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Abstract
In the paper, a linear antagonistic differential game with fixed termi-
nal time T , geometric constraints on players’ controls and continuous
quasiconvex payoff function ϕ depending on two components xi, xj

of the phase vector x is considered. Let Mc = {x : ϕ(xi, xj) 6 c} be
a level set (a Lebesgue set) of the payoff function. It is defined that
the function ϕ possesses the level sweeping property if for any pair of
constants c1 < c2 the relation Mc2 = Mc1 + (Mc2

∗− Mc1) holds.
Here, the symbols + and ∗− mean algebraic sum (Minkowski sum) and
geometric difference (Minkowski difference). Let Wc be a level set of
the value function (t, x) 7→ V(t, x). The main result of the work is
the proof of the fact that if the payoff function ϕ possesses the level
sweeping property, then for any t ∈ [t0, T ] the function x 7→ V(t, x)
also has the property: Wc2(t) = Wc1(t) +

(Wc2(t)
∗− Wc1(t)

)
. Such

an inheritance of the level sweeping property by the value function is
specific for the case when the payoff function depends on two compo-
nents of the phase vector. If it depends on three or more components
of the vector x, the statement, generally speaking, is wrong. The lat-
ter is shown by a counterexample.

Keywords: linear differential games, value function, level sets, geometric
difference, complete sweeping.

1 Introduction

The central theme for this work is the operation of geometric dif-
ference (Minkowski difference). Its definition and basic properties
are given, for example, in [Hadviger, 1957]. At the early stage of
developing the differential game theory, the geometric difference was
applied in [Pontryagin, 1967a,Pontryagin, 1967b] to solve games with
linear dynamics. After that, the concept of the geometric difference
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Figure 1: Examples of geometric difference: a) the geometric difference of a
square and a circle; b) the geometric difference of two circles. The geometric
difference is shown by dashed lines. Thin lines denote some extreme lays of the
subtrahend set.

is intensively used in the theory of control and differential games
(see, for example, [Nikol’skii, 1984], [Grigorenko, 1990], [Chikrii, 1992],
[Kurzhanski and Valyi, 1997]).

As usual, the algebraic sum (Minkowski sum) of two sets A and B is the
set A + B = {a + b : a ∈ A, b ∈ B}.
Definition 1.1. Geometric difference of two sets A and B, where B 6= ∅,
is a set A ∗− B = {x : B + x ⊂ A}. In other words, the geometric difference
of the sets A and B is the set of elements such that each of them shifts the
set B into the set A.

Let us give some planar examples (Fig. 1). The example a) shows the
geometric difference of a large square and a small circle. The result is a
square with the sides less than the original ones by the diameter of the
circle. The example b) demonstrates the geometric difference of two circles.
The result is also a circle with the radius equal to difference of the radii of
the original circles.

If the set A is convex, then the set A ∗− B is convex too. In general case,
the following relation holds:

B + (A ∗− B) ⊂ A,

B
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Figure 2: Pictures of the summation of the geometric difference and the sub-
trahend set for the above examples.
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that is, the subtrahend set after summation with the geometric difference
gives, generally speaking, only a subset of the original set. For instance,
in the first of the above examples, after such a summation a square with
round corners is obtained (Fig. 2 a). In the example b), such a summation
gives exactly the original circle (Fig. 2 b).

Definition 1.2. The situation, when the equality

B + (A ∗− B) = A

holds, is called the case of the complete sweeping of the set A by the set B.

The situation of the “complete sweeping” was originally introduced in
the paper [Gusjatnikov and Nikol’skii, 1969]. The above example a) demon-
strates the case of absence of the complete sweeping, and the example b)
shows its presence.

As a good illustrative analogy, one can imagine the set A as a room and
the set B as a broom. So, a situation of the complete sweeping corresponds
to a good hostess who sweeps the whole room and does not miss any corner.

Let us give an equivalent definition of the complete sweeping.

Definition 1.3. A set A is completely swept by a set B if ∀a ∈ A∃x :
1) a ∈ B + x and 2)B + x ⊂ A.

Let Mc be the level set (the Lebesgue set) of a function f corresponding
to a constant c: Mc =

{
x : f(x) 6 c

}
.

Definition 1.4. A function f possesses the level sweeping property if for
any pair of constants c1 < c2 such that Mc1 6= ∅, the set Mc1 sweeps
completely the set Mc2 , that is, the relation Mc2 = Mc1 + (Mc2

∗− Mc1)
holds.

x
1

x
2

f

Mc1

Mc2

Figure 3: Example of a convex function, which does not possess the level sweep-
ing property.
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Note, the convexity of a function is neither necessary, nor sufficient for
presence of the level sweeping property. The latter is demonstrated by the
following example (Fig. 3). Let us consider a function whose graph is a
hemisphere cut by two planes such that some smaller level set is a circle
and some greater one is a circle with a “roof”. It is evident that the smaller
level set does not completely sweep the greater one: the corner of the latter
cannot be covered.

2 Description of the Main Result

Let us consider a linear antagonistic differential game

ẋ = A(t)x + B(t)u + C(t)v, t ∈ [t0, T ], x ∈ Rn, u ∈ P, v ∈ Q,

ϕ
(
xi(T ), xj(T )

) → min
u

max
v

(1)

with fixed terminal time T , convex compact constraints P , Q for controls of
the first and second players, and continuous quasiconvex payoff function ϕ
depending on two components xi, xj of the phase vector x at the terminal
time. (A function is quasiconvex if each its level set (Lebesgue set) is con-
vex.) The first player minimizes the payoff, interests of the second one are
opposite. It is assumed that every level set Mc =

{
(xi, xj) : ϕ(xi, xj) 6 c

}
of the payoff function ϕ is bounded in the coordinates xi, xj .

Using a variable change y(t) = Xi,j(T, t)x(t) ([Krasovskii, 1970], p. 354;
[Krasovskii and Subbotin, 1988], pp. 89–91), which is provided by a matrix
combined of two rows of the fundamental Cauchy matrix of system (1), one
can pass to the equivalent game

ẏ = D(t)u + E(t)v,

t ∈ [t0, T ], y ∈ R2, u ∈ P, v ∈ Q, ϕ
(
y1(T ), y2(T )

)
,

D(t) = Xi,j(T, t)B(t), E(t) = Xi,j(T, t)C(t).
(2)

Here, the new phase variable y is two-dimensional. The right-hand side of
the dynamics does not contain the phase variable. The game interval, the
constraints for controls, the payoff function are the same as in the original
game (1) (except that the payoff function depends now on components of
the vector y).

Let (t, y) 7→ V (t, y) be the value function of the differential game (2).
The function V is continuous. For any t ∈ [t0, T ], the function y 7→ V (t, y)
is quasiconvex with compact level sets.

Suppose that the payoff function ϕ possesses the level sweeping property,
that is, for two arbitrary constants c1 < c2 the corresponding level sets Mc1

and Mc2 of the function ϕ (such that Mc1 6= ∅) obey the relation

Mc2 = Mc1 + (Mc2
∗− Mc1). (3)
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It turns out that the value function inherits the level sweeping property
from the payoff function. Namely, let Wc(t) =

{
y : V (t, y) 6 c

}
be a time

section at the instant t of the level set Wc =
{
(t, y) : V (t, y) 6 c

}
of the

value function V . In the paper, it is shown that the relation (3) with an
additional condition Wc1(t) 6= ∅, t ∈ [t0, T ], gives

Wc2(t) = Wc1(t) +
(
Wc2(t) ∗− Wc1(t)

)
, t ∈ [t0, T ]. (4)

The main result can be reformulated in the following way.

Theorem 2.1. If the payoff function of the game (2) is such that any of
its smaller level set completely sweeps any larger one, then the time sections
of level sets of the value function at any fixed time instant t from the game
interval have the same property.

Since the sections of a level set of the value function in the original and
equivalent coordinates are connected by the relation Wc(t) =

{
x ∈ Rn :

Xi,j(T, t)x ∈ Wc(t)
}
, t ∈ [t0, T ], the statement about inheritance of the

level sweeping property by the value function from the payoff function is
true also for the original game (1). In this form, the fact was formulated in
the abstract.

3 Backward Procedure for Constructing Level Sets

To prove the theorem, now a backward procedure will be described, which
constructs approximately a level set of the value function in game (2).
A level set corresponding to a number c is built as a collection of time
sections

{
Wc(ti)

}
in a grid of instants {ti}. Here, a bold notation W is

used instead of W to emphasize that approximate sets are mentioned. Con-
structing is started from a level set Mc of the payoff function taken at the
terminal instant T . The set Mc is processed by means of a procedure to the
instant T −∆ giving the sectionWc(T −∆). Then by means of the same
procedure on the basis of the setWc(T −∆), a new setWc(T −2∆) is com-
puted for the instant T − 2∆, and so on until the given time t∗ ∈ [t0, T )
(Fig. 4).

The procedure for constructing a section Wc(ti) uses the previous sec-
tion Wc(ti+1) of the level set, the matrices D(ti) and E(ti) from the
game dynamics (2), the sets P and Q constraining the players’ con-
trols and is described by the following formula ([Pontryagin, 1967b];
[Pschenichnii and Sagaidak, 1970]; [Kurzhanski and Valyi, 1997]):

Wc(ti) =
(
Wc(ti+1) + ∆

(−D(ti)P
)) ∗− ∆E(ti)Q. (5)

Suppose that intWc(t) 6= ∅ for any t ∈ [t∗, T ]. Here, intA means the inte-
rior of a set A. It is known that with decreasing the step ∆ of the discrete
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Figure 4: Scheme of the backward procedure of constructing a level set of the
value function.

scheme, approximately built sectionWc(t∗) of a level set converges to the
ideal one Wc(t∗) in the Hausdorff metric ([Ponomarev and Rozov, 1978];
[Botkin, 1982]; [Polovinkin et al., 2001]).

So, to prove the inheritance of the level sweeping property by the value
function it is necessary to prove that the property of the complete sweeping
is conserved after operations of algebraic sum, geometric difference and
after the limit pass with decreasing the step ∆.

4 Additional Properties of the Geometric Difference

Let us formulate the statement about conservation of the complete sweep-
ing property after operations of algebraic sum and geometric difference.

Lemma 4.1. Let convex compact sets A, B and C in the plane be such
that the set A is completely swept by the set B, that is, A = B + (A ∗− B).
Then
1) (A + C) = (B + C) +

(
(A + C) ∗− (B + C)

)
;

2) if B ∗− C 6= ∅, then (A ∗− C) = (B ∗− C) +
(
(A ∗− C) ∗− (B ∗− C)

)
.

The first fact is proved directly with the help of equivalent Definition 1.3
of the complete sweeping. So, let us show that for any a′ ∈ A + C there is
an element x ∈ R2 such that a′ ∈ (B + C) + x and (B + C) + x ⊂ (A + C).

Fix a′ ∈ A+C. Then one can find a ∈ A and c ∈ C such that a′ = a+ c.
According to the complete sweeping of the set A by the set B, there is
an element x ∈ R2 such that a ∈ B + x and B + x ⊂ A. Prove that this
element x is acceptable also for establishing the complete sweeping of the
set A + C by the set B + C.
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Since a ∈ B + x, it follows a + c = a′ ∈ B + x + c ⊂ (B + C) + x.
Because B + x ⊂ A, then (B + C) + x ⊂ (A + C).
So, the conservation of the complete sweeping after algebraic sum is

proved. Note that this proof does not demand any compactness, or con-
vexity, or dimension restriction of the sets A, B and C. Therefore, the
statement 1) of Lemma 4.1 holds also under more general conditions.

Let us proceed to the statement 2) of Lemma 4.1. It can be made by
means of support functions of the sets under consideration. Recall that
every convex compact set A produces a finite positively homogeneous con-
vex function by the formula ρA(l) = max

{
l′a : a ∈ A

}
. This function is

called the support function of the set A. And vice versa, for any finite pos-
itively homogeneous convex function ρ, a convex compact set can be found
such that ρ is its support function [Rockafellar, 1970].

Let us establish correspondence between set operations and operations
over support functions. Let A ↔ ρA, B ↔ ρB . Then ρA+B = ρA + ρB .
It is also known that if A ∗− B 6= ∅, then ρA ∗−B = conv {ρA − ρB}
([Chikrii, 1992]; [Kurzhanski and Valyi, 1997]). When A ∗− B = ∅, it is
supposed that ρA ∗−B ≡ −∞.

Let the set A be completely swept by the set B, that is, A = B+(A ∗− B).
Then ρA = ρB + conv {ρA − ρB}, or ρA − ρB = conv {ρA − ρB}. Hence,
if the set A is completely swept by the set B, then the difference of their
support functions is convex.

Using the language of support functions, the statement about conserva-
tion of the complete sweeping property after geometric difference can be
formulated as follows.

2∗) Let some convex compact sets A, B and C be such that the differ-
ence ρA − ρB is convex and the function conv {ρB − ρC} has finite value
everywhere in R2. Then the difference conv {ρA− ρC}− conv {ρB − ρC} is
also convex.

Assume f = ρA − ρC , g = ρB − ρC .
The function f−g = (ρA−ρC)−(ρB−ρC) = ρA−ρB is convex. Convexity

of the function conv f − conv g = conv {ρA − ρC}− conv {ρB − ρC} can be
established by the following lemma.

Lemma 4.2. Let functions f and g : R2 → R be positively homogeneous,
continuous, the difference f − g be convex, and the function conv g have
finite value everywhere in R2. Then the difference conv f − conv g is a
convex function.

Before the proof of Lemma 4.2, let us formulate some auxiliary proposi-
tions. They are quite simple, so, no proofs are given.

Let us denote the boundary of a set D by ∂D. Restriction of f to a
set D will be written as f

∣∣
D

. By conv
∣∣
D

f we mean the convex hull of the
function f computed in a convex set D.
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1◦ Let f : Rn → R be a convex function. Also let D ⊂ Rn be a closed
convex set and let the function f̃ be convex in the set D. Let us suppose
that f̃(x) = f(x) when x ∈ ∂D and f̃(x) > f(x) when x ∈ intD. Then the
function

g(x) =
{

f̃(x), x ∈ D,
f(x), x 6∈ D

is convex in Rn.
2◦ Let f : Rn → R and D ⊂ Rn be a closed convex set. Let us suppose
that (conv f)(x) = f(x) when x ∈ ∂D. Then conv

∣∣
D

f = (conv f)
∣∣
D

.
3◦ Let f : Rn → R be a continuous, positively homogeneous function.
Then for any vector l∗ 6= 0 a vector p ∈ {

x : l′∗x > 0
}

exists such that
f(p) = (conv f)(p).
4◦ Let f : R2 → R be a continuous, positively homogeneous function,
and let C be a closed cone of angle not greater than π. Let us suppose
that f(x) = (conv f)(x) if x ∈ ∂C and f(x) 6= (conv f)(x) if x ∈ intC.
Then the function conv f is linear in the cone C.

Now, Lemma 4.2 will be proved.
1) Let us denote g̃ = conv g, S =

{
x ∈ R2 : g̃(x) = g(x)

}
. By virtue

of the continuity of the functions g̃ and g, the set S is closed. Thus, the
set R2\S can be presented as at most a countable join of nonoverlapping
open cones C0

i , i = 1, m, m 6 ∞. Following proposition 3◦, each of these
cones is of angle not greater than π. Let Ci be the closure of the cone C0

i .
Using proposition 2◦, one can establish that for any i, the equality

conv
∣∣
Ci

g = (conv g)
∣∣
Ci

holds.

2) The process of constructing the convex hull of the function g can be
considered as a stepwise one: g = g0 Ã g1 Ã g2 Ã . . . Here, each next
function gi is obtained from the previous one gi−1 by changing the latter in
the cone Ci by a linear function li. One has li(x) = gi−1(x) when x ∈ ∂Ci

and li(x) < gi−1(x) when x ∈ intCi. Also according to proposition 4◦,
li = (conv g)

∣∣
Ci

.
Simultaneously, the function f is also corrected: f = f0 Ã f1 Ã f2 Ã . . .

such that fi

∣∣
Ci

= conv
∣∣
Ci

fi−1, fi

∣∣
R2\Ci

= fi−1

∣∣
R2\Ci

. That is, fi is obtained
from fi−1 by convexification of the latter in the cone Ci.

3) Let hi = fi − gi, i > 0. We will prove by induction on i that for any i
the function hi is convex.

When i = 0, the function h0 = f0−g0 = f−g is convex by the condition
of the lemma.

Suppose that for any 0 6 i−1 < m, the function hi−1 is convex. We will
show that in this case the function hi is also convex.

When x ∈ R2\Ci, one has gi(x) = gi−1(x) and fi(x) = fi−1(x). There-
fore, hi = hi−1 in R2\Ci.
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We have gi(x) 6 gi−1(x) when x ∈ Ci. Thus, in the cone Ci the relation
fi−1 − gi > fi−1 − gi−1 = hi−1 holds, and, therefore, fi−1 > gi + hi−1.
Because gi is linear in Ci, then the sum gi + hi−1 is convex in Ci. Con-
sequently, it follows that in Ci the relation fi = conv

∣∣
Ci

fi−1 > gi + hi−1

holds, that is, hi = fi − gi > hi−1.
Since in the cone Ci the function fi is convex and gi is linear, the func-

tion hi = fi − gi is convex in Ci.
Applying proposition 1◦, one obtains that the function hi is convex in R2.
4) The sequence of the continuous functions gi is nonincreasing. With

that lim gi = conv g. The sequence of the continuous functions fi is non-
increasing and is bounded from below by the function conv f . Thus, this
sequence has a pointwise limit f̃ . The sequence of convex functions hi con-
verges pointwise to a convex function h̃ = f̃ − conv g. Hence, the func-
tion f̃ = h̃ + conv g is convex.

Let us prove that f̃ = conv f . One has that f̃(x) = f(x) > (conv f)(x)
when x ∈ S. For any x ∈ R2\S an index i > 1 exists such that x ∈ Ci,
and, therefore,

f̃(x) = fi(x) =
(
conv

∣∣
Ci

fi−1

)
(x) =

(
conv

∣∣
Ci

f
)

(x) > (conv f)(x).

Hence, f̃ > conv f . Because f > f̃ and the function f̃ is convex, then
f̃ = conv f .

By this, it is shown that the difference conv f − conv g is convex in R2.

5 Counterexamples to Generalizations of Lemma 4.2

Note that Lemma 4.2 takes place only for positive homogeneous functions of
two variables. Generally speaking, the lemma does not hold if the function
does not possess positive homogeneity or the dimension of its argument is
higher than 2.

Let us show this by some counterexamples. At first, an example of convex
compact three-dimensional sets A, B and C will be given such that the
set B completely sweeps the set A, but the difference B ∗− C does not
completely sweep the set A ∗− C. Let us take the set A as a hemisphere cut
by two planes (Fig. 5). The set B is homothetic to the set A with coefficient
of homothety less than 1. The set C is taken as an interval, where length
is less than the horizontal side of the cut part of the set A, but larger than
the cut part of the set B.
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Figure 5: Counterexample for conservation of the complete sweeping after the
operation of geometric difference of three-dimensional sets.
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Figure 6: Graphs of the functions f (a), −g (b), and −conv g (c).

a) b) c)

Figure 7: Sections of the graphs of conv f = f (a), −conv g (b), and
conv f − conv g (c).
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Since the set C is an interval, the geometric difference B ∗− C (A ∗− C) is
the intersection of two copies of the set B (correspondingly, A) shifted by
the length of the interval C. According to this, the difference B ∗− C looks
like a cap: the cut part disappeared. At the same time, the difference A ∗− C
keeps the cut part. The sections of the flat sides of the geometric differences
are shown at the right in Fig. 5. It is evident that the sharp point of the
“roof” of the set A ∗− C cannot be covered by the circle B ∗− C. Therefore,
there is no complete sweeping between the sets A ∗− C and B ∗− C.

Thus, a counterexample for a possible generalization of the statement 2)
of Lemma 4.1 is constructed for the case when the sets A, B, C are of
dimension higher than two. Support functions of the sets considered give
a counterexample for a generalization of the statement 2∗) and, therefore,
for Lemma 4.2 in the case when the positively homogeneous functions has
their arguments of dimension three or higher.

Violation of Lemma 4.2 in the case of functions of general kind (not
positively homogenous) is demonstrated by the following example.

Let the functions f and g be piecewise-linear. The graph of the function f
can be obtained from a fourhedral pyramid by cutting it by two planes
parallel to the diagonal of the base (Fig. 6 a). Something looking like a
“chisel” appears. The graph of the function −g (it is more demonstratively
to imagine not the function g, but −g) looks like a “roof” having a cavity
of the same form as the bottom of the graph of f (Fig. 6 b). The origin is
placed at the middle of the bottom of the graph of f and at the middle of
the cavity of −g. Then the graph of f−g = f +(−g) looks like the graph f .
The slope of the bottom outshoot becomes “sharper” and the slope of the
side faces becomes, vice versa, “flatter” in comparison with the graph of f .
The original slopes can be chosen such that the graph of f − g will be
convex. (Namely, it is necessary to take the side faces of f quite “sharp”
and the faces of g and the bottom outshoot of f quite “flat”.)

Let us consider the graph of the function conv f−conv g = f +(−conv g).
The convex hull conv f coincides with f itself because the function f is
convex. The graph of −conv g (or of the concave hull of −g) looks like
a “roof” without any cavities (Fig. 6 c). Let us take the sections of the
graphs made by a vertical plane containing the bottom line of “chisel” f .
Since the section of the function conv f − conv g is non-convex (Fig. 7), the
function conv f − conv g itself is non-convex.

6 Conservation of Level Sweeping after Limit Pass

Fix an arbitrary instant t∗ ∈ [t0, T ) and choose a sequence {ϑk} of sub-
divisions of the time interval [t∗, T ]. ϑk = {t∗ = t

(k)
∗ < . . . < t

(k)
Nk

= T}.
With k → 0 diameter ∆k of subdivision ϑk goes to 0. Denote byW

(k)
c1 (t∗)
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and W
(k)
c2 (t∗) the results of applying the backward procedure (5) on the

subdivision ϑk with starting setsWc1(T ) = Mc1 andW2(T ) = Mc2 .
Because the starting setsWc1(T ) andWc2(T ) have the complete sweep-

ing, then according to the results on conservation of the complete sweeping
after algebraic sum and geometric difference from Section 4, each pair of
sets W

(k)
c1 (ti) and W

(k)
c2 (ti) has the complete sweeping. Consequently, for

any k the setW(k)
c1 (t∗) completely sweeps the setW(k)

c2 (t∗).
1) Under assumption that for any t ∈ [t∗, T ] the section Wc1(t) of

ideal level set Wc1 of the value function has non-empty interior (that is,
intWc1(t) 6= ∅), one has the following convergence W

(k)
c1 (t∗) → Wc1(t∗)

andW
(k)
c2 (t∗) → Wc2(t∗) in Hausdorff metric with k →∞.

Therefore, to prove the complete sweeping of the set Wc2(t∗) by the
set Wc1(t∗) under additional condition intWc1(t) 6= ∅, t ∈ [t∗, T ], it is nec-
essary to justify the following simple fact. Let two sequences {Ak} and {Bk}
of compact sets converge in Hausdorff metric to compact sets A and B
respectively. Suppose that for any k the set Bk completely sweeps the
set Ak. Then the limit sets have the same property: the set B completely
sweeps the set A.

Let us show that for the sets A and B, the properties, which stipulate
the complete sweeping of the first set by the second one, hold: 1) ∀a ∈ A
∃x : a ∈ B + x and 2) B + x ⊂ A (see Definition 1.3).

Fix an arbitrary element a ∈ A. Due to the convergence Ak → A, one
can choose a sequence {ak}, ak ∈ Ak, such that ak → a. Since the set Ak

is completely swept by the set Bk, it implies ∀k ∃xk : ak ∈ Bk + xk

and Bk + xk ⊂ Ak.
Consider the sequence {xk}. It is bounded. Therefore, a converging sub-

sequence can be extracted from it. Without loss of generality, let us suppose
that the sequence {xk} itself converges to an element x. This limit is just
the desired element, which is figuring in the properties giving the complete
sweeping. Let us show this fact.

The first property: a ∈ B + x. We have that ∀k ak ∈ Bk + xk. Choose
bk ∈ Bk : ak = bk +xk. Since ak → a and xk → x, it follows bk → b = a−x.
Taking into account the convergence Bk → B, one can obtain that b ∈ B.
Therefore, there is an element b ∈ B such that a = b + x. Consequently,
a ∈ B + x.

The second property: B+x ⊂ A. Let us take an arbitrary element b ∈ B.
Due to the convergence Bk → B, one can take a sequence {bk}, bk ∈ Bk,
such that bk → b. Since Bk + xk ⊂ Ak, it implies bk + xk ∈ Ak. Therefore,
∀k ∃ ak ∈ Ak : bk + xk = ak. Because bk → b and xk → x, then ak tends to
an element ā = b + x. Taking into account the convergence Ak → A, one
can obtain that ā ∈ A. This shows that ∀ b ∈ B b + x ∈ A. Consequently,
B + x ⊂ A.
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Hence, the set B completely sweeps the set A.
2) Now let Wc1(t∗) 6= ∅, but intWc1(t̄) = ∅ at an instant t̄ ∈ [t∗, T ].

From the continuity of the value function, it follows that intWc(t̄) 6= ∅
for c > c1. Then also intWc(t) 6= ∅ for c > c1 when t ∈ [t∗, T ]. According
to the fact proved above, the set Wc(t∗) completely sweeps the set Wc2(t∗)
for c ∈ (c1, c2). It follows from this that the set Wc1(t∗) completely sweeps
the set Wc2(t∗).

7 Is It Possible to Weaken the Dimension Assumption?

Theorem 2.1 is formulated for the case when the payoff function ϕ depends
on two components of the phase vector at the terminal instant T . Let us
show that, generally speaking, the theorem becomes wrong if the payoff
function is defined by three or more components of the phase vector.

Let us consider a differential game

ẋ = u + v, t ∈ [t0, T ], x ∈ R3, u ∈ {0}, v ∈ Q,

ϕ
(
x(T )

)
= min

{
c : x(T ) ∈ cM

} (6)

with fixed terminal time T , a fictitious first player (actually, the first player
is absent) and the payoff function, which is Minkowski function of a com-
pact convex set M . The set M is taken as the set A shown in Fig. 5. The
payoff function depends on full three-dimensional phase vector and, evi-
dently, possesses the level sweeping property. As the set Q constraining the
control of the second player, let us take the interval shown in Fig. 5 and
denoted there by C.

Because the right-hand side of the game dynamics does not depend on
time and does not contain the phase variable, then for any t and any c
the section Wc(t) of the level set of the value function is defined by the
formula Wc(t) = Wc(T ) ∗− (T − t)Q. Let t = T − 1. Take c2 = 1 and c1 < 1
such that the set Mc1 = c1M coincides with the set B drawn in Fig. 5.
Then Wc1(t) = Mc1

∗− Q = B ∗− C and Wc2(t) = Mc2
∗− Q = A ∗− C. As

it is described in Section 5 in the text relating to Fig. 5, the set A ∗− C is
not completely swept by the set B ∗− C. Therefore, the set Wc2(t) is not
completely swept by the set Wc1(t).

Thus, the condition of Theorem 2.1 connected to the number of argu-
ments of the payoff function is essential.

Conclusion

In the present paper, linear antagonistic differential game with fixed termi-
nal time, geometric constraints on players’ controls and continuous quasi-
convex terminal payoff function depending on two components of the phase
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vector is considered. A level sweeping property of a quasiconvex function is
defined. This property consists of the condition that any non-empty smaller
level set completely sweeps any larger one. The term “complete sweeping”
is based on the concept of geometric difference (Minkowski difference) and
is known in the convex analysis and in the differential game theory. It is
proved that in the game class considered, the level sweeping property is
inherited by the value function. That is, if the payoff function possesses
the level sweeping property, then the same property is true to the contrac-
tion of the value function to any time instant from the game interval. It is
shown (by a counterexample) that, this holds only when the payoff func-
tion depends on at most two components of the phase vector.

The level sweeping property of the value function can be useful, for exam-
ple, when analyzing singular surfaces appearing in linear differential games
with fixed terminal time. Namely, under the presence of this property, the
structure of singular surfaces has some patterns absent in the general sit-
uation. In this case, numerical algorithms for constructing and classifying
singular surfaces become essentially easier.
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