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Abstract The paper deals with a problem of pursuit-evasion with two pursuers and
one evader having linear dynamics. The pursuers try to minimize the final miss
(an ideal situation is to get exact capture), the evader counteracts them. Results of
numerical construction of level sets (Lebesgue sets) of the value function are given.
A feedback method for producing optimal control is suggested. The paper includes
also numerical simulations of optimal motions of the objects in different situations.

1 Introduction

Nowadays, group pursuit-evasion games (several pursuers and/or several evaders)
are studied intensively: [11, 4, 3, 7, 2, 14, 1].

From a general point of view, often, a group pursuit-evasion game (without any
hierarchy among players) can be treated as an antagonistic differential game, where
all pursuers are joined into a player, whose objective is to minimize some functional,
and, similarly, all evaders are joined into another player, who is the opponent to
the first one. The theory of differential games gives an existence theorem for the
value function of such a game. But, usually, any more concrete results (for example,
concerning effective constructing the value function) cannot be obtained. This is
due to high dimension of the state vector of the corresponding game and absence
of convexity of time sections of level sets (Lebesgue sets) of the value functions.
Just these reasons can explain why group pursuit-evasion games are very difficult
and are investigated usually by means of specific methods and under very strict
assumptions.
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In this paper, we investigate a pursuit-evasion game with two pursuers and one
evader. Such a model formulation arises during analysis of a problem, where two
aircrafts (or missiles) intercept another one in the horizontal plane. The peculiarity
of the game explored in the paper is that solvability sets (the sets wherefrom the in-
terception can be guaranteed with miss, which is not greater than some given value)
and optimal feedback controls can be build numerically in a one-to-one antagonistic
game, where the pursuers are joined into one useful control. Such an investigation
is the aim of this paper.

2 Formulation of Problem

We consider a game in the plane. Let us assume that initial closing velocities are
parallel and quite large and control accelerations affect only lateral components of
object velocities. Thus, one can suppose that instants of passages of the evader by
each of the pursuers are fixed. Below, we call them termination instants and denote
by Tf 1 and Tf 2, respectively. We consider both the cases of equal and different termi-
nation instants. The players’ controls define the lateral deviations of the evader from
the first and second pursuers at the termination instants. Minimum of absolute val-
ues of these deviations is called the resulting miss. The objective of the pursuers is
minimization of the resulting miss, the evader maximizes it. The pursuers generate
their controls by a coordinated effort (from one control center).

In Fig. 1, one can see one possible initial location of the pursuers and evader,
when they move towards each other. Also, the evader can move from both pursuers,
or from one of them, but towards another one. Below, we consider lateral motions
only, so all these cases are studied uniformly.

In the relative linearized system, the dynamics is the following (see [8, 9]):

ÿ1 = −aP1 +aE , ÿ2 = −aP2 +aE ,
ȧP1 = (AP1u1 −aP1)/lP1, ȧP2 = (AP2u2 −aP2)/lP2,
ȧE = (AEv−aE)/lE .

(1)

Here, y1 and y2 are the current lateral deviations of the evader from the first and sec-
ond pursuers; aP1, aP2, aE are the lateral accelerations of the pursuers and evader;
u1, u2, v are the players’ controls; AP1, AP2, AE are the maximal values of the accel-

Fig. 1 Schematic initial positions of the pursuers and evader
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erations; lP1, lP2, lE are the time constants describing the inertiality of servomech-
anisms. So, aP1, aP2, aE are the physical lateral accelerations, and u1, u2, v are
respective command controls.

The controls have bounded absolute values:

|u1| ≤ 1, |u2| ≤ 1, |v| ≤ 1. (2)

The linearized dynamics of the objects in the problem under consideration is
typical (see, for example, [13]).

Consider new coordinates x1 and x2, which are the values of y1 and y2 forecasted
to the corresponding termination instants Tf 1 and Tf 2 under zero players’ controls.
One has

xi = yi + ẏiτi −aPil2
Pih(τi/lPi)+aE l2

Eh(τi/lE), i = 1,2. (3)

Here, xi and yi depend on t, and

τi = Tf i − t, h(α) = e−α +α −1.

We have xi(Tf i) = yi(Tf i).
Passing to a new dynamics in “equivalent” coordinates x1 and x2 (see [8, 9]), we

obtain:
ẋ1 = −AP1lP1h(τ1/lP1)u1 +AE lEh(τ1/lE)v,
ẋ2 = −AP2lP2h(τ2/lP2)u2 +AE lEh(τ2/lE)v.

(4)

Join both pursuers P1 and P2 into one player, which will be called the first player.
The evader E is the second player. The first player governs the controls u1 and u2;
the second one governs the control v. We introduce the following payoff functional:

φ
(
x1(Tf 1),x2(Tf 2)

)
= min

(∣∣x1(Tf 1)
∣∣, ∣∣x2(Tf 2)

∣∣), (5)

which is minimized by the first player and maximized by the second one. Thus, we
get a standard antagonistic game with dynamics (4) and payoff functional (5). This
game has the value function V (t,x), where x = (x1,x2). Each level set

Wc =
{
(t,x) : V (t,x)≤ c

}
of the value function coincides with the maximal stable bridge (see [5, 6]) built from
the target set

Mc =
{
(t,x) : t = Tf 1, |x1| ≤ c; t = Tf 2, |x2| ≤ c

}
.

The set Wc can be treated as the solvability set for the pursuit-evasion game with the
result c.

When c = 0, we have the situation of the exact capture. The exact capture implies
equality to zero of at least one of yi at the instant Tf i, i = 1, 2.

The works [8, 9] consider only cases with exact capture and pursuers “stronger”
than the evader. The latter means that the parameters APi, AE and lPi, lE (i = 1, 2)
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Fig. 2 Different variants of the stable bridges evolution in an individual game

are such that the maximal stable bridges in the individual games (P1 vs. E and P2
vs. E) grow monotonically in the backward time.

Considering individual games of each pursuer vs. the evader, one can introduce
parameters [12] µi =APi/AE and εi = lE/lPi. They and only they define the structure
of the maximal stable bridges in the individual games. Namely, depending on values
of µi and µiεi, there are 4 cases of the bridge evolution (see Fig. 2):
• expansion in the backward time (a strong pursuer);
• contraction in the backward time (a weaker pursuer);
• expansion of the bridge until some backward time instant and further contraction;
• contraction of the bridge until some backward time instant and further expansion

(if the bridge still has not broken).
Respectively, given combinations of pursuers’ capabilities and individual games du-
rations (equal/different), there are significant number of variants for the problem
with two pursuers and one evader. Some of them are considered below.

The main objective of this paper is to construct the sets Wc for typical cases of the
game under consideration. The difficulty of the problem is that time sections Wc(t)
of these sets are non-convex. Constructions are made by means of an algorithm for
constructing maximal stable bridges worked out by the authors for problems with
two-dimensional state variable. The algorithm is similar to the one used in [10].
Another objective is to build optimal feedback controls of the first player (that is, of
the pursuers P1 and P2) and the second one (the evader E).

3 Strong Pursuers, Equal Termination Instants

Add dynamics (4) by a “cross-like” target set
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Mc = {|x1| ≤ c}∪{|x2| ≤ c}, c ≥ 0,

at the instant Tf = Tf 1 = Tf 2. Then we get a standard linear differential game with
fixed termination instant and non-convex target set. The collection {Wc} of maxi-
mal stable bridges describes the value function of the game (4) with payoff func-
tional (5).

For the considered case of two stronger pursuers, choose the following parame-
ters:

AP1 = 2, AP2 = 3, AE = 1,
lP1 = 1/2, lP2 = 1/0.857, lE = 1,
Tf 1 = Tf 2 = 6.

1. Structure of maximal stable bridges. Fig. 3 shows results of constructing the
set W =W0 (that is, with c = 0). In the figure, one can see several time sections W (t)
of this set. The bridge has a quite simple structure. At the initial instant τ = 0 of the
backward time (when t = 6), its section coincides with the target set M0, which
is the union of two coordinate axes. Further, at the instants t = 4, 2, 0, the cross
thickens, and two triangles are added to it. The widths of the vertical and horizontal
parts of the cross correspond to sizes of the maximal stable bridges in the individual
games with the first and second pursuers. These triangles are located in the II and
IV quadrants (where the signs of x1 and x2 are different, in other words, when the
evader is between the pursuers) give the zone where the capture is possible only
under collective actions of both pursuers (trying to avoid one of the pursuer, the
evader is captured by another one).

These additional triangles have a simple explanation from the point of view
of problem (1). Their hypotenuses have slope equal to 45◦, that is, are described
by the equation |x1|+ |x2| = const. The instant τ , when the hypotenuse reaches a
point (x1,x2), corresponds to the instant, when the pursuers cover together the dis-
tance |x1(0)|+ |x2(0)|, which is between them at the initial instant t = 0. Therefore,
at this instant, both pursuers come to the same point. Since the evader was initially
between the pursuers, it is captured at this instant.

The set W built in the coordinates of system (4) coincides with the description of
the solvability set obtained analytically in [8, 9]. The solvability set for system (1)
is defined as follows: if in the current position of system (1) at the instant t, the
forecasted coordinates x1, x2 are inside the time section W (t), then under the con-
trols u1, u2 the motion is guided to the target set M0; otherwise, if the forecasted
coordinates are outside the set W (t), then there is an evader’s control v, which de-
viates system (4) from the target set, therefore, there is no exact capture in original
system (1).

Time sections Wc(t) of other bridges Wc, c > 0, have shape similar to W (t). In
Fig. 4, one can see the sections Wc(t) at t = 2 (τ = 4) for a collection {Wc} cor-
responding to some serie of values of the parameter c. For other instants t, the
structure of the sections Wc(t) is similar. The sets Wc(t) describe the value func-
tion x →V (t,x).

2. Feedback control of the first player. The first player governs two controls u1
and u2. Velocity component of system (4) depending on u1 is horizontal, and the
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Fig. 3 Two strong pursuers, equal termination instants: time sections of the bridge W

Fig. 4 Two strong pursuers, equal termination instants: level sets of the value function, t = 2
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component depending on u2 is vertical. If to analyze the structure of sections Wc(t)
at some instant t, one can conclude that at any horizontal line, a minimum of the
value function x → V (t,x) is attained at some interval including x1 = 0. It follows
from this that for optimal feedback control it is necessary to take u0

1(t,x) = 1 if
x1 > 0, and u0

1(t,x) = −1 if x1 < 0. Thus, the vertical axis is a switching line for
the control u1. In the axis, the optimal control can be taken arbitrary under con-
straint |u1| ≤ 1. In the same way, at any vertical line, the minimum of the function
x →V (t,x) is attained in some segment including x2 = 0. Take u0

2(t,x) = 1 if x2 > 0,
and u0

2(t,x) = −1 if x2 < 0. The switching line for the control u2 is the horizontal
axis. In the axis, the choice of the control is also arbitrary under condition |u2| ≤ 1.

The switching lines (the coordinate axes) at any t divide the plane x1, x2 into 4
cells. In each of these cells, the optimal control of the first player is constant.

The vector control
(
u0

1(t,x),u
0
2(t,x)

)
is applied in a discrete scheme (see [5, 6])

with some time step ∆ : a chosen control is kept constant during a time step ∆ .
Then, on the basis of the new position, a new control is chosen, etc. When ∆ → 0,
this control guarantees to the first player a result not greater than V (t0,x0) for any
initial position (t0,x0).

3. Feedback control of the second player. Now, let us describe the optimal control
of the second player. The vectogram of the second player in system (4) is a segment
parallel to the diagonal of I and III quadrants. Using the sets Wc(t) at some instant t,
let us analyze the change of the function x → V (t,x) along the lines parallel to this
diagonal. Consider some of these line such that it passes through the II quadrant.
One can see that local minima are attained at points, where the line crosses the
axes Ox1 and Ox2, and a local maximum is in the segment, where the line coincides
with the boundary of some level set of the value function. The situation is similar
for lines passing through the IV quadrant.

As the switching lines for the second player’s control v, let us take three lines:
the axes Ox1 and Ox2, and a slope line Π(t), which consists of two semilines pass-
ing through middles of the diagonal parts of the level sets boundaries in the II and
IV quadrants. In the considered case in the switching line, the control v can take
arbitrary values such that |v| ≤ 1. Inside each of 6 cells, to which the plane is sepa-
rated by the switching lines, the control is taken either v = +1, or v = −1 that one
pulls the system towards the points of maximum. Applying this control in a discrete
scheme with time step ∆ , the second player guarantees with ∆ → 0 the result not
less than V (t0,x0) for any initial position (t0,x0).

Note. Since W (t) ̸= ∅, then the global minimum of the function x → V (t,x) is
attained at any x ∈W (t) and equal 0. Thus, when the position (t,x) of the system is
such that x ∈ W (t), the players can choose, generally speaking, any controls under
their constraints. If x /∈W (t), the choices should be made according to the described
above rules based on the switching lines.

4. Optimal motions. In Fig. 5, one can see results of optimal motion simulations.
This figure contains time sections W (t) (thin solid lines; the same sections as in
Fig. 3), switching lines Π(0) at the initial instant and Π(6) at the termination in-
stant of the direct time (dotted lines), and two trajectories for two different initial
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positions: ξI(t) (thick solid line) and ξII(t) (dashed line). The motion ξI(t) starts
from the point x0

1 = 40, x0
2 = −25 (marked by a round), which is inside the initial

section W (0) of the set W . So, the evader is captured: the endpoint of the motion
(also marked by a round) is at the origin. The initial point of the motion ξII(t) has
coordinates x0

1 = 25, x0
2 =−50 (marked by a star). This position is outside the sec-

tion W (0), and the evader escapes from the exact capture: the endpoint of the motion
(also marked by a star) has non-zero coordinates.

Fig. 6 gives the trajectories of the objects in the original space. Values of longi-
tudinal components of the velocities are taken such that the evader moves towards
the pursuers. For all simulations here and below, we take

y0
1 =−x0

1, y0
2 =−x0

2, ẏ0
1 = ẏ0

2 = 0, a0
P1 = a0

P2 = a0
E = 0.

Solid lines correspond to the first case, when the evader is successfully captured
(at the termination instant, the positions of both pursuers are the same as the po-
sition of the evader). Dashed lines show the case, when the evader escapes: at the
termination instant no one of the pursuers superposes with the evader. In this case,
one can see as the evader aims itself to the middle between the terminal positions of
the pursuers (this guarantees the maximum of the payoff functional φ).

Fig. 5 Two strong pursuers, equal termination instants: result of optimal motion simulation
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Fig. 6 Two strong pursuers, equal termination instants: trajectories in the original space

4 Strong Pursuers, Different Termination Instants

Take the parameters as in the previous section, except the termination instants. Now
they are Tf 1 = 7 and Tf 2 = 5. Investigation results are shown in Figs 7–9.

The maximal stable bridge W =W0 for system (4) with the taken target set

M0 = {t = Tf 1, x1 = 0}∪{t = Tf 2, x2 = 0}

is built in the following way. At the instant τ1 = 0 (that is, t = Tf 1), the section of the
bridge coincides with the vertical axis x1 = 0. At the instant τ1 = 2 (that is, t = Tf 2),

Fig. 7 Two strong pursuers, different termination instants: the bridge W and optimal motions
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Fig. 8 Two strong pursuers, different termination instants: level sets of the value function, t = 2

we add the horizontal axis x2 = 0 to the bridge expanded during passed time period.
Further, the time sections of the bridge are constructed using standard procedure
under relation τ2 = τ1 −2.

In the same manner, bridges Wc, c > 0, corresponding to target sets

Mc = {t = Tf 1, |x1| ≤ c}∪{t = Tf 2, |x2| ≤ c}

can be built: at the instant τ1 = 0 we take a vertical strip |x1| 6 c, which shows
the non-zero terminal distance c between the first pursuer and the evader; then the
maximal stable bridge from this strip is constructed up to the instant τ1 = 2; at this

Fig. 9 Two strong pursuers, different termination instants: trajectories in the original space
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instant, unite it with the horizontal strip |x2| 6 c, which corresponds to the same
deviation c of the evader from the second pursuer; further, a bridge is constructed
starting from this new section.

Results of construction of the set W are given in Fig. 7. When τ1 > 2, time sec-
tions W (t) grow both horizontally and vertically; two additional triangles appear,
but now they are curvilinear. Analytical description of these curvilinear parts of the
boundary is difficult. Due to this, in [8, 9], there is only an upper estimation for the
solvability set for this variant of the game.

Total structure of the sections Wc(t) at t = 2 (τ1 = 5, τ2 = 3) is shown in Fig. 8.
Optimal feedback controls of the pursuers and evader are constructed in the same
way as in the previous example, except that the switch line Π(t) for the evader is
formed by the corner points of the additional curvilinear triangles of the sets Wc(t),
c ≥ 0.

In Fig. 7, the trajectory for the initial point x0
1 = 50, x0

2 = −25 is shown as a
solid line between two points marked by starts. The trajectories in the original space
are shown in Fig. 9. One can see that at the beginning the evader escapes from the
second pursuer and goes downstairs, after that the evader’s control is changed to
escape from the first pursuer and the evader goes upstairs.

5 Two Weak Pursuers, Different Termination Instants

Now, we consider a variant of the game when both pursuers are weaker than the
evader. Let us take the parameters

AP1 = 0.9, AP2 = 0.8, AE = 1, lP1 = lP2 = 1/0.7, lE = 1,

and different termination instants Tf 1 = 7, Tf 2 = 5.
Since in this variant, the evader is more maneuverable than the pursuers, they

cannot guarantee the exact capture.
Fix some level of the miss, namely,

∣∣x1(Tf 1)
∣∣ ≤ 2.0,

∣∣x2(Tf 2)
∣∣ ≤ 2.0. Time sec-

tions W2.0(t) of the corresponding maximal stable bridge are shown in Fig. 10. The
upper-left subfigure corresponds to the instant when the first player stops to pur-
sue. The upper-right subfigure shows the picture for the instant, when the second
pursuer finishes its pursuit. At this instant, the horizontal strip is added, which is a
bit wider than the vertical one contracted during the passed period of the backward
time. Then, the bridges contracts both in horizontal and vertical directions, and two
additional curvilinear triangles appear (see middle-left subfigure). The middle-right
subfigure gives the view of the section when the vertical strip collapses, and the
lower-left subfigure shows the configuration just after the collapse of the horizontal
strip. At this instant, the section loses connectivity and disjoins into two parts sym-
metrical with respect to the origin. Further, these parts continue to contract (as it can
be seen in the lower-right subfigure) and finally disappear.
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Time sections
{

Wc(t)
}

and corresponding switching lines of the first player are
given in Fig. 11 at the instant t = 0 (τ1 = 7, τ2 = 5). The dashed line is the switching
line for the component u1; the dotted one is for the component u2. The switching
lines are obtained as a result of the analysis of the function x →V (t,x) in horizontal
(for u1) and vertical (for u2) lines. In some region around the origin, the switching
line for u1 (respectively, for u2) differs from the vertical (horizontal) axis. If in the
considered horizontal (vertical) line the minimum of the value function is attained
in a segment, then the middle of such a segment is taken as a point for the switching
line. Arrows show directions of components of the control in 4 cells. Similarly, in

Fig. 10 Two weak pursuers, different termination instants: time sections of the maximal stable
bridge W2.0
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Fig. 11 Two weak pursuers, different termination instants: switching lines and optimal controls
for the first player (the pursuers), t = 0

Fig. 12 Two weak pursuers, different termination instants: switching lines and optimal controls
for the second player (the evader), t = 0
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Fig. 13 Two weak pursuers, different termination instants: trajectories of the objects in the original
space

Fig 12, switching lines and optimal controls are displayed for the second player.
Here, the switching lines are drawn with thick solid lines. As above, we have 6
cells, where the second player’s control is constant.

For simulations, let us take the initial position x0
1 = 12, x0

2 =−12 for system (4).
In Fig. 13, trajectories of the objects are shown in the original space. At the be-
ginning of the pursuit, the evader closes to the first (lower) pursuer. It is done to
increase the miss from the second (upper) pursuer at the instant Tf 2. Further closing
is not reasonable, and the evader switches its control to increase the miss from the
first pursuer at the instant Tf 1.

6 One Strong and One Weak Pursuers, Different Termination
Instants

Let us change parameters of the second pursuer in the previous example and take
the following parameters of the game:

AP1 = 2, AP2 = 1, AE = 1, lP1 = 1/2, lP2 = 1/0.3, lE = 1.

Now, the evader is more maneuverable than the second pursuer, and an exact capture
by this pursuer is unavailable. Assume Tf 1 = 5, Tf 2 = 7.

In Fig. 14, there are sections of the maximal stable bridge W5.0 (that is, for
c = 5.0) for 6 instants: t = 7.0, 5.0, 2.5, 1.4, 1.0, 0.0. The horizontal part of its
time section W5.0(τ) decreases with growth of τ , and breaks further. The vertical
part grows. Even after breaking the individual stable bridge of the second pursuer
(and respective collapse of the horizontal part of the cross), additional capture zones
still exist and are kept in time.

Switching lines of the first and second players for the instant t = 1 are given in
Figs. 15 and 16. These lines are obtained by processing collection of time sections
at this instant of bridges computed for different values of c. In comparison with the
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Fig. 14 One strong and one weak pursuers, different termination instants: time sections of the
maximal stable bridge W5.0

previous case of two weak pursuers, the switching lines for the first player have
simpler structure.

Here, as in the previous section, the trajectories of the objects are drawn in the
original space only (see Fig. 17). For simulations, the initial lateral deviations are
taken as x0

1 = 20, x0
2 =−20. Longitudinal components of the velocities are such that

the evader moves towards one pursuer, but from another.
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Fig. 15 One strong and one weak pursuers, different termination instants: switching lines and
optimal controls for the first player (the pursuers), t = 1

Fig. 16 One strong and one weak pursuers, different termination instants: switching lines and
optimal controls for the second player (the evader), t = 1
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Fig. 17 One strong and one weak pursuers, different termination instants: trajectories of the objects
in the original space

7 Varying Advantage of Pursuers, Equal Termination Instants

Now, let us consider a case when the pursuers have equal capabilities and equal
individual game durations. Their capabilities are such that at the beginning of the
backward time, bridges in the individual games contract and further expand. That
is, at the beginning of the direct time, the pursuers have advantage over the evader,
but at the final stage the evader is stronger.

Parameters of the game are taken as follows:

AP1 = AP2 = 1.5, AE = 1, lP1 = lP2 = 1/0.3, lE = 1.

Termination instants are equal: Tf 1 = Tf 2 = 10.
In Fig. 18, time sections of the maximal stable bridge W1.5 built for c = 1.5 are

shown for 6 instants: t = 10.0, 7.0, 5.7, 4.5, 1.3, 0.0. At the termination instant, the
terminal set is taken as a cross (the upper left subfigure).

At the beginning of backward time, the structure of the bridges is similar to the
case of two weak players: widths of both vertical and horizontal strips of the “cross”
decreases, and two straight-linear additional triangles of joint capture zone appear
(the upper right subfigure). Then at some instant, both strips collapse, and only the
triangles constitute the time section of the bridge (the central left subfigure). Further,
the triangles continue to contract, so, they become to two pentagons separated by an
empty space near the origin (the central right subfigure in Fig. 18). Transformation
to pentagons can be explained in the following way: the first player using its controls
expands the triangles vertically and horizontally, and the second player contracts
in diagonal direction. So, vertical and horizontal edges appear, but the diagonal
becomes shorter. Also, in general, size of each figure decreases slowly.

Due to action of the second player, at some instant, the diagonal disappear, and
the pentagons convert to squares (this is not shown in Fig. 18). After that, the pur-
suers take advantage, and total contraction is changed by growth: the squares start
to enlarge. When some time passes, due to the growth, the squares touch each other
at the origin (the lower left subfigure in Fig. 18). Since the enlargement continues,
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Fig. 18 Varying advantage of the pursuers, equal termination instants: time sections of the maximal
stable bridge W1.5

their sizes grow, and the squares start to overlap forming one “eight-like” shape (the
lower right subfigure in Fig. 18).

Figs. 19 and 20 show time sections of a collection of maximal stable bridges and
switching lines for the first and second players, respectively, for the instant t = 0.

As above, the simulated trajectories are shown in the origin space only. For sim-
ulation, the following initial conditions are taken: x0

1 = 5, x0
2 = −20. Longitudinal

components of the velocities are such that the evader moves from both pursuers. The
computed trajectories are given in Fig. 21. As it was said before, since at the final
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Fig. 19 Varying advantage of the pursuers, equal termination instants: switching lines and optimal
controls for the first player (the pursuers), t = 0

Fig. 20 Varying advantage of the pursuers, equal termination instants: switching lines and optimal
controls for the second player (the evader), t = 0
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Fig. 21 Varying advantage of the pursuers, equal termination instants: trajectories of the objects
in the original space

stage of interception, the pursuers are weaker than the evader, they cannot guarantee
the exact capture, only some non-zero level of the miss.

8 Conclusion

Presence of two pursuers acting together and minimizing the miss from the evader
leads to non-convexity of time sections of the value function, when the situation
is considered as a standard antagonistic differential game, where both pursuers are
joined into one player. In the paper, results of numerical study of this problem are
given for several variants of the parameters. The structure of the solution depends
on the presence or absence of dynamic advantage of one or both pursuers over
the evader. Optimal feedback control methods of the pursuers and evader are built
by preliminary construction and processing of level (Lebesgue) sets of the value
function (maximal stable bridges) for some quite fine grid of values of the payoff.
Switching lines obtained for each scalar component of controls depend on time, and
only they, not the level sets, are used for generating controls. Optimal controls are
produced at any current instant depending on the location of the state point respec-
tively to the switching lines at this instant. Accurate proof of the suggested optimal
control method needs for some additional study.
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