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Abstract. This paper overviews a multidisciplinary research effort on the understand-
ing of human locomotion. It addresses the computational principles of locomotion
neuroscience via the geometric control of nonholonomic systems. We argue that a
human locomotion model can be derived from a top-down approach, by exclusively
looking at the shape of locomotor trajectories and by ignoring all the body biomechan-
ical motor controls generating the motions.

1 Introduction
The walking of people in the snow or in the sand leave traces. Such traces are the
static images of the time-parameterized walking trajectories. What are the underlying
locomotion principles explaining their shapes? Let us state the question in a more ac-
curate manner. Ask somebody to enter a large empty room by a door and to leave it by
another one. The resulting motion is an intentional motion motivated by a well defined
goal. A lot of trajectories solve possibly the task. The subject will choose one of them.
Why that one instead of all the other possible ones (see Figure (1).a)? Would anybody
else choose the same trajectory? If we change a little bit the position and the direction
of the goal, how is the initial trajectory reshaped? How is this reshaping smooth? For
instance, let us consider the real study cases illustrated in Figures (1).b and (1).c. In
both figures both goals are at the same position. Their respective directions differ by a
small margin. In the case of Figure (1).b a subject has chosen two very close trajecto-
ries. In the case of Figure (1).c the same subject has chosen two completely different
strategies. How to explain this strategy change?

∗
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In this paper we address all these questions via the study of a single optimal control
problem:

1. We show that the human locomotion trajectories are well approximated by the
trajectories of a nonholonomic system optimizing the derivative of the curva-
ture. Such trajectories are piecewise made of elementary clothoid arcs.

2. We provide an optimal control synthesis (i.e., a complete description of all the
finite possible sequences of such elementary arcs). Such sequences may be
phrased as, for instance, “Start turning left while increasing the curvature during
τ1 second, then decrease the curvature during time τ2 and finally increase the
curvature during time τ3”. These combinations generate “words” that account
for the locomotion strategy used by the subjects according to the placement of
the 3-dimensional goal.

The results of the first item have been already published in [8, 9, 11]. Those of the
second item are new. The objective of the paper is to present a global view of the
methodology followed by the authors.

1.1 Related work: optimal control in neuroscience
A redundant system can be viewed as a mapping from a control space with dimension
q onto a task space with dimension n, with n < q. Such a mapping is not one-to-
one. As a consequence performing a given task can be done by an infinite number
of trajectories. In Robotics, it is a well known practice to benefit from the system
redundancy to optimize some criteria (see for instance [2, 23, 29] and for an overview
see [33]).
The human body is a highly redundant system. For most tasks (e.g., walking, grasping)
we get n << q. Since pioneering works like those of Bernstein [22] we know that the
central nervous system do not explore the entire q-dimensional manifold each time a
task has to be performed. For instance, when we are walking the rhythmic motions
of the arm follow the same rhythmic motions of the legs. Such synchronization of
motions reduces the dimension of the motor space to be explored. The human motor
learn by discovering motion patterns that reduce the dimension of the motor space. It
tends to build a control space with lower dimensions than the motor space. This is
the challenge of modern computational neuroscience: to propose control space models
that can be generic enough to account for large classes of tasks [6]. Today, optimal
control plays a central role [7, 21] amongst developed accepted models.
A community of problems between robotics and neuroscience gives rise today to a
multidisciplinary research synergy. The synergy benefits from the sharing of com-
mon investigation tools such as optimal control theory. The research we present here
provides a different spin to traditional optimal control by directing focus away from
redundant systems.
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(a) (b) (c)

Figure 1: (a) amongst four “possible” trajectories reaching the same goal, the subject
has chosen the bold one. Why? (b) and (c) show some examples of real trajectories
with the same final position. The final directions are almost the same. (b) a subject
performed two very close trajectories. (c) the same subject performed two completely
different trajectories. How to explain this strategy change?

1.2 A simple statement: the nonholonomic nature of the human
locomotion

Let us start with a simple statement. The placement of a body on a 2-dimensional space
requires three parameters: two for the position of the body and one for its direction
(with respect to a given frame of the world). The trace left by a man walking on the
snow is made of the history of the various positions he traversed (see Figure (2)). It
is printed in a 2-dimensional space. The information about the direction of the body
seems a priori missing. However it can be logically deduced by considering that the
direction of the body at a given instant of the trajectory is the direction tangent to the
trace at the corresponding position. Looking at the trace derivative of the body position
gives the body direction. This is a consequence of the fact the man is walking forward.
Such a coupling between position and direction is a differential coupling.
In the presence of a differential coupling, a critical question must be asked: is the
coupling integrable or not? And, what does this question mean?
The integrability of a differential equation is related to the dimension of the reachable
space of the associated system.
Let us consider the watch depicted in Figure (3). It is a mechanical system made of
two rotating arrows. The “motor space” is 2-dimensional. It can be represented as a
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Figure 2: Step trace. Photograph by Marey (1830 - 1940). Copyright: Cinémathèque
française

torus. The velocity of the long arrow is 12 times faster than the velocity of the small
one. There is a differential coupling between both arrows. Such a coupling is clearly
integrable. This means that the position of the small arrow depends on the position of
the long arrow. The reachable space of the arrow positions is not 2-dimensional. It is
only 1-dimensional. The system is said to be holonomic.
Let us now consider the walking man. The differential coupling between the position
(x, y) and the direction θ is:

ẏ cos θ − ẋ sin θ = 0 (1)

This means that the tangent vectors at any point of an admissible trajectory necessary
belongs to a 2-dimensional vector space spanned by the vector fields: cos θ

sin θ
0

and

 0
0
1

 (2)

In that vector space, sideway steps are not allowed. The “motor space” of the human
walking is 2-dimensional as for the watch above. However it is a well-known fact that
the man can walk everywhere he wants! Its reachable space is 3-dimensional. The
differential equation (1) is not integrable. The corresponding system is not holonomic:
a nonholonomic system is a system whose reachable space dimension is strictly greater
than its “motor space” dimension.
Checking whether a differential coupling is integrable or not is done by the Frobenius
theorem, a classical tool from differential geometry [31]. The study of nonholonomic
systems generates works in the community of pure mathematics (e.g., [1]), control
theory (e.g., [34]) and robotics (e.g., [17]).

1.3 Related work: optimal control and nonholonomic robots
Equation (1) is the classical differential equation governing the motions of a rolling
wheel, and then the motions of mobile robots with wheels. How to steer a mobile robot
from a given 3-dimensional starting configuration to a given 3-dimensional goal while
the robot control space is only 2-dimensional? The question gave rise to an active
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Figure 3: The velocity of the long arrow is 12 times faster than the velocity of the
small one. Such a coupling is clearly integrable. This means that the reachable space
of both arrows is only 1-dimensional (the line on the torus). The time displayed by the
watch of the left side corresponds to a point on the torus line. The “time” displayed by
the watch on the right picture will never happen!

research topic during the past twenty years. Among the numerous steering methods
(see overviews in [17], [10] and [26]) optimal control based methods are certainly
the most efficient ones. Unfortunately planning nonholonomic optimal motions is a
difficult problem. It has been solved only for some classes of simple systems. Some of
the popular include the Dubins’ car [19] and the Reeds and Shepp’s car [12, 14] (see
also [5, 16] and the overview [24]).
Let us emphasize shortly on Dubins’ car since it is the closest system related to our
problem. Dubins’ car is a car moving only forward at a constant linear velocity. It
corresponds to the following control system: ẋ

ẏ

θ̇

 =

 cos θ
sin θ

0

 +

 0
0
1

u (3)

where u is the steering wheel control. u is a map onto [−1, 1]. Dubins [19] (and
then the proof by Sussmann et al [12] using modern optimal control theory as the
maximum principle of Pontryagin [20]) shows that the shortest length paths of the
system are made of finite sequences of straight line segments S (u = 0) and arcs
of circle with constant minimal radius C (u = ±1). By considering that an arc of
a circle C can turn either right (R arcs when u = 1) or left (L arcs when u =
−1 ), Dubins shown that a sufficient family of shortest paths is the following one:
RSR,RSL,LSR,LSL,LRL,RLR. These sequences are what we call the “words”
of the Dubins’ car. From this, we can say that six words are necessary to describe all
the possible optimal paths. Now another question arises dealing with the uniqueness of
the shortest paths: what is the partition of the (3-dimensional) space according to the
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(a) (b)

Figure 4: Partition of the slices θ = π
3 and θ = 2π

3 induced by the Dubins’ words.
The pictures are borrowed from [32].

various words? This problem has been solved in [28]1. Figure (4) shows the partition
of the slices at θ = π

3 and θ = 2π
3 according to the Dubins’ words.

Computing such a partition has been done for a few other systems [4, 25]. These
contributions are based on the application of the Pontryagin principle that gives (only)
necessary conditions for optimality. Necessary and sufficient conditions can be found
in the works by Boltyanskii [30]. They are related to the regular synthesis of optimal
control (i.e., the computation of partitions such as the Dubins’ partitions we have just
sketched here). Solving the regular synthesis problem in a generic way (i.e. for any
kind of non linear systems) remains a highly challenging mathematical problem.
More than that, the application of the Pontryagin principle generally does not provide
enough information to describe optimal trajectories with finite words. This is why,
most of the time, the optimal trajectory computation is done via numerical analysis
algorithms [13, 15, 18].
The objective of our current research is to provide the synthesis of the human locomo-
tion. What optimal cost could explain the shape of the locomotor trajectories? What
words describe them? What spatial partition is induced by such words?

1Bibliographical note: it is worth noting that the work published by T. Pecsvaradi in 1972
has remained ignored by the robotics community until now. The reference to Pecsvaradi’s work
has been pointed out recently to the first author by Prof. V.-S. Patsko from the Russian Academy
of Sciences. The results published in [32] are nothing else than the results previously published
in [28]
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2 Methodology

2.1 Objective: an inverse optimal control problem
Our approach aims at explaining the shape of the locomotor trajectories by optimal
control. By nature the validation of the control model we are looking for should be
done by comparing the trajectories simulated from the proposed model with a set of
observed trajectories. We first have to find a control system that “reasonably” accounts
for the human locomotion. Then we have to find an optimal cost that “reasonably”
accounts for the shape of the trajectories. “Reasonably” means that we want a human
locomotion model that applies as closely as possible to a set of observed data: the
“proofs” will come from statistical analysis. Our approach underlies several questions:

1. Does everybody obey the same locomotor strategy? To answer the question, we
should build a data basis of trajectories performed by several subjects having to
reach a same goal. Then we should prove the existence of stereotyped behaviors.

2. A data basis of trajectories being given, we should find a control model with an
associated optimal cost. The inputs of a standard optimal control problem are a
model and an associated cost function. The outputs are the optimal trajectories.
Here we assume that the observed trajectories are optimal and we should find
the corresponding system (model and cost). This problem is then viewed as an
inverse optimal control problem.

Of course the data basis should not be made of a single trajectory. All the possible goals
have a priori to be considered. The task is obviously impossible from the experimental
point of view. This is why the experimental protocol considers a sampling of the
reachable space.

2.2 Trajectory data basis: protocol and apparatus
The underlying hypothesis of our work is that the simple differential equation (1) con-
tains enough information to build a model. It involves only three parameters: two for
the body position and one for the body direction (with respect to an external frame).
Then the idea is to sample the 3-dimensional reachable space into a set of goals to be
reached.
We restrict the study to the natural forward locomotion with nominal speed. The model
we study should be valid for all possible intentional goals reachable by a forward walk.
We exclude from the study the goals located behind the starting position and the goals
requiring side walk steps. Because the objective was to cover at best the 3-dimensional
reachable region, we sampled the domain with 480 points defined by 40 positions on a
2-dimensional grid (within a 5m by 9m rectangle) and 12 directions each (see Figure
(5)). The starting position was always the same. One subject performed all the 480
trajectories while other six performed only a subset of them chosen at random. Subjects
walked from the same initial configuration to a randomly selected final configuration.
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Figure 5: The space is sampled with
40 positions. At each position the
porch direction is sampled with 12 an-
gles.

Figure 6: The porch and the room
used in the experiments.

The target consisted in a porch which could be rotated around a fixed point to indicate
the desired final direction (see Figure (6)). The subjects were instructed to freely cross
over this porch without any spatial constraints relative to the path they might take. They
were allowed to choose their natural walking speed to perform the task. The distances
travelled by subjects ranged between 4.50 ± 0.25 meters (across subjects and trials)
for the nearest target and 9.38 ± 2.54 meters for the farthest target. We used motion
capture technology to record more than 1400 real trajectories. Subjects were equipped
with 34 light reflective markers located on their bodies. This is the data basis used for
statistical analysis and validation of the proposed models. Figure (7) displays some
of the recorded trajectories. In that picture, the trajectories are those of the torso (see
below the comment on the choice of the body frame).
Another important issue is the following one: dynamical effects. We wanted to pre-
vent the dynamical effects as much as possible. The subjects were asked to walk
quietly. The statistical analysis has shown that they performed the trajectories at a
quasi-constant linear velocity. Moreover, in order to neglect the dynamical impulsions
of motion starting and ending, the subjects were asked not to begin their motion at
the starting configuration as well as not stop at the goal. They entered the room via
the starting configuration while walking and they continued walking after reaching
the goal. After all motions were recorded, we removed the segments before the start
configuration and after the goal. Figures (7) display various samples of trajectories
performed by a single subject for different goals.

2.3 Statistical analysis: stereotyped behaviors
Thanks to a statistical study reported with details in [11] it has been possible to show
that general principles governed the motion strategy of all the six observed subjects.
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(a) (b) (c) (d)

Figure 7: Some examples of real trajectories with the same final direction. (a), (b),
(c) and (d) show all real trajectories where the final direction is 330 deg., 120 deg., 90
deg. and 270 deg. respectively.

While no specific constraint was provided to subjects neither at the spatial level (the
path they should have followed for crossing throughout the doorway) nor at the tempo-
ral level (the velocity profile they should have produced), we observed that all subjects
generated very similar trajectories both in terms of path geometry and in terms of ve-
locity profiles. The subjects also exhibit very similar turning behaviors as quantified
by their body rotation in space. In contrast, a much greater variability was observed
at the level of the successive positions of the feet in space. These results show that
the locomotor trajectories are planned according to goals which are expressed in terms
of the body spatial displacement in space, and are generated using motor coordination
patterns. These observations confirm the validity of the adopted top-down approach
announced at the very beginning of the paper.

2.4 The choice of the body frame
In this study the choice of the body frame we should consider has been a critical issue.
We are looking at a frame that best accounts for the equation (1). Three of them have
considered (see Figure (8)): the head, the torso and the pelvis. The position and the
direction of the frames are deduced from the motion capture markers located respec-
tively above the ears, on the shoulders and on both sides of the hip.The picture shows a
single trajectory represented in the three frames. The curves compare the direction of
the frame and the tangent to the position of the frame. The nonholonomic hypothesis is
verified if both curves coincide. The study in [8] shows that the torso frame accounts
for that hypothesis, much better than the head or the pelvis. The statistical analysis
shows that a good model of the torso frame behavior is
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Figure 8: Left: Markers and body frames. Right: For the same walking task, the
three pictures on the top show the trajectories followed by the head, pelvis and torso
positions in the room frame. The small segments indicate the respective directions of
the body segments (head, pelvis, torso). The bottom pictures show two curves each:
one curve is the tangent direction to the trajectories above; the second one is the
corresponding body segment direction. For the torso both directions are very similar:
this means that the torso frame follows “rather well” equation (1).

 ẋ
ẏ

θ̇

 =

 cos θ
sin θ

0

u1 +

 0
0
1

u2 (4)

where u1 is the linear velocity and u2 is the angular one. The detailed study [8] shows
that the shoulders behave as the front wheels of a car by anticipating up a couple tenths
of second the direction change of the body.

3 Optimizing the derivative of the curvature
Considering equation (1) we made several hypothesis to find a cost function (time,
length, jerk) that would explain the geometric shape of the walking trajectories. None
of them can be validated by statistical analysis on the data basis. The idea presented
in [9] has been to consider the following dynamic extension of (4):

ẋ
ẏ

θ̇
κ̇

 =


cos θ
sin θ
κ
0

u1 +


0
0
0
1

u2 (5)
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where u1 is the linear velocity and u2 is the control of the time-derivative of the curva-
ture. Assuming u1 ∈ [a, b] with a > 0 (forward motion) and u2 ∈ [−c, c], we consider
the cost function:

J =
1
2

∫ T

0

<(u(τ), u(τ))>dτ (6)

Applying the maximum principle we found that the optimal trajectories verify locally
u2

1 + u2
2 should be constant. The result is not surprising (see [27]). It has been not

possible to deduce more information from the maximum principle. Now we have con-
sidered a statistical analysis performed on the trajectory data basis. It appeared that
the u1 control remains “reasonably” constant along the trajectories (we should keep
in mind that the subjects were asked to enter the room by the starting configurations
while not stopping at the goals). Then we deduced that u2 is a piecewise constant
function. A curve followed at constant velocity while linearly increasing or decreasing
the derivative of the curvature is known as being a clothoid2. Finally we concluded on
the conjecture that locomotor trajectories are made of clothoid arcs.
The proof of that conjecture required the effective computation of the optimal trajecto-
ries for the considered system (5) with the considered cost (6). Analytical solutions are
out of the scope of the current state of the art. Then we fell back on numerical optimiza-
tion algorithms. Because the system (5) is non linear, we made use of the numerical
algorithm proposed in [3] (see [9] for detailed development). Figure (9) from [9] shows
a representative example of statistics computed over the entire movement for the same
initial and final configurations. Each subject has done 3 trials. Figure (9).a shows the
real (thin) trajectories performed by five subjects with respect to predicted (bold) opti-
mal trajectory computed by the numerical algorithm from our optimal control model.
All these trajectories correspond to the same initial and final configuration. It illus-
trates the variability of the pattern and the predicted trajectory. Figure (9).b shows an
averaged trajectory from 15 real ones performed by the subjects (thin) and the pre-
dicted optimal trajectory linking the same initial and final configurations (bold). Such
a statistical analysis were performed for all the study cases: the optimal control model
we propose approximates 90 percent of the real trajectories with a precision error of
less than 10 cm in position, along all the considered trajectories. The geometric shape
of the locomotor trajectories is then similar to the one of the optimal control model
(see Figure 10).
This study shows that, when walking in an empty room towards an intentional goal de-
fined both in position and in direction, the subjects tend to optimize the time-derivative
of the curvature.
In the following section, we present the (numerical) synthesis of the proposed opti-
mal control problem. As per the Dubins’ model sketched above, the related questions

2A clothoid is a curve of equation ρ(s) = 1
s

where ρ is the radius of curvature and s is the
curvilinear abscissa.
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(a) (b)

Figure 9: Representative example
of statistics computed over the en-
tire movement for the same initial and
final configurations. (a) shows the
real (thin) trajectories performed by
five subjects with respect to predicted
(bold) optimal trajectory. (b) shows
the mean trajectory (thin) and the pre-
dicted optimal trajectory (bold).

(a) (b)

Figure 10: Representative examples
of comparisons between real (thin) and
predicted (bold) locomotor trajecto-
ries. (a) shows the behavior of the real
and predicted trajectories by translat-
ing the final position in the vertical
axis with a fixed final direction. (b)
shows the behavior of the real and pre-
dicted trajectories by translating the fi-
nal position in the horizontal axis with
a fixed final direction.

are: How many clothoid arcs the trajectories contain? How are the sequences of arcs
organized? What is the number of the different sequences?

4 Synthesis: the words of the human locomotion

4.1 Synthesis
In this section, we numerically characterize the optimal paths by the number of con-
catenated clothoid arcs. We can define a clothoid as the curve satisfying the following
equation:

κ(τ) = ±cτ, τ ∈ (−∞,∞) (7)

where the sign ± defines the orientation of each piece of clothoid: u2(τ) ≡ c, κ(τ) →
∞ or u2(τ) ≡ −c, κ(τ) → −∞.
The concatenation point between two clothoid arcs is called a switching point. At each
switching point the curvature function contains a local extremum and the derivative
of the curvature has a discontinuity. From the preceding reasoning, our numerical

12



Figure 11: Top: The partition of the slices θ = 150deg. and θ = 340deg. induced
by words of human locomotion. Middle: Some examples of representative optimal tra-
jectories for different regions. Bottom-left: The partition of the slice θ = 260deg..
Bottom-right: An example of two configurations belonging to two adjacent cells gov-
erned by Case 2. The real (thin black) trajectories performed by the same subject with
respect to predicted (bold) optimal trajectory. Cut-locus explains the strategy change.
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approach consists to determine the number of switches and the order of switching
points of each optimal path. The method is based on the local analysis of the curvature.
To be more precise, at each local extremum of the curvature there exists a switching
point. A description of the regions in the configuration space is obtained by repeating
the above process for all possible optimal trajectories. We have indeed identified the
sets of optimal trajectories uniquely defined by the orientation of each piece of clothoid
curve and the total number of clothoid arcs.
The aim of the synthesis problem is the characterization of an optimal path linking
any two configurations in the space. The synthesis problem is solved when from any
initial configuration we can determine the optimal path joining such a configuration
to the origin (or final configuration). To compute the synthesis for our optimization
problem, we first sampled the portion of the reachable space considered in the exper-
imental protocol (x, y, θ) ∈ R2 × S1. Hence, we only considered the space in front
of the starting configuration. We defined the point (0, 0, π/2) as the origin of the con-
figuration space (κ = 0 at the starting and goal configurations). We computed the
approximation of the space by a grid decomposition technique. The grid resolution
was (0.2m×0.2m×10deg) and the grid range from [−2, 2] × [3, 9] in position. Then,
the analysis has been carried out by the following steps:

1. R2 × S1 is partitioned with 36 slices according to the direction θ.
2. For each θ-slice, we computed numerically all the optimal trajectories from the

origin to each 2-dimensional vertex in the grid.
3. At each θ-slice, we determined the regions mapping the types of optimal paths.

Each region corresponds to a set of optimal trajectories containing the same
ordered combination of clothoid arcs in terms of their orientations.

By considering that the curvature κ of an arc of a clothoid can either increase (Iτ when
u2 = c) or decrease (Dτ when u2 = −c) for a given time τ , we then found exper-
imentally that only 6 combinations appear: Iτ1Dτ2Iτ3 , Dτ1Iτ2Dτ3 , Iτ1Dτ2Iτ3Dτ4 ,
Dτ1Iτ2Dτ3Iτ4 , Iτ1Dτ2Iτ3Dτ4Iτ5 , Dτ1Iτ2Dτ3Iτ4Dτ5 . We call these sequences the
words of human locomotion.

4.2 Geometric analysis and motor control interpretation
The words above induce a partition of the configuration space R2 × S1 into cells (see
Figure (11)).
Let us consider a word, e.g. Iτ1Dτ2Iτ3 . The mappings from R3 onto R2 × S1 associ-
ating the triplet (τ1, τ2, τ3) to a configuration in the cell of the corresponding word is a
local diffeomorphism. This means that the motor controls used to reach two different
configurations in a same cell follow the same pattern. They just differ by the position
of the switching points on both trajectories. When a configuration varies continuously
within a given cell, the switching times vary continuously. What happens between two
adjacent cells? Two cases may arise:

14



• Case 1: Traversing the border can be be done by a continuous change of the
motor control. For instance the cells Iτ1Dτ2Iτ3 and Dτ4Iτ5Dτ6 have common
borders of respective equation τ1 = 0 and τ6 = 0. This means that there is
a continuous reshaping of the geometric shape of the trajectories (as in Figure
(10)).

• Case 2: Traversing the border induces a discontinuity on the motor control. This
would be the case of the same cells Iτ1Dτ2Iτ3 and Dτ4Iτ5Dτ6 if their common
border is obtained respectively for τ3 = 0 and τ6 = 0. In that case there is
a discontinuity of the geometric shape of the trajectories when traversing the
border.

For most of the cells, the cell adjacency is governed by Case 1. The interesting case is
Case 2. It is a subtle case: at a configuration on the common border of both cells, there
exist exactly two optimal trajectories with the same cost and a completely different
shape. Such borders arise for symmetric nonholonomic systems (e.g. a car that moves
forward and backward [25]). In that cases they are known as the cut-locus in sub-
Riemannian geometry (see [1]).
What is worth noticing is that the cut-locus of the synthesis above accounts for the
locomotion strategy. Figure (11) shows an example of two configurations belonging
to two adjacent cells governed by Case 2. The trajectories obtained by simulating our
control model fit with the observed trajectories. This means that the two apparently
completely different strategies used by the subject to reach two close configurations
obeys de facto a same strategy tending to optimize the derivative of the curvature. The
model we propose answers the question asked at the beginning of the paper (see Figure
(1).c).

5 Perspectives
The study presented in this paper deserves comments and opens questions:

• The optimal control synthesis has been done by numerical computation. A pre-
sentation of the numerical algorithms as well as an analysis of their robustness
in capturing singularities as the cut-locus would deserve a much more detailed
presentation which has been skipped here due to the lake of place. Details can
be found in [9].

• The same comment holds for the statistical analysis. Details can be found in
[8, 11].

• The reachable space of the control system (5) covers the entire R2 × S1 config-
uration space of the position and the direction of the human body. However our
model accounts only for a part of a human locomotion strategies. Indeed when
the configuration to be reached is just behind you, you will certainly perform
a backward step motion. If the configuration is just on your left, then you will
perform a sideway step. Both backward and sideway motions are not accounted
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by our model. We just focus on forward natural locomotion when the goal is
defined in front of the starting configuration. The scope of our model remains
to be defined in terms of the shape of the reachable space it accounts for.

• The current study opens intriguing mathematical questions. Usually, in optimal
control, the considered costs induce metrics in the state space. Here the cost of
a trajectory does not induce any metric: for instance, as for Dubins’ model, the
considered cost is not symmetric at all. We can say that the locomotion space is
not a metric space. What special geometry accounts for the locomotion space?
We have seen that the presence of special structures as the observed cut-locus is
related to sub-Riemannian geometry. However the space is not equipped with
a sub-Riemannian metric. The problem to understand the topology of such a
space is a challenging mathematical problem as such.

• Finally, from a pure neuroscience point of view, our study validates the top-
down methodology approach. It appears that decisional problems, such as the
problem to decide before moving what strategy the subject selects (Figure (1).c),
is accounted by the same model explaining how the trajectories are reshaped lo-
cally with respect to the goal to be reached (Figure (1).b). As a consequence the
brain plans its actions. It has a global point of view of the task to be performed.
A reasonable conjecture to explain the shape of the locomotor trajectories could
have be a simple local sensory feedback control assumption: the gaze seems to
be the only sensor used by the subjects in our experiments; we have checked
that the gaze is always directed towards the goal; then it would have been possi-
ble to conclude that the body follows the gaze (as the rear wheels of a car follow
the front wheels). This conjecture is not true: as depicted in the study case of
Figure (8) (see [8] for details) it may appear that the body is turning right while
the head is turning left. As a consequence locomotion does not obey such a
simple sensory feedback control model tending to reduce locally some sensory
distance to the goal. Our study shows that planning (i.e. open-loop control)
gives an explanation that pure feedback control (i.e. close-loop control) cannot
give. The open question now is: how planning and feedback control are related?
This is the next step of our current research.
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