define the unit vector,

y1 =
Y1

||Y1||
(15)

The point at which the tangent touches the first circle,

P1 = o1 − ry1 = X1 + rw1 − ry1 (16)

The unit orientation vector v2 (v2x,v2y,v2z) at the final

position is given by,

v2 =
V2

||V2||
(17)

The vector perpendicular to the second plane is given by,

U2 = X ×V2 (18)

Define the unit vector,

u2 =
U2

||U2||
(19)

The radius vector that is orientated toward the center of the

second circle from its final position is given by,

W2 = −V2 ×U2 = −V2 × (X ×V2) (20)

Define the unit vector,

w2 =
W2

||W2||
(21)

The center of the second circle is,

o2 = X2 + rw2 (22)

Then, the radius vector orientated toward the center of the

second circle from the point where the tangent line meets

the second circle (this is, the point from which the vehicle

will start to follow the second curve) is given by,

Y2 = −X ×U2 = −X × (X ×V2) (23)

Define,

y2 =
Y2

||Y2||
(24)

Then, the point at which the tangent touches the second circle

is,

P2 = o2 − ry2 = X2 + rw2 − ry2 (25)

We can now solve for X by solving the following nonlinear

equation

P2 −P1 = X (26)

We get,

X = P2 −P1 = (X2 + rw2 − ry2)− (X1 + rw1 − ry1) (27)

Let us introduce two new variables θ1 and θ2 which are the

first and final turning angles, respectively. This will result in

the following equation:

X = (X2 −X1)− r(x + v1) tan
θ1

2
− r(x + v2) tan

θ2

2
(28)

A further simplification will give the following results:

cosθ1 = v1 . x (29)

cosθ2 = v2 . x (30)

(X1x −X2x) = Xx + rxx

[

tan
θ1

2
+ tan

θ2

2

]

+r

[

v2x tan
θ2

2
+ v1x tan

θ1

2

]

(31)

(X1y −X2y) = Xy + rxy

[

tan
θ1

2
+ tan

θ2

2

]

+r

[

v2y tan
θ2

2
+ v1y tan

θ1

2

]

(32)

(X1z −X2z) = Xz + rxz

[

tan
θ1

2
+ tan

θ2

2

]

+r

[

v2z tan
θ2

2
+ v1z tan

θ1

2

]

(33)

We can solve these set of equations to get the tangent of

these two circles and the angular turns. Now, calculate

total length of the path (=first arc length+straight line

length+second arc length).

a) First arc length = r cos−1(w1.y1).
b) Straight line length = ||P2 −P1||.
c) Second arc length = r cos−1(w2.y2).

Note 1: It is important to mention here that there can exist

four types of CSC paths (among them we have to select the

shortest one) and the solution for those cases can be obtained

in the same way as discussed earlier. The complete set of

equations are given below.

X = (X2 −X1)∓ r(x + v1) tan
θ1

2
∓ r(x + v2) tan

θ2

2
(34)

Note 2: From (34) it can be shown that if ||X2 −X1||> 4r

(“sufficiently far”) then all the CSC paths will exist and for

smaller distances, the path can be either CSC/CCC or of the

helicoidal type. Those cases will not be considered here.

Note 3: The method discussed here gives an optimal

geometrical path that may not be flyable for a real UAV

with the constraints on flight path angle and stall speed.

For example, if final point is just vertically above of the

initial point and the orientations are along line-of-sight then

although the S path is optimal but it is not flyable. In those

cases numerical methods can be applied for obtaining the

solution.
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Fig. 6. Case: I
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Fig. 7. Case: II

IV. SIMULATION RESULTS

In Table I, we have taken the same initial conditions as

in [17] and the results are tabulated using both numerical

and geometrical methods. The value of maximum curvature

is .2 (m−1). CSC paths using the geometrical method have

been shown in Fig 6-8. In both these methods we will get

an optimal path rather than the suboptimal path obtained in

[17]. The solution method described in the second case is

more efficient in respect to computational time and accuracy

(geometry based method takes about 1 sec whereas numerical

method takes a minimum of 8 hours with less accuracy) than

the method used in [17] which used iterative methods to get

the common plane for developing CCSC type suboptimal

path. Note that for examples in Table I, the distances between

the initial and final points were sufficiently large for a

feasible solution of equations (29)-(33) to exist.

V. CONCLUSIONS AND FUTURE WORK

Optimal path planning in 3D space plays a key role in the

area of plan planning of an aerial vehicle. In several of the

applications, it is crucial to assign paths to each aerial vehicle

based on a pre-determined optimal path so that each vehicle

can fly from its start point to its ultimate destination through

the predefined waypoints in minimum time, reducing the

time required to complete the total task. This paper discussed
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Fig. 8. Case: III

two approaches for obtaining the solution: 1) a numerical

method based strategy which is computationally intensive

and 2) an approach based on geometry in 3D space from

which the analytical solution has been derived. The second

method is very effective in providing real time solutions for

cases where arbitrary initial and final conditions are given.

The proposed method can be implemented for real time 3D

path planning as it is computationally fast and it gives the

minimum length path to reach the final configuration. Further

work in this problem will extend the analysis to cases when

the initial position and final position are at close proximity

and will consider the implementation of the algorithm using

a real UAV model in the presence of wind.
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