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Chapter I

INTRODUCTION

- '

"The homicidal chauffeur" is a pursujit-evasion differential game,

first described by Isaacs in his epochal book Differential Games (Ref.

1):  As one of the first phy51cally motlvated problems in this emerglng
field of optlmlzation, it has both historical and mathematlcal 1nterest.
The game dis easily described and visualized, pitting a chauffeur (the
pursuer, P ) with a finite minimum-turn radius: R , against a slowér
pedestrian (the evader,i E ) with unrestricted turn radius. The pursuer s
speed advantage is part1a11y offset by the evader's aglllty, these fea-

tures prov1de the game with its competitive aspects.

As suggested by the name of the game, P wishes to minimize the
"capture time," defined as the time when thé‘ﬁutual separation becomes
- less than the capture radius, £ . Simul;aheously, E understéhdably
seeks fé maximize this time or, if possible, to avoid capture‘forever.
The ‘differential game'thus fepfesents a generalization of the minimum=
t;me optiﬁization,problem ;n4that the:e are two opposing con;rols, bqth.
'6f which influence the relative ﬁotion and the fesultihg optimal or
_"min—maxﬁ cabturé time. Much of the interest and difficulty of the game
‘Alles in the fact that the optlmal controls are not always unlque, and
that the form taken by the optlmal solution to the game depends very
stroﬁgly upon thg speeds of the players and the maneuverability of P .
More than 20 qualitatively different forms of the solution will be” found
to be possible, these forms depending on the relative capabilities of
the players. The uneipécted variety and complexity of the solutions to
the;problem support and justify certain generalizations regarding dif-

ferential games made by Isaacs in Ref. 1.

1.1 Assumptions and Definitions

The'game is visnalized as taking place on a horizontal plane. When
suitably'normalized, thé differential equations giving the relative
position of the players depénd on two parameteré which are the speed

ratio, 7 , and the ratio of capture radius to P's minimum turn radius,

1



- ‘

£ . This latter parameter is used  in defining the terminal conditions of

tpe game.

Ap important problem in a pursuit-evasion géme is the determination
of those parameters for whiéhacapture is possible only from starting
points inside a certain boundary, the evader otherwise avoiding capture
forever. A subsidiary problem arises when capture is known to be posgi-
ble from all starting points, but for'which there exist loci of discon-
tinuity in the optimal time-to-go. In Chapters II and 111, these "bar-

» " .
riers are showg/xo‘ex1st for certain ranges of the parameters.

When the paraméters'éﬁd rélative poéitibn are such that capture is
possible, a solution to the game consists in specif&iﬁg he optimal
strategy of each player as a function of E's position',(%)y) relaﬁive
to P . These "min-max" strategies are:

i) For P , the rate of turn, o¢(x,y)., with l@l <1,

ii) For E ,, the velocity direction, V(x,y) ,
and when capture is possible, each relative bosition is associated with
an optimai positive time-to-go, V(x,y) . The optimal strategies (which
" are not necessarily unique) are such that, e.g., if only E deviates
from his optimal strategi for a finite time, débture occurs sooner than
V(x,y) . Likewise, if 6n1y P.\deviates from optimality, capture must

occur later than V(x,y) . This is the source of the "saddle-point?

terminology used in differential-gaqf theory.

v

The important assumptions of the game are:
i) Both P and E know the relative poéition exactly.

-ii) Both players know the speeds, the capture radius, and P's‘

‘minimum turn radius,

Other assumptions which represent departures from '"reality” (as in, say,
air-to-air combat games), are evident from the previous discussion. -
Treating the speéds as constant, forcing the motion to occur in a.plane,
and ignoring ény esponse-time lags in the dynamics'of P and E are

the most obyious of these.



It is appropriate to state here that’ the complex1ty and variet) of
the solutions to this differential game were underestimated for some
time. . In fact, early in the study of tnis,game, it was mistakenly be-
lieved that little remained to be learned from it. Attention was conse-
”quently directed to generalizing the dynamical model “the third—order

"game of two cars" being the most natural.generalization. Certain dif-
ficulties in this third-order problem raisedadoubts about our under-
standing of the .simpler homicidal chauffe;r game. These doubts proved

- to be well founded, and led to the decision to find the complete solu=-

tion to the present game for all values of .the parameters.

The pioneering work by Isaacs describes a.treatment of the problem
which 1s complete only for certain rather narrow ranges of the two para-
meters. In the course of his researches into this problem, various loci
in the»relatfve space were found, across which either or both of the
strategies change. Snecifically, a barrier and an equivocal line were

found to enclose "turn-away' regions in the relative space, and the y-

line. Loc1 of this type, which separate two qualitatively-distinct
families of. relative trajectories, and which may or may not be trajec--
tories themselves, Will be termed "exceptional" lines.- As will’ "be made
clear by later results, Isaacs' terminologyl"singular line" has an un-
desirable connotation to most control thecreticians, andlis not suffi-
ciently broad in meaning. The present choice is made to accommodate as
large a class of sncn arcs as possible,'and its definition is therefore

intentionally general.

In the effort to extend the parameter space to its limits, several
new'types of exceptional line were found to be necessary. Two of these
lines are apparently new, not only to the specific game at'hand, but to
the theory of differential games. The others are found to occur inﬂ (\\
other ganes described in Ref. 1. ,Each type of exceptional line occurs i
only for parameters in certain areas of the parameter space, but all
such areas appear to have been found. Consequently, a complete solution
to the game 1s believed known, for all values of the parameters. The

startling discoveries made at intervals during this study, on the other
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‘hand, discourage presumptions of this type. _Thgt is, there may yet be
novel typés of trajectories or. strategies whiéh might occur for certain
vgisolatgd ranges of the“pgraméters. ‘So many casés have Eeenhanalyzed
nhmeri?ally in the course of this work, however, that this is éonsidered
unlikely. !That is, the deforﬁations in the ;réjectory configurations
are found to be smooth and.continuous with chaﬁges in the parameters, so
that smooth qdalitati&e changes in thé configurétions can be observed
whenever a parameter locus is drossed, These ;oci are actually the end

result of the study; but there is no proof that the loci are complete.
R 8 2

y S

1.2 Equations of Motion and General Solutions ’ ’

~

The pursuer's location in the playing field is given (Fig._l.l) by

solving
. *
X =sin 9 = s@
P P P
y = cos 6 _ = ch . (1)
yp P P -

6 =0, lol<1.

These equations effectively normalize the Qimensions of length and time,

as' P has been given unit speed and a makimum turn rate of unity.' The
position of the slower evader is givén by solving

e T 756e

, (2)
. ye = 7098 ’
where 0 < y<1'. If E's control is taken as vy = ee-ep , and the

relative coordinates defined as in Fig. 1.1 by

. X (xe-xP)cup - (ye-yp)sep

y (xe-xp)sep + (ye-yp)cep )

the relative position (x,y) is given by the solutions to:

J

'Here, as throughout the thesis, s and c¢ are used as abbreviations
for sine and cosine. '



He
1}

-y + ysy
(3)

.'<o
]

-1 4+ ¢ox + ycy .

s .minimum turn center, o = +1

X

& FIGURE 1.1. P and E in Fixed and Relative
' Coordinate Systems"

In retrogressive time, dt = -dt , and the equations become

® =y - sy .
- i i (4)
9 =1-0x = ycy,
where the superscript circle denotes the derivative with respect t? thé .
dimensionless time-to-go, T .
Wheh capture is possible, each relative position (x,y) has asso-
ciated with it a positive constant, the optimal time-to-go, V(x,y) ,

which is to be found by pdstulating optimal play from that point on.

Its total time rate of change can be written in terms of its gradients,

5



as

ﬂ_ i [v’ .
gt = min max =t Vv y] = =1,

“

This is the "main equation'" of Ref. 1, and using (3) it may be expressed

as the "Hamiltonian," or

-

H = min max [-V_ = p(V_y=V x) + y(V:sy+V cy)] + 1 = O.. (6)
inma y = POV, 7(Visy+V cy) ]
This "min-max" operation gives the optimal strategies in terms of the

(known) position (x,y) and (unknown) gradients (Vx,Vy)

- - _ . . é .
Q= sgn's'- sgn(ny.Vyx)
e (7)
sy _ey _ .1
vx vy Vi+V

X y

P is thus to turn hard left or hard right, unless the switch func-
tion S =0, and E 1is to run normal to fhe éontours of constant time-
to-go. Whenever S has é constant sign and the contours oflconstant \'
have éontinuous second partiél derivatives, tﬁe corresponding region is

termed "'regular." In these regions, the partial derivatives of the main

equation with respect to x ‘and y must vanish. Thus, for example,

a ‘. . . .. . '
= [Vxx+Vyy] = Vxxx + nyy + Vxxx T Vy < =0

The first two terms on the right equél the time derivative of Vx , and
the last two can be evaluated by reference to (3). Repeating this opera-

tion with fespect to y gives the gradient equations as

v, -0H/9x = -@Vy \ "
(8)

-0H/Qdy = @V

’

y X

where @ = X1 ., Note that since H is stationary with respect to vy ,
the partial derivatives are most éésily obtained by treating Vv , as well

as ¢ and .(Vx'vy) , as fixed.



7

- In retrog;essive time, and for general initial conditions, the solu-
3 ' : ’ t

tions to (8) are

<.
X
n
x o
(o)
< N
(o)

+V s(WO+$T)

. » - ) (9)
@ ' - .
VAV ey son .
o . o ’

‘<<
]
+
<«

We have found -that, when '§>0 or S<0, E's ‘optimal direction
in relative space varies linearly with time, V = ¥ + T . Since 'P's
. )
rate of turn is o , this means that E's motion is rectilinear. in real

space, and that the linear time variation is due to P's turn strategy.

) o ./
The retrogressive solutions to the state equations (4), over any

time interval during which o 1is constant ( 8 of constant sign) are

»
]

p(l-cT) + X CT + Oy ST = 7TS(W0+@T)
(10)

Cy (1—@xo)51 + ¥y CT = 7TC(W°+®T),"

where the controls Wo and ¢ are given by (7) in terms of the gra-

dients ‘(on,Vyo) . Determination of the gradients, as functions of the
relative position (x,y) , is the most important source of theoretical
difficulties in the problem, since these functions used in (7) essen-

tially yield thelfeedback-solufién to the problem.

The approach taken in the investigation of the game is the same as_
that used by Isaacs in Ref. 1. That is, terminal conditions for X aﬁd
W are found, in terms of the parameters 3 and ¥ , which lead to
terminal values for the-controls Yy and ¢ . Then the retrograde solu-
tions (10) are used to find wheie these terminal points musg‘have come,
from. Since any point outside the capfure ciréle is a possible inktial
condition, the intention is simply that of filling the' entire space with
retrogressive paths. We will find, however, that for any choice of para- -
meters, the space is subdivided by exceptional lines into various regular
regions,.in each of which (lO)_is satisfied. The exceptional lines
which border the regular regions have one or moré of the following dis-

tinguishing features:



1) The time-to-go is discontinuous across the line;
ii) The gradient in the time-to-go is discontinuous across the line (as is therefore E’s strategy);
iii) The switch function on the line has the value S = 0;
iv) The line is the capture circle itself.

These lines may or may not be optimal paths themselves. Certain additional necessary
conditions must be satisfied by the exceptional lines, which, together with the main equation,

will guarantee global optimality.



Chapter 11

CLASSICAL RESULTS
Isaacs' analysis of this game, as given in Ref. ‘1, begins wifh the

determination of the "ﬁsable part" of the capture circle. This allows
the specification of the strategies c(Q’wo) and the terminalsconditions
(xo,yo) in the solutions given by”(10) 6f the previous section. Work-
ing retrogressivel& from termina'ion,‘he_then shows how to fL%l the
(x,y) space with trajectories, /dsing the mainoequétion'and its 'deriva-
tives. Implicit in this analysis is the restriction of parameters to
certain regions in the pa;ameter space, which will be specified below.
But these "cléssica1"=results, apart from their many interesting-féa- |
“tures, prdvide a foundation of conclusibns thch will ultimately lead. to

solutions in adjacent areas of parameter space.

2.1 OnebStagngame

The "usable part" of the capture circle, on which the optimally

played game must end, is easily determined by writing the main gquation

in polar coordinates,

-

¢

min max[V & + V.6] = -1 (1)
® v r 6

where
r = -c8 + yc(y=6)

. 6 =~y + [s6 + rs(y-6) V/r

é

Since termination is defined independent of the terminal angle eo ,
the terﬁinal value of the angularmadjoint Ve' must be zero, while the
radial adjéint at this time is given by substituting for r win (1) and

<

performing the indicated maximization:.

’ﬁ;x‘vr[-ceo + 7e(y=6)] = V_(r-co ) = -1 . @)

"This brief analysis has provided three important results:



i) At termination, when r =B , P's control (turn rate) is
irrelevant, and  E's .control (direction) is radially out-

ward, vy = 90 , as suggested by intdition;

ii) The terminal adjoints are V_=0, V = : >0 2
. 6 r co=7

iii) The terminal value of the angular coordinate must satisfy

Ieo’ < eup , where the "'usable part" is defined by the half-

éCS--l'
up = v ol :

angle @ o
At the terminal location r =8 ,. 6 = eo ’ we first find the switch

function which determines P's strategy, according-to (7) of Sec. 1.2.

The cartesian adjoints are

N : 80
. o
vx B VrSe * (Ve/r}ce - 060‘7
(3)
Ceo
vV =V - (v s = .
v .6 = ¢ 8/r) 6 -7

With these terminal values for the gradients, it is easy to verify that
the switch function is the dﬁgul§r gradient, and therefore it vanishes.

The retrogressive time-derivative, however, is

°
S =V = (4)

'which means that o = sgn § =1, for 90 >0 ;-hence P 1is turning
toward E. jﬁst before termination. This result has an obvious intui-
tive interpretation. More generally, we note that, according, to (7) of
Sec. 1.2, whenever S =0 , E's velocity is radial; E 1is running

directly toward or away from P ,

" For right half-plané terminal conditions, xo = Bseo >0 , the
- solution (10) of Sec. 1.2 is, with =1,

. % l -cT 4+ (B-71)s(9°+1)

(5)
y = 8T + (B-7t)c(eo+1) .

10
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Here it is noted that, when 1t = B/7 , the point (x,y) is inde-

pendent of the arrival angle eo , and that this point, A , has coor-

dinates
XA =1 -\crA' ’
- (6)
DY -3
wheré
Ta T B/y .

These eqhations imply that the point A is located on a unit circle

- in the x,y plane according to the value taken by the ratio B/y , as

shown in Fig. 2.1.- . -
.
A /2
y .
x’
3n/2
e . FIGURE 2.1. Locus of Paint A for o = +1 i
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We note here that all 6ptiﬁal trajectories terminating at g < §
. o -

: up
can be considered as emanating from this point A, which is then a

"dispersal .point" for E . ‘This is, in fact, the convention adopted by ~
Isaacs, and according to the arrival angle 'preferred" by E , his op-
timal strategy WA at the dispersal point need not be unique. This

strategy need only satisfy the inequality,

B/7 SV, <B/Y + cosTly, . ()

‘any one ‘of which leads to r = B in the time B/7 .

As shown in (1), when r = B, the radial velocity is r = 7 - c§
for thg’pathS»(S), and hence T = 0 -when @ .='6 ; The sidemost path

from A , as shown in Fig. 2.2(a), touchesfbut.dozz not penetrate the
capture circle. Accordingly, this path is here considered as distinct
from its neighbors, in that it leads to "safe-contact'" for E , rather
than capt@re,-.Thus,aour con5éntion différs from that of Isaacs in that
we consider E = to have only one strategy from A , assuming that P

turns toward E , and this will Be called the "barrier" or "safe-contact"

o
strategy.

It is also interesting to see that, if P turns toward E when he
is-inftiallf on 3 but above the point A, .E chooses the barrier
strategy. This .path arrives earlier at the capture circle than ddes the
, two-stage traJectory via the y-axis,- but here it is simply evident that
E prefers an early safe-contact to a later arrival with penetration,

and he runs accordingly. Whether or not P also prefers the barrier

strategy will be determined by a”certain parameter inequality, to be

derived in Sec._2.3.

12



(b) . Real Space

FIGURE 2.2, Trajectories from Near Point

13 -



2.2 Universal Line

}n Fig. 2.2, traqectorieg,from the neighborhood of A terminate on
the capture circle over a range of angles for ¢ =1 . A:symmetric group
of paths for which ¢ = =1 arrives at the capture circle from the left.
One's curioéity-ia there}oré arogsedfregérdiﬂg‘the conditions under

““which ¢ = 0 ' is optimal. We have shown that @»¥ sgn S , and the clas-
‘ sical definition of universal line (UL) or "singular arc,” is a path
along which the switch:function is identically zero. fhus,,using the

equations of motion (3) and adjoint equations (8) of Sec. 1.2, we find

v

S=Vy-=YV =0
x . ¢
) 1) -
. - ° ' « '
S = - ’ » = .
_ | Vx(; rey) + Vy7SW 01
In order for Vv, and Vy not to be both zero, these equations imply
. . 2
that the determinant of ‘their coefficients is zero, or
X = 7(xcw—ysw)_= 0. (2)

But, since we have shown in (7) of Sec. 1.2 that E'S control (sy,cy)

is proportional to the gradient W = (Vx,Vy) , the parenthesis in (2)

is proportional to S , and therefore it vanishes, leaving ) -
x=0 . '. (3)

-

as thg only candidate for a UL in the field of primaries. Thus, the
hypotheses in. (1) are fulfilléh only for motion of E down the y-axis.
On this line, the switch function (1) implies ¢ s ny‘= 0 , and hence
Vx =y =0, so that both P and E follow the same straight path in
real space. . g
fhe condition (3) is nécessary but not sufficient for the existence
of the UL , and in fapt>@e will find thaf poriighs of the }-axis can
insteaq be a dispersal line for F , or a dispersal line for E , de-
pending againon f and 7 . Fornparameters such thaf a barrier exists
(to 5é specified in Sec. 2.3), thé.trajecto;y.Eonfiguratiqn near the
positive y-axis resembles the upper paths of Fig. 2.2. As shown in

Ref. 1 (p. 194), these tributary paths correspond to sharp turns by P ,

-

14
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‘with E running tangent to P's turn circle. The contours of,time-{o-
go, shown as dashed ljnes in the figure, are smooth at the y-axis, which

implies that E's: strétegy is continuous here, being the same straight-,

line motion before andvaffer ‘P stops turning.’ °

Specifically, for a trajectory which encountérs.the’y-axis at the

ordingte y1 , the retrogressive continuous solutions to the adjoint

equations are, with ¢ = +1 ,

1 4
. Ve © 1-y 7T ,
‘ ‘ (4)
- 1
) Vy = 1-5 °%

£y xermes oy
s ' ' WL : )

v

y = ST + (yl-yx)cr '

where T 1is measu;ed on .the path back from the ordinafe Yy » The\
-magnitude of the gradignt vector along and adjacent to the .UL is given
by the main equatién’whén XFy = 0 , so |?V| = V; =1/§ =1/1=7) .
For the rectilinear chase to whkich this_résdlt applies, the interpreta-
tion of the gradient is p;rticularly simple; i.e.; the change in optimal

time-to-go resulting from a change in relative (y-axis) position-is the

inverse of the difference in speeds. ’ -

2.3 "Barrier '

When the trajectories derived in. (5) of Sec. 2.1chave the boundary
value -8 = eup , the resulting locus defines the "barrier,” % . There
- is here an infinite diécontinuity in the radial-adjofnt, as shown by

putting 90 = eup ="cos-17 in (2} of Sec. 2.1. At the barrier, then,

according to (3) of Sec. 2.1, both ,Vx and Vy are infinite in magni-
‘tude. Accordingly, ‘as the barrier iS‘épproacﬁed, the main equation may

be divided by the magnitude of the adjoint, so that, with VQ =0

L
3
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/ ' o v Eev ] -

' © lim min max — = lim =— =0 .

/ V 5 o ¢ vy Vr Vr"aoovr o . (1)
r// . - '

‘Hence, defining a normalized adjoint vector,

/
o= (v_,v.) N - v
X

V) -
yo 2w X ¥
Vx+Vy .
3 ) . <3
. the mainlgquation becomes
° min max[v_%X+v y] =0 . ' 2)
i v - X y . 5

v

The adjoint vector ¢Vv is therefore normal to the barrier trajectory,

~

as is E's optimal velocity direction, Vv o.

Thus, for r =8 , 6, = eup.{ ‘?) becomes, with (Vx’Yy? =

(seup,ceup) and @ = +1 ,
-S| 1s - ] =
m$x[seup(Bceup 7SY0) ¥ ceup(l Bseup,ycwo)] 0 (3)
(o] ]

which implies ¥ =6. .

, (¢} up
~The- retrogressive adjoint equations are, with their boundary condi-
tions, ’
s@ B -
up
3=} '

o  _ '
v =.v Vx(o)
bA

by T vy ) up

and the solutions give E's barrier strategy for Q.= +1 ,
; & ‘ .

vx =\S(8up+T)
“ ' (5)
so_tﬁat
W(T)h= eup +;T ) . (6)

'fhe equations of the barrier are then given by (5) of Sec. 2.1,

&

“
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%
Il

1 - cT + (B-7T)S(Gup+1)
(7)

-

ST + (B‘VT)Q(GUP+T)°-

, y
The barfiér is termed a semipermeéble surface by Isaacs (p. 70) since,
if @ = +1 , no strategy of‘ E ”aliOWS‘ X to penetrate the_barrierlﬁn
the "E-girection," and if .y is given by (6), no strategy of P allows
penetration ;n the P-direction. Here the P—diréctioh refers to the side
df:smallé: time-fb-go, and id'gené;;i thé optimal time-to-go is discon-
tindous at the barrier. Thus, er. X on the barriér, a departu?e from

the strategy vV = eup'+ T by E results ip motion away from tpeAbar-
rier in the P-direction, to a region of small V . Likewise, a depar-
ture by AP from o = }1 , if E 1is paying attention, moveé E across
“the barrier - to a region of largé (perhaps ipfinite)' V. The discon-
tinuity in V decréases fo zero at the end-' B of B., which is indi=-
cated by the vanishing of P's switch function. - Combining (5) and (7),

this function is o N
N i

S=yy-vx=7-cl +1) . (8)
X y . up

P's barrier strategy is thus o =41 for S >0 , or for

(9)

7aY
0 <1< 2(x eup) = Tg »

‘and unless the,barriers intersect on the bosftive y=-axis, TB is the

time required to traverse the barrier.

\

The right and left barriers intersect tangentially, on the y-axis,
for givenivafhes of B and 7y , if T -exists such that x(B,7,71) =
£B,7,7) =0 . Using (5) of Sec. 2.1, and eliminating 1 from these

equations, gives the;condition for tangential closing as

"
A

B = sin'ly +/1=72 =1, . . (10)
Implicit in this derivatiop is an important parameter inequality,
necessary for the existence of the bar;ier. This inequality can be
dérived by calculating the velocity components when » = +1 and

V= cos-17~ at r =8 . 1In polaf coordinates; these velocities are, in

17 ~



general,

M.
]

-c + ye(y-0)
' . (11)

:

-9 + 256 + 75(4=0) ]

and for the given terminal conditions, the retrogressive velocity com-

ponents are found to be

=0
| — (12)
, 6 =-1 4-Yélézf-.

B + Y <1, (13)

This is the parameter space inequality necessary for the existence of

P T T | T B 4 o et e e e e m & ~ - PN 14+t
Lile valllel wiuacCil velmiliactes avo O = G wa 't ‘tan

o
P

For B larger than-the leue given in' (10), the barriers do not

~Aantianl wvan
“apgliacala VO

(]

Aos tuo
e e e

-
-

contact thé_y-axis but instead curve away to thé rear, according to the
parametric equations (7). - In this case, the end of the barrier is

) -1 L
“reached at Ty = 2(n=cos ") , and this point has coordinates given by

(7); i.e., ' N 7 :
B J1-7 [2\/1'; ‘5+7TB]

—7'[2\/177_2_ - B+ 7181 .

Note that the bracket in (14) is the radial distance, r

»
1l

(14)

YB

B’ and that

ﬁ(rB-é) =V1-72 + ?(ﬂ;cos-lj) = B8 >.0'.

P
This inequality is impiied by (13), and it means that the end of the

barriér, B , is always outside the capture circle.
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It is possible for parameters to be such that the point A is net

on the ?arrier; i.e.,, Ta > Tg - Sﬁbstitutiqg for these retrogressive

times from (9) and from (&) of Sec. 2.1, this inequalify can be reduced

L

to ¢

c(8/27) + %.>0 . o (15)

2.4 Equivocal Line and Pursuer's Dispersal Line

For parameters such that the barriers are open the equivoeal line
(EL) Joins the end of the barrier to the y-axis or to the capture c1rcle,
and the y-axis below the EL 1is a dispersal,line for. P . .The EL is
a locus of‘points along which E's strategy is locally the same as his

incoming strategy, which is such as to cause P's SW1tch function to be

zero; i.e.,
S =Vy-Vx=0. (1)
X y .

This implies that tan V = x/y , and that E is running directly
toward P . Though the m1n1m1zat10n through the main equation yields

P = sgn S , the signum operator is 1ndeterm1nate at S = 0 , and so we
require the 1ntermed1ate value of turn rate by other means. Continuity
~of the components of the gradientS‘along the - EL , and'requlring unit
rate of decfeése of the time-to-go-thefeon together giye$

- o e +o +.

v :
xxEL * vnyL y EL nyL

=-1. . . (2)
These equations are interpreted vectorially in Fig. é.3, where it is seen
that the adjoint vectors before and after arrival at the EL have equal
components along the EL , and that the main equation is satisfied both

above and below the EL .,

Thus, the EL is a locus along which E can choose between two
strategies, and P's strategy depends on this choice. If E chooses
- q : ) ’ . =
y , P 1is fcrced to mix* his strategies, for a resultant intermediate

~control, @(x,y) , depending on E's position. This "chatter" strategy

k]

v
3

*The "mix" is accomplished at infinite frequency, such that ¢ = 2p-1-,
where p = proportion of time spent at @.= +1 .

"

N
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FIGURE 2.3. Velocities and Gradients Near the EL

produces a path for P of timé-varying curvature in real .space. When

+ . - ’ »
E  chooses V¥ , he flees along the tangent to P's' minimum turn circle,
‘and P's optimal strategy jumps to @ =“+1 .' For "EL motion, the

e

retrogressive equations read

% =3y - sy
o ' _ (3)
y=1-0x - yey
where
- . v-' , S
§L=£=_x.. : . ’ (4)
cy Yooy ' -

The main equation on the prior side then gives the magnitude of the

“adjoint vector, so that, with (4),
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.v_ __x
X y+7T
(5)
Vo o= =X .
¥ - yr)r

To evaluate ¢ , (4) is used to give E's control in (2), which

then becomes
+ v + v. .
Vx(@y+7x/r) +'Vy(l-¢x+7y/r) = 4 5 . (6)

where the gradients are to be found as functions of (x,y) on the EL .

Specifically, the adjoints and position are given by

+ 1~
V = —

(7) -
v+ . cTy

.y 1=y i
 x=1- et + (y1-711)ST1, )
' . (8)
(Tﬂ oy =T+ ({1‘711)c11 f : ) ,
where- T is measured back from the positicn (C,yl) ;. Sliminoting

(y1:711) from (8) and solving the resulting quadratic equation give

the time from EL to y-axis as a function of position on the EL :

CTi - 1- x+hx
h +1
d y=h (1-x)
. ST = ’
a5 2
h“+1

where h2 = x2+y2-2x : Substituting these relations into (7) and this
result into (6) give P's intermediate control as

2

r =-x+hr

¢=1= 7';7;:;3? % ' ) (9)

It is easy to prove that. ¢ # 1 , since the numerator in (9) cannot

vanish except at x =y = 0 . At the left end of the EL, x =0, and

the chatter strategy here 1is 5;: l1-7 . Typical numerical exampieg pro-
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duce deviations of 5 over the EL of onlyva few peréent from this
in;tial value. The point B , where the EL' joins %hg barrier, has
coordinates given by (14) of Sec. 2.3. These are the initial conditions
for the fgtrqgressive integration ofAthé EL , which then proceeds Ey
using (4) and (9) in the equations. (3).

¥

It can readily be shown that the slopes of AEL and barrier are

equal at B . The reason is that y + yr =0 at the point B , because

r =0 on both arcs and therefore the slope at B is indebendent of @ ;

dy/dx =/1-72/y . This also implies, according to (5), that .the gradient
becomes unbounded at B ; since the sensitivity of pdpture time to a

charige in-position is infinite at this point.,

Our convention regarding the barriér has béen briefly discussed in
Sec. 2.1." W@ile this Fopic is discussed completely in Chapter III,
special consideration must be given here to its end-point, B . For
those trajectories which begin above the EL , we have found that E can
chooggsﬁo remain on’ the EL to the point B , if P plays optimally.
But, since E can avoid termination by playing the barrier stratégy, P
must prevent E from reaching B . "As mentioned by Isaacs (p. 300),. ?
can postpone his switch to 6 by an infinitesimal time, . The ensu;ng .
eqdivocalﬂpath is then iﬁégined as Qccurring slightly Esigg the EL ,

such that B cannot be reached by E .

As shown in Fig. 2.5(b), a portion of the negative y-axis may be a
UL for P, wikth ¢ =0 . That ié,‘if the EL encounters the negative
y-axis (instead of the cap;dge circ%e), the trajectories leading to the
EL from the "turn-away' region arrive also at the negative y-axis just
under the capture circle. This segment will then be a UL as discussed
in Sec. 2.2, and this ''reverse ch;se"-strategy-of E's is.contiﬁuous
‘with the strategies on either side of the y-axis, as E strives to

delay P's turn maneuver.

The intersection of the UL and EL is'a multiple-choice point in
the relative space. That is, both P and E must choose strategies,
and traJectofies can depart from this point in four different directions.

"I1f E chooses to continue his reverse chase,poiicy at the EL , the

- 22



switch function remains at zero while P executes a slow turn.at the
intermediate rate, (x,y) . If he does not so choose, E runs tangent
to the minimum turn circle chosen by P . On arrival at this four;way
junction, then, P '"first'" chooses a turn direction (or the sign of © ),
and E , by his choice of strategies, simultaneously forces .f to turn

at one of two specific magnitudes o] =9 or 1) .

Kl

Immediately below the intersection of the EL with the y-axis
(where y 1is given by numerical solution of the EL equatioms), we

- find the value of the switch function to be st = ny . Using (7) and

(8), this reduces to st = (l-crl)/(1-7)~. Substituting for T, in <
terms -of the position (0,y) then yields |
' 2
st e —2 >0, (10)
(1=7) (Q+y™)
A similar analysis for trajectories,in the left half plane (p =.-1)

shows that S < 0 , and since th}é analysis can hold for all retrograde
paths not intersecting the EL , we conclude that the switch functien is

discontinuous across the negative y-axis at all points below the EL .

A dispersél line is defined in Ref. 1 as a locus of initial condi-
tions along which either or both of the strategies are not uhiqué. They
are often found as the retrograde intersection of two distinét families
of coptimal éaths, for each of which the main equation is satisfied. At
‘fhe intersection, the optimal time-to-go is the same for either pair of
strategies, and the dispersal line conditicn is expressed in terms of
the two fields of trajectories, as follows:

WT.xT = Wt | (11)

This reduces to a differential eqﬁation for the slope of the dispersal

line,
- + .
vV =V
9 i i (12)
dx V--V+
y 'y

where the superscripts refer to opposite sides of the line.

-

23



The discontinuity of S across this portion of the negative y-axis,

as derived -in (10), coupled with the symmetry .of strategies and paths

across it, is a special case of (12), as.here we have ”V; = -V+ and
- + ' ' ‘. ' . ' "
Vy = Vy . This portion of the y-axis is then a dispersal line along

which the sign of S is‘undefined.* A diagram of the velocity vector
components for x _cn the ﬁbgative y-axis below the 'EL shows that

P's contribution to the x-velocity (-py) exceeds E's 'contribution
(rsy) , and hence P deteruwines the departure direction. The line is
therefore called a "pursuer's dispersal line'"' (PDL) . The present case
has a geometrically cbv;ous interpretation (when E is diréctly behind
P, P can turn sharp‘rikht or sharp left, and” E's strategy depends on
P's choice) but we will find other more general circumstances in which |
(12) holds. In these othér situations, the discontinuity Wt g W
implies a discontinuity in E's cOntrol (W £.W ) , but it ‘need not
imply a change in P's control. That is, the sWitch function can be

discontinuous across the line, while retaining the same sign on either

side.

2.5 Parameter Space and Trajectories

To summarize the developments of this chapter, it has been shown
that the "usable part" of the capture circle 'is an angular sect;;_on
which the game must end. If the parameters are such that a trajectory
arrives tangentially at the boundary of this region, such a trajectory
is a "barrier,' across which the time-to-go-is discontinuous, and along
which the gradient is infinite. These paraneters satisfy the relation
82 + 72 <1, the equality being shown as CH .in Fig. 2.4. 1If the .-
parameters fall above this curve, ‘a tangential trajectory cannot arrive
at the boundary of the usable part. It has also been shown that if é
is sufficiently small, the c;pture region. is a finite curvilinear tri-
angle. If E is'initially outside of this region, he can avoid capture
indefinitely, using the sidestep tactic of the bullfighter. This finite

capture region exists (for B + 7 <1)if <y sin 7 +1-72 = 1 .,

*By contrast, we have seen in Sec. 2.2 that the y-axis above the EL 1is
a UL , since there St =8 =0 .
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Tpe latter function appears as C2 in Fig. 2.4.: It has also been-shown
that the point A occurs on the barrier (as assumed in Ref. 1) only if

. c(B/2y) + 7> 0 ; C, is the corresponding locus in Fig. 2.4, .

These three loci determine two regions in:the parameter space, but
optimal trajectories which f£ill the playing space have been found in
this chapter only for parameters in Region I. A typical set.of trajec-
tories for parameters in this region is éhown in:Fig. 2.5(a). Because
the timé-to-go is discontinuous (and infinite) at the barrier, where the
point A is located, paths 'from" A must instead be regarded as |
starting from points - infinitesimally close to A ., From this range of
initial poinys, tr;jectories depart to terminate at angles in the half-

open interval, 0 <6 < 9u§ . We follow the convention that when the

1.0
C1
.5 II >
v -~
-
-
-
- /C
p _ - 4 -
l 2
I
| | 1
.4 6 .8 1.0
FIGURE 2.4. Regions in Parametef Space
-

for the Classical Game

~
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(b) Barriers Open

FIGURE 2.5. Trajectories and Isochrones
ig the C%pssical Game

-~
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barriers close, E follows the semipermeable barrier when possible, E

preferring an early safe contact at 9§ up to a later termination at

g6.=0 , P , of course, turns toward E whatever E's strategy, be-

cause in this case, S has the sign 6f x , and P will reasonably

“prefer a safe contact to none at all. Thus, in this case we see that 3
is a locus of‘infinite discontinuity in‘the time-to-go, and it is an

optimal path which ends tangentiaily at eup

Contours of constant V can be easily calculated as the dashed
lines in the figure. These isochrones are tangent to the barrier only
below the point A . The discontinuity in E's strategy for.initial'

conditions near B at the point A is the cause of this change in the

isochrones.

The more complex diagram in Fig. 2.5(b) applies for parameters in
Region II to the right of C3 , and this configuration is essentially
as given in Ref. i Because the strategies are not known at all points,
howevéf, it may happen that some. of the trajectories so far found are
not optimal.. 'In fact, this actually occurs for a small range of para-
meters, as will be shown in Chapter III. For present purposes, we may

- say that .the trajectories of Fig. 2.5(b), thohgh.incomplete, are qualii
tatively representative, forfall parameters right of C3 and above C4
in Region I11. Of course, as (B,7) change in Region Ii, the pdint A

Cwill be displaced aiong the barrier and the barrier's‘relative size will
change, but this does not affect the type of solution. We will find,
however;, that the reverse-chase is absent for parameiters close to the

intersection of C3 and C1 in Region I1I. . =

The isochrones of Region II are more complex and interesting than
those of Region I.. The barrier appears as a diseoptinuity in the time-
to-go, but this discontinuity decreases to zero at the end B of the
barrier. Thei EL , which extends the barriér tovthe y=-axis or to the
capture circle, is a sharp minimum in V , in the sense tha: the time-
to-go increases linearly in both dtrections normal to the EL . The

normalito the local isochrone is thus indefinite on the EL , reflecting

the fact that E can choose between two strategies on the EL .
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Similarly, we have found that when the barriers are open, the y-axis may be a UL or
a PDL, depending on whether or not P’s switch function is continuous across it. For the
discontinuous (PDL) case, the normal to the isochrone is again double-valued, because the
y-axis is here a sharp maximum in the time-to-go, V.

For initial conditions on the open barrier, P’s strategy is a turn away (¢ = —1) unless

the parameters are below Cj in Fig. 2.4. For these parameters, we will find that a range of

positions on B exists, for which ¢ = +1 is optimal on both sides of the barrier. Thus, B is

an optimal trajectory only in this case, and when the barrier close.

28



Chapter III

EXTENSIONS TO THE CLASSICAL RESULTS, B2+47° < 1

' The parameter inequality in-the chapter tit1e holds whenever the
barrier exists at eup . But when the right and left barriers do not
intersect, strategies for x in the shaded area of Fig. 2.5(b) must be
found. For parameters above C4 (see Fig. 2.4), including those to the
left of C3 , this extension is not difficult, though it entails treat-
ment of "'safe-contact' strategies. For parameters between C, and C,
in Regfon II, however, tWo new exceptional lines are required to complete
fhe solution. We begin by considering those trajectogies which touch the

capture circle at the lowest corner of the shaded area.

-
>

’
We have seen in Fig. 2.5(b) that'turn-away trajectories can arrive

3.1 One-Dimensional Motion

at the negative y-axis. 'The particular path which contacts the capture
circle at the right‘edge of the shaded region is specified in terms of
the intercent vl and the time from-tangency to this intercept;- The

equations giving these two quant1t1es are r =8, r =0, which re-

quire the use of the retrograde. trajectories

X ==1+4 cT - (yl-7r)sr
(1)
'y = 8T + (yl‘7T)CT . '
The tangency condition is then eipressed b& the equations
‘ 2 2
1 - ¢t + (y=77)st +-§[(y1-71) ~B]l=0
| (2)
(1-7)s7t + (y1-71)(c1-7) =0 . e

"Eliminating yl gives a cubic in ctT , which turns out to be the square

‘of
v1+72-27c1 (l-ct) - B(cT=y) =0 . . (3)

This expression yields Tl , the time from tangency to the negative y-
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axis, in terms of which the intercept is

(l-z)sxl

1 t 7-CT

y, =771 <-B. , (4)

l ’

1
The angle at which .tangency occurs in given by (1) as

N ’ 'x(yl,Tl) 7c11-1
. tan = =
em y(yl,rl) YST

(5)
1

“ g-

The supplemqht of this'angle is éreaté; than eup , as cah be shown
by using (3) and (4), together with the definition, ceup =y . That is;
E 1is physically capable of maintaining safe-contact for angles greater

than em.’ but such a strategy is not optimal.

We consider next the conditions at tangency with the_aim"of extend-
‘ ing»theutrajectories backWards from this point. The main equation in

polar coordinates is

"min max[V: F+V é] = —lA, ‘ ' . (6)
0) W’: ; o 6 ’

where the polar equations of ‘motion are given in (11) of Sec. 2.3,

r

-co + yc (y=6)

6

-9 {‘%-{sa + ys(y=6)] . o $

The tangéncy condition r =0 relates‘:w) to 6 (ambiguously), while

(6) reduces to

min V_{-¢p + 2 [s6 + rsy=6)]} = -1, % (7)
o 6 B . v

where the angular adjoint is identical with P's switch function;

& .
V. =V - Vx=8S, < 8
6 . xy y « ‘( )

The minimizihg control of P is thus ¥ =“sgn S'= -1, and E's
strategy must maximize Ve s(y=6) while satisfying r = 0 . Since
V <0, at the point on the cabture circle where safe contact enqs, the

e
ambiguity in E's control is resolved. Thus,

V=6 - cos'l(ce/y) (9)
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is E's safe-contact strategy when o =-1. In one-dimensional'(tan-

gential) motion, we find that E's. angulaf rate is

5 =14 (so - yV1-c20772)/p , ¥ Qo)

»~

and consequently,

B

V. = =10 ='=

e .
e . B+se=7 V/1-c26/72

We may now consider the trajectories which arrive at the capture

(11)

circle, there to begin a safe-contact path which departs tangentially at
the angle em given in (5). Just prior to contact, the main equation

for p = -1 is written -

67] = -1 . (12)

max[Vrr +=V9

Since r =TB is the‘bgundary of the regular region, the .angular gradient

on arrival is continuous. The maximization of'(12) implies that

- i vr -
< -g) =/_2_'_z (13)
Vr+(V9/B)
and therefore; using (11) for VG/B , (12) can be solved for
.c9/y

e . (14).
T V1-c26/72 (B+se-7 /1-c26/72) '

: ' . , - Fl +
This finally permitsv(13) to be solved for ¥ = g-cos (c8/7) =Yy , and
therefore * =1 =0 , so that trajectories and strategies are smooth
on arrival at‘the capture circle; In fact, the continuity of vy could

have been anticipated from the fact that.

m$§(vrf'+v9é') = m$¥ Veé+ = il

i.e., because E's vectogram is.circular, H has a unique maximum
s - :*- . . : . - .
relative to V¢ , such that ¢y =y . A typical safe-contact trajectory

for 9 = -1 |is shown in Fig. 3.1.
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| /-

/W=9-cos-1(cq/7)

/-

p=-1

FIGURE 3.1. Safe Contact Arrival and Departure for zé = =1
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2.2 Switch Line Replaces Equivocal Line

For parameters slightly to the ieft of C3 in Fig. 2.4, the point
A falls between the end B of the barrier and the negative y-axis.
The points B and A are connected by a switch line (SL) , on which

S=0, and A "is connécted to the capture circle or to the y-axis by
an EL ,

The disappearance of the EL occurs when the point A falls on the

capture circle. This is easily derived as the locus

@/ =122, (1)

which will be labelled C5 in the parameter space drawing at the end of
this chapter (Fig. 3.9).. For parameters.to the left of this line, retro-
gressive trajectories to A are interrupted by the capture circle, and

the point B 1is connected to thehcapturq;circie by the SL .,

-~

" The retrogressive switch time is determined as a function of arrival

angle 90
' cg -c(6 +71)
S=Vy-Vxe—22 __o
. X y ce =Y =
o “.
or ,

The arrival angle 91 , as defined in Fig. 3.2, is given by equating

T, =T, = B/y , or el = n-B/2y . For all arrival angles between 0 and

91 y A serves as a dispersal point for E , and it is inferesting that

in this case trajectories can arrive at A from two directions.

. At the end of the barrier, the trajectory has the siope

o 1;3-7c(e +T)
ﬂ: 2)
dx y-7s(90+1) :

(3)

where the point B is evaluated using ceo =Y 'together with (1) to
give, as in (14) of Sec. 2.3, "



e \ | @z;l
S

FIGURE 3.2. Trajectories for Parameters‘Between
‘ C3 and Cg in Region II

34 -



dy| _vA-22 _ _x 4)
*" de Y y ‘

This implies that dr/df = O at this point. The slope of the SL

is

Ye+y1(d18/d90)
’
xefxT(de/deo)

dy
‘dx

(5)

S

where d‘rs/deo = -2 , according to (2), and the partial derivatives fol-
low immediately from the:-retrogressive equations for the trajectories.,

Substitution and simplification yield the result

.
dy| _Y 1-) (6)
dx ,S Y ’

which with (4) proves-that the SL 1is tangent to the trajectory at this
point, .

At the point A , however, where B/7 = 2(ﬂ-91) , the trajectory

slqpé is found in terms of the arrival angle el >

c29 ., =7ch
QZ - # . (7)
dx T -5291+7sel

'This is the same result given for the slope.of the SL at this point,
as can easily be verified. The second extreme trajectory from A ar-

riveé at the capture circle at § = 0 , and its slope at A is

dy _c@/n _ %4

dx ~ s(B/y) -5291 ’

(8)

. The EL slope at the point  A requires use of the intermediate 3
in the equations of'motiod, and fhe result is expressible as a function
of ¥y and el . It has not been possible to derive analytical conclu-
sions from the expression. However, numerical studies for a range of
‘parameters left of C in Region I show that the -EL slope is not equal

3
to either of the va}ues (7) or (8).

(

The simplest way of expressing the SL is as a function of arrival
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FIGURE 3.3. Trajectories for Parameters
Left of _.C5 1in Region II
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angle eo y by using the value T = 2(n—eo) in the retrogressive equa-
tions; i.e., - |

X = =seg[2seo - B+ 27(n-9 )]

; {2)
y = -co_[2s0_ - B + ?7(n7go)]

: . : -9
where 0 <@ < cos ™ty (cf.” (14) of Sec. 2.3). |

The qualitative appearance of the traJectories for parameters left
of C5 , which iS'giVen by (1) is as shown in Fig. 3.3. Since 3
passes smoothly through zero for traJectories intersecting the SL , it
follows that' E is running toward P when-the SL is crossed. Ex~
cept for the absence of an EL , this configuration is very much like
that of Fig. 3.2. We note thatlln bath of these figures, a local maxi-
mum in *the optlmal tlme-to-go occurs at a point on the Underside of the
barrier roughly one-fourth of the-way to the end of it. The loci of
cohstant \' can be regarded as elevation lines on a contour maphof the
.playihg space. This concept will he helpful in. understanding some re-

sults to be found in the next section.

3.3 Switch Envelope and Pursuer's Dispersal Line

For parameters in the lower portion of Region Il, it ds found-that
B is not neceésarily a locus of.discontinuity in P's strategy. That
is, over a certain interval of % , the switch function is positive on
both sides of it, such that'when é ?is under the barrier here, P
"lunges" toward him. The verb is approprlate because this is always a
very brief maneuver, soon followed by a turn-away and subsequent safeé-
contact. As mentioned in Sec, 2.5, when ¢ changes sign across 3B ,
the barr1er is not an optimal path but is ohly a locus of initial condi=-
tions for the turn—away maneuver. ZBut, when parameters are such that
the lunge region exists, we can expect 'P's switchlline to lie to the
right of B . (which now li an obtimal path), -somewhat as shéwn in Fig.
3.4. We consider a)cemparative test of the three retrograde paths

shown in this figure.
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) 3
it is found that if P were to switch to @- = +1 , thereby forcing E

At the point G, , when the lowest path T1 reaches the barrier,

to switch to a strategy W‘ pe;pendicular to B3 , thenh for X on 5

Wi >, , (1)

"~

The inequality implies that such' a switch is to E's 'advantage and
hence ‘that @- =+l 1is not optimal for such points. It may also happen,
on the other hand, -that at G2 .on.a second path Tz , this double

switch in strategies leads to the inequality

wWhiT < -1, _ (2)

which means that P can force E to cross the "4+" contours faster than

the optimal rate. Therefore, these contours are not-dorrect‘at this
point and E's strategy cannot be given by W' in this region, where
P lunges toward E . l ' '
If these ineqqalifies_hold, then at some intermediate point G .of
: Y _

the barrier, we muSt-find
GV+-).(- = V+).(-+V+§- = -1 , i V (3)
- x y .

where the left siée can, be expressed as a function of *90 , by using

x = ﬁf to provide T, and T in terms of 6 _ . Specifically, we

°
B

X =1=-cT. + (5-7Tb)s(9up+TbX

b
- ' (4)
y = 8T + (B-yrb)c(eup+1b),
+
x =-=1+ ety +:Bs(96—ro) - 7ros(wo-10)
+ (5)
y =87+ Bc(eodro) - 7roc(wo-ro),

[y
: where Vo = 90 - cos—1(090/7) and eup = cos-17 . Fipa}lyf~the ad=-
joint components in (3) are easily found in terms of Yo and the retro-

gressive time.from tangency, T_ ;

(o}
N :
N A s(wo-rp)/D )
N (6)
vyl= cly =1,)/D
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D =1-c 90‘/ (5+s€0-7\‘/1-cz 90/;2) )

By numerical search methods, we determine ‘the parameters 6 L

and JTb which specify the endpoint G ofvtge SE . Of course, when the

condition (3) does not hold for any point on 3 , the parameters (3,7)

are above the locus €, of Fig. 2.4. Since, whenever (3) holds, the

barrier always has the qualitative form of Fig. 3.4, the point G .is

the lowest point of a "lung?" region. We then must find the switch line
which beginrs at G and whiéi

separates this lunée region (¢ = +1)
from the turn-away region (¢ = =1)

To develop generating équations for this line, we first consider a

group of trajectories parallel to, and right of, B3 . At the point G ,

v

FIGURE 3.4. Detail Near Barrier When SE Exists
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we have (3) together with the main equation on the prior side, W .x =

-1 , which combine to give the slope of the switch line‘as a function of

position, - t -
vo-v' | '
V =V '
y ¥

v

On B , of course, |W | 5 , and so tﬂe slope of the swifch line is
the same as the slope of .the local traqectofy;' B . As the SL is f01- 
lowed'away from 3B , the incoming trajectories must continue to be tan-

gential to it. This is so because, if‘they encountered this syitch line
at a non-zero angle, and if P  chose to delay his  turn-away, E would

“"chatter'" between his ;trategies ¥~ and W+ , thereby remaining on the
line. Since E's vectogram is a circle, however, this chatter strategy
would actually feduce his speed and hence would not yield dV/dt = -1 ,
‘as did ¢ = +1 and y = w- : Hence, the switch line is fhe envelope of

~ the prior paths, and consequently it is called a ''switch envelope' (SE).

While they are similar in some superficial respects, Ehe SE - dif-
fers in an important way from the EL described in Chapter II. The
switch functién_goes smoothly to zero at the endpoint B of B , which
is then tangentially extended by the EL . It was found that S =0
on the incoming paths tb the EL , while S+ > 0 on the depafting tra-
jectoriés. This meant that E could choose to keep S =0 by running
radially, which gave P's con{ro;;as the intermediéte value, 5 . éy
contrast, neither ‘S- nor S+ is zero alohg the SE , but it:is known
that the component of W ‘along the SE is“continuous, so that (3)
-holds-along it. ~This implies.that P's control along the SE is
@- = +1 , and hence E's arrival control is given by (3) in terms of
eo and T The expression (7) for the SE slope‘}s then solved for
the derivative dao/dTo .

As described in detail in Appendix“A, the retrogressive integration
of the ° SE is.valid only so long as the curvature of the SE exceeds
that of the incoming paths. ‘This curvature condition is equivalent to a

condition of derivatives of W- . On the incoming paths, @- = =1 ,

while on the SE , W- is expressed as a function of eo and 10(60) i
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4

and its time rate of change is given in terms of these coordinates. In

other words, &- is discontinuous at tdngenéy,Aexcept at the upper end
of the SE . , ‘ '

At thé coordinate eo » where these curvatures are equal, the SE
is tangentially extended by a PDL . That this should be so is suggested
by Fig. 3.5, where the cotangency of PDL , SE and trajectory at their
meeting point is implied.by'a finite curvature condition .on the trajec-

tory'at the junction,

FIGURE 3.5, -Detail Near Junctiop of SE and PDL
The PDL is simplef to gonstruct,thah the SE , though the PDL
is given in terms of SE cdordinates; which must therefore be stored as
they are computed. The retrogressive trajectories of eithé;~side must
yield'the same point on the PDL , and the time-to-go.must be the ,same
on the two paths. Denotiné the side near the barrier by the super-

script '"+" (corresponding to the lunge strategy, o = +1), we have
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+ -
dx (90,12) dx (91.11)

)

JHCRERIEE TS (8)

+
dv (91,12,80)

dV-(Tl) )

where the various angles and times are as defined in Fig. 3. 5 The ap-
'propriate differential equations required in generating the PDL are
symbolically expressed using (8), with 9 taken as a convenient inde-

pendent variable (subscripts denote partial ditforentiation)

.
+ 49 9%, ._d7
Yt X "% e t* @
% o] T o]

_ (9)
6 " 7rds "~ e a6 T V1 g,

At given values of the dependent variables, the gradients 3V+ and W

are known for use in the slope equation,, (7). This allows computation

of

drz ‘ y;-x;(dy/dx)
= . , (10)
deo . y:-x:(By/dx)

and a straightforward inversion of (9) for the remaining two derivatives.

Initial values at the point D are 12 =0, 91 = 90 and 11 = To "
the SE integration having provided 6 and f .
—— 2 e

The upper end of the PDL occurs at the barrier, and these curves
join here tgngéntially owing to the infinite magnitude of the gradient

vector W' at the barrier.* That is, the PDL slope, as given by (7),
is " ' ' '

d V;’V: V; : '
il ey ' | S
Sl Y

y y y

*For some parameters near the lower edge of Region II, the PDL actually
extends outside the shaded area of Fig. 2.5(b). This illustrates that
unless the entire space is filled with traJectories, none of them can
strictly be called "solutions."
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which is equgl to the slope of the adjacent barrier, as obtained using
(2) of Sec. 2.3, :

A%
dz x . :
ax = V. G2)
. 'y '

v

Since B 1is a trajectory on the "+'" side of the PDL , the optimal time-
to-go is a local maximum somewhere to the right of the tangential junc-
| .

tion of PDL -and 3 , as will be shown in Fig. 3.7.

3.4. Focal Line

-~

For parameters which are near thevright corner of Région II, numeri-
cal generation of the SE shows that at some point below where the cur-
vature condition denotiﬁg the start.of the PDL 1is satisfied, the SE
derivative vanishes, or d9°/d1o =0 .+ At this point on the SE , the
vglocities obtained by two sets of controls are identical; i.e., at a

single point, incoming and outgoing velocities are equal, i(@-,w-) =

§(¢+.w+) . The point where this occurs is found to be the lower end of

a ""focal line" (FL), along which E runs regardless of P's strategy.

‘Furthermore, the FL is an envglope of arrivélvpaths on both sides.
The incoming paths are tahgential because, if P maintains his arrival
strafegy, E must do so as well, in order to kéep' dv/dt = =1 . As in
the case of thé SE , both strategies are continuous when a path joins
the FL , and therefbre the baths themselves have continuous glopes and

are tangential at the FL . b

The FL 1is, like the SE , a local (sharp) maximum or crest in the
time-to-go contours, and for any ‘choice of ¢ , E can stay on this
crest. Progress down the line will, however, be maximized if P chooses
an éxtreme,controi, Q = i} . lAs'indicated in Fig. 3.6, the FL condi-"
-tion yields two equations in’ W- .and W+', which-are E's cont;olg
corresponding to o = =1 and +1 , réspectively.. Using the equatibns,h

then, ' ‘ <

Mo
1

-y + sV = yo+ 7Sy
+ Y (l)
-1 4+ X4+ 7cy = -1 =X+ Ycy

e
n
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FIGURE 3.6. Focal Line Strategies

These give E's strategy as a function of both E's position on the

) , as follows:.

oy + (x/r) \/;-_rz
-px + (y/r)\/m :

Using these expressions in (1) gives the retrogressive differential equa-

FL and P's strategy (9

7Sy
(2)

rey

tions for the FL as the simple pair,

$ = -(x/r) x/?-r2 ’
AU (3) .
$ =1~ (y/r) /rP-r2 .

Neither strategy is explicit in (3), but ¢ = *1 and Vy(p) 1is given by
(). ’
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It is necessary to have the adjoints along the FL as well, since
they are required in the subsequent integration of the SE . We know

sw/vx =vcw/Vy on both sides, for either choice of % , and the main
equation gives

in + Vy9 = (Xxsy+ycy)/D = =1 ,

This can be solved for

D = %[(y/r) VP12 - ai? . Px] .

and this denominator (the inverse.of the gradient magnitude) is positive

for X on the FL . The direction of the gradient vector on each side

is parallel to E's strategy, (2).

The FL has®fzatures unlike those of'any other type of exceptional
curve‘fougd in this game. The equations (1) show that, to traverse the
FI., P can choose'e%ther extreme rate of turn, and E's strategy de-
pends Qn~this'choice, according to (2). . Further, P can switch strate-
gies ad libitum between +1 ahd -1 , all with no change in the rela-
tive trajectory, provided that E reacts immediately. - Examination of
'the vector velocities in Fig. 3.6 shows‘thag no intermediate turn rate
can produce the same relati&e'motion as @ =X1 . These comments are
meant to emphasize the distinction between ""chatter" on the EL , and
"switching" on the FL . A further observation is that the switch func-
tion is never zero on the FL 5 while it remains at zero for motion -

along the EL .

The upper end of the FL occurs when its curvature is the same as
that'of an incoming path. This curvature criterion is simply written as
a rate of change of .y along the FL , or

d ‘
o _ ; E\% =0 . (4)
b
If this equation is first satisfied.for ¢ = -1 , for‘examéle, the in-
coming trajectories to the right have the same curvature as the FL 5

and hencey as shown in Fig. 3.7, the FL is extended by'an SE . When

the time derivatives are written as in (3), we find the criterion as
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FIGURE 3.7.

Trajectories Near the FL 1in Region II



i

O

-

¢

ry - V7212 (2r4x) = 0 (5)

where @ = *1 . For the many cases of the focal line which have been
analyzed numericélly, (5) was first satisfied for ¢ = -1 , so that the

FL  is extended by a SE . This means that a "reverse SE ,"

with tra-
jectories tangent on the right, and for which (5) would be first satis-

fied for o = +1 , is apparently never realized.

Extension of the FL by an SE is straightforward .except for the

initial step in the integration. When T, = O', using the notation of

Fig. 3.8, the indeterminacy in the slopé of the - SE 1is evaluated by ex-

“

e=-1
p=+1

-End FL
Start SE

-~

FIGURE 3.8. Detail Near Junction of SE and FL

~ ’

pansibn in series., Thus, the slope'of‘the SE 1is

Cdy _ ¥ _ lex=ycy (6)
ax %7 yersy” _
where
C(W;-Wf+T1) =1 + %[C(Wf-Tl) - oy, - r§/7] . (7)
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The gxpfession (7) follows from the SE condition and the trajec-

tories, which here are given as functions of (Tf,Tl) 2

v

X = =1 + (xf+1)c11 f YgST) = 7Tls(wf-11)

(8)
= c + - - .
.y ypCT, + (xf l)srl 711c(wf Tl)
The subscript f denotes a functional dependence on Tf .. Then the
slope (6) is equated to the bilinear form,
+ d
Y. yr(dTl/ Tf)
dy _ _t -
- ’
dx = x_ +xT(d11/de) K
b
which is inverted to yield
x $ -y &
.dTl L Te T éIA(Tl,Tf) .
dt, - - - - " B(t,,T7.) °
; -y % : !
£ ng' Y. 1" f -
It is easy to see that A =B = 0 when T, = 0 , since then all veloci-
ties areAequai; €.8., \fo = xT =& . With close attention to detail,

it can also be shown that the first bartial derivatives of A and B

vanish at this time.” Consequently, (9) must be expressed as

2 .2
dt AT . d11+2AT 5 d'rld'rf+AT T de
1 11 1l f f £ -
ar. - 2 —2 (10)
f B . d11+2BT . drldrf+B . de .
oy Ny # 1°¢ Tt
It can then be showq’that, at T, = 0, ATle - A.rfo - BTfo =0,
so that (10) becomes linear; the solution is
d A +2B -
oy 1T s 1T
ﬁ = =- = , v (11)
f : T T :
11 . =0
1=

where

*The upper end of the FL is implied by gs) of Sec. 3.4, and this func-
tion.is a factor of dB/dTt; . :
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A = (Al-Az)(l-yv) - (BlTBZ)XV

B = -A" - - -
= (Ao Az)(l yv).+ (Bo Bz)xv _
11
2 2
¢ 2 2 X .2 1 x X
g, = F 7 *’”y")[ 2@y V) + (v 2 2 2>]
l1f r rv.y, rv - r
3 \
Ao = E Xv =y ‘
A, =y = xv + (72X2-r4)/r4v
A, = 3(xv+y)CZ = (yv=x)C, + 3y - xv
2 . 1 2.
. 3 ;
?o =Z YV +x- 3
Bl ‘= =x + 3(1-yv) + 72xy/r4v |
B, = é(yv-x)Ci +"'(XV+y)C2 + 3(1-x) + yv

C. =1+ x/r2 - y/rzv

02 = (y+x/v)/2r2 - (72-2r2)(xv-y)2/4r6v?

v =27,

and x,y and r =\/x2+y2 denote values at the junction of FL and SE .

‘

The SE continues to extend upward until a curvature condition
marks its taﬁgency with a PDL , as in Sec. 3.3. The PDL 1is then found
to continue until its tangency with B . This final integration ends at
;he point where B 1s a trajectory connecting the top of the PDL with
the bottom of the SE , as shown in Fig. 3.7. Also shown in that figure
are the contours of constant V , and as mentioned earlier, a local
maximum in time-to-go must exist at a point on B which is to the right
of the PDL Jjunction.
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3.5 Parameter Space; Regions I and II

The curreht version of the parameter-space diagram is shown in Fig.
3.9. The locus, 04 is the line aBove which thé wSE and the attendant
PDL are‘ﬁot present beneath the barrier. It is determined numerically,
~by seeking to satisfy (3) of Sec. 3.3 at a fixed 7Y , and for variable
‘B . The:curve 95 represents pafameters for. which thg dispersal‘point
A occurs on the capture circle, and is easily found as (1) of Sec.
3.2. Finally; thelsmall triqngular zone bounded by C2 and 06 in-
cludes those parameters for which the SE_'is interrupted by the FL ;

the locus ~C, 1is also determined numerically.-

} 2
FIGURE 3.9. Regions in.Parameter Space, 62-+ 7 = 1

In completing Region Il of the parameter space, diagrams of optimal
paths and isochrones have been given in Figs. 3.2 and 3.3, for para-
meters left of C3 . For parameters below C4 , the gross features of
the trajectories in the area under the barriér, including the SE , FL

and PDL, have been sketched in Figs. 3.4 through 3.8,
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We note again that if the barriers do not intersect on the y-axis, the barrier is not an
optimal path unless the SE exists. In this case (3, v between C; and Cy), only that segment
of B between the SE and the PDL is an optimal path. The remainder of it is a locus (described
with ¢ = 41) of initial conditions for which P’s strategy is a turn-away (¢ = —1).
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Chapter IV

FURTHER -EXTENSIONS, 32 v 9 >

v

The classical results pf Fhe,homicidal dhauffeur game have béen
extended in Chapter III to all parameters satisfying the 1neduality
82 + 72 <1, and we have further subdivided, this area into Regions I
and II, according to whether or not the capture_regién is finite. The
appfoach taken in tﬂis chapker is basicdlly_one of continuation of the .
loci in Fig. 3.9. Beginding the extension at the locus Cl , we will
work upward in parameter space, introducing new complexities as required.
In this way, previously defined loci are followed to their éhds. Other
loci will also enter the discussioh, and it.-will be found convenient to -

; -9 2 .
separate the parameter space £ + » > 1 into three distinct regions.

4.1 A New Barrier

The equations describing the barrier in Region I were derived in

Sec. 2.3, starting with the main équationﬁin the terminal payoff form,

min max[y X + v] =0 .
. [vx vyy]

If this equation is considered to hold ét r =B , but with 62 + 72 >1,
we have seen in (lé) of Sec. 2.3 thaﬁ B canqot end at eu .~ with tan-.

| gential velocity. Neither can both adjoints be zero. The remaining

poséibility, if -this equation holds, is that an equilibrium point may

exist where X =y = 0 . For this static interpretation, the relative

velocity equations are, . with P turning toward E :

0

Bco = sy
i (1)

l -pBs = ycy =0 .

These can be solved for the equilibriUm position and E's corresponding

; _
control,

S

(1+62-72)/2a

1}

Feq’ S
' 2)

1}

cy

2_\2 _
- (l-ﬁ +Y°)/27 .
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The first of these equations implies th;t <1+ 7 in order fér the
equilibgium to exist. But, we will see tﬁét a barrier is present for

62 + 72 > 1 only when B istEEE less than 1 + 7 , so that the right
and left barriers intersect ahead of SP . An equilibrium strategy for
P (for which the time-to-go is infinite) can be mihimi;ing only if the

capture region is bounded, since othefwise P could certainly choose a

-

better strategy.

When the retrogressive equations are solved with the'appropriate

boundary conditions, the new barrier equations are

x = 1 -cT + Bs(eeq+1).- 71s(veq+1l

, ’ ' (3)
‘ST + Bc(eeq+1) - 71c(weq+1)'.

G

y
The parameters for which the right and left barriers intersect
tangentially on thg y=axis c¢an be obtained as in Chapter I1I, by eliminat-_
ing 7 between the equations x(8,7,7) =0 , and £(B,7,7) =0 . The

result is p(?) , the extension of C lying to the right of Cl-’

2 .
- which is kiven by the following rather unappetizing implicit function of

the parameters:

1

1+ Bely =00 = SV, = 76 - Vo) =0 - (4)

In this equation eeq and veq are first quadrant functions of  (8,7) ,

defined in (2).
The .switch function is

S=7- C(\yeq+1) ’ » (5)

and since Weq > ee > eup =;cos-17 , this function is positive for all

; q .
T yielding x > 0. in (3). That is, the barriers never end before
meeting on the y-axis when the parameters fall below the locus C2
given by (4). . , ¥

The trajectory given by (3) differs in three respects from the

barrier trajectory given by (7) of Sec. 2.3:
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'.pis normal to the new barrier, as. was the case. in Region I. The gradient Al

f: point A (and its image. across tho y—nxia) is inside rather than on the~

‘\_ T

i R : 5 0 b "x.l-ct’ ("71)"901) 3 e JES

i)] The arrival velocity is zero. in both radial and tangential‘
: gdirections, though the equilibrium point is. reached from-any

: tpoint on the barrier in finite time,- :
ii)frThe new barrier is not tangential to the’ capture circle at
AR arriVal' '-"-f: 'fjﬂln _:fg'iﬁ_;.f'.‘;" Sh !
FA . i 3 G I.'» ‘ ""‘_"')"".‘ Uit : _,‘! .

“?%i)}-ibe new bé:riérfcontactS,t#éiéabtufe circle at the angle -,

This new barrier is the outer edge of an angular interval of the

»

capture eircle on which safe-contact motion is optimal, with P turning

toward E o’ Details of the relative motion, inqluding:the influence of

‘an evader 9 dispersal point A., are given in-the next section. The"
- XYY J\ ¥

;.normalized gradient vector, which is parallel to E' ~ ‘optimal direction,_

,-.'1';;’:

rotates at unit rate with motion of ‘x down the barrier, until arrival

Gat: the equilibrium point. e ff f}f'f.;f'_}ﬂ,. S ;
4.2 . Evader s Dispersal Point and Dispersal Line.r ket i s e

When the parameters ‘areé outtipe the locus Cy o 2

: new barrier. This point 1s locatod by tho‘lal, equations found in‘

Chapter i R e Chi e
: xy ek o etary) LA Ly
,-‘.. : v /‘ . : | "v, % 7 ‘ ',‘, .‘_ "s' . L '.'!- .‘ : “ (l)
b5t ant Ty e e i

3 and traJectories Iroq thio @ ' . sswyerssl point are expressed as

2P

functions of the. arrinl oulo e% .‘S'~ 7o.d»_'&h’e“retrogressi've I

1me, ‘I,': ;.‘.

’,',..’57 Ko y =87 + (p—yt)c(en) -;‘-'- i ;

0'--' "‘ i N e et i O

.:Theﬁlargest,angle;_ 6;", is giVen by solving the simultaneous equations
..r(és,TT) ='Bt3';5(9 0 = 0‘,‘as detailed in Appendix B-l, and as shown

) ‘ eeii0e 0w *
4 1 . / y ' . e L A ? ‘ X s .
] ' , ' i b A ¢ fu o " Al & . 3
4 1nFj~'g.'J A ) '., 0.l o i Ll &, o A UM B e
. ” ’ pi ) ’ . | “ . Vi ...'_,..., - '- - e, Aieads .
4 P ¥ hod !/ s e
o e 0 O rra$ ofledys 54 jeiiicins »
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Thié f;gure also show; that A" is the near énd of ‘an evader's
dispersal line (EDL) extending to the y-axis, thére meeting the image
EDL from the other dispersal point. This..EDL: is a’iocus of starting
poin@s ;or which E must choose between two equally optimal strategies,
labelled "+" and "77 for reference bqrpéses in Fig. 4.1. On the "-"
~ side, E funs élong the tangeﬁtfto .- 3 minim?m turn circle, and the

game .ends as a straight-line chase. The other choice of strategy from

" " FIGURE 4.1. EDL from Point A in Region III

o

the EDL has E runninglstfaight until tangential arrival at the cap-
ture circle near the equilibnium point. Subsqueht motion here is of

the safe-contact type until 6 decreases to eT , where E 1leaves the

N
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, . . : ‘
circle for a short interval before termination at! ed-. It is easily

shown that P's strategy is the same for either choice of E's (i.e.,
S =V o = Vyx >0 if x >0 , for either W~ or VV+ ). The "=" tra-
Jjectories encounter the y-axis as in Chapter II, with P's switch func-
tion g01ng smoothly to zero along this, line._ On the barrier side»of

the EDL: though "the SW1tch function is positive as x approaches the
brief y-ax1s segment of the, EDL shown in Fig. 4.1. While it can be
shown only numerically, there exists a discontinuity in both W and S
across this line segment such that P's strategy depends on E's

ch01ce.

Referring to Fig. B;l, the discontinuity in the gradient. across the

EDL .gives an equation for the local slope.as
Vo-y

Vv

X +

dy
dx

, ' 3)~

‘<
‘<+

*

o
-

- S+
Next, ~in equating X =x , differential changes lead to relations be-

tween d92,d12,dyl,dT The appropriate independent variable is )1 ’

1 .
51nce the other variables are either too nearly static or are not clearly
monotonic. Thus, equating differential positions on-either side, we

" derive simultaneous differential equations,

e s s
& dy, 7 dy, Y1 T dy,
(4)
+ d92 + qu - > N
Yo Go Y. So— .

]
<
+
<

The required trajectories are given in terms,of (yl’Ti) or (92,12)
in Appendix B, as are the adjoints required in (3). The numerical inte-
gration of the coupled equations proceeds routinely in Region III of
parameter space, as there are no unusual'numerical problems., It is true
that dez/dyiv is nearly‘zero as @, '

2
minant of the coefficient matrix of (q) is

+ ) s
xp = L0 V-c%0,/72 + 56)) pegyl > 0,

approaches eeq , but the deter-

L

M
eyr, ye
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which means that there are no indeterminacies in the iitegration of (3)
“‘and (4). H

N

. aThe éradient‘vector W in Region III wvaries snoothly with position
except across the EDL , and all of'the.contours of constant V inter-
sect the capture 01rcle out51de the usable part. 'Note in particular that
as the new barrier is: appr&ached the time—to-go approaches 1nf1n1ty con-

tinuously, while in Region I, . the time-to—go is discontinuous at B

The safe-contact trajectories which follow the tangential'arrival

at 92 >($ee*Fig. B-1) are described'in.polar‘coordinates as

"

{1.' = =CcO + 70(4;_6) -, SN
' ’ (5).
é = =1 + (se+7«/1-cze/;2)/8 i .
where r =.8. has been used in the, angular equation and where é& <6
< eeq . The radial equation gives "E's control~fpr this motion as
(cf. (9) of Sec..3.1): S
¥ =6 + cos (06/7) - -(6)

.and, as expected, E's - tangential angular velocity decreases from zero
as é udecreases-irom ”eeq . All tangential paths depart the capture
circle at g = QT , Wwhich has been calculated as the initial value of
6, in the EDL integration. This last portion of the "+" paths (see

~
gential departure and before termination at 6 = 90

Fig. 4.1) has E running 1n a straight path 1n real space, after tan-.

o

n

4,3 ConJugate P01nt Replaces Dispersal Point

As the speed ratio is increased for parameters above Cl , two ex-
treme traJectories from A coalesce to_a single curve, which-is point-
: tangential at 9 > 9 i "and which ends at the arrival angle 6 =0 .,
For larger T 5 such that the y-axis is included in the point-tangential

trajectory, the retrogressive equations from the y-intercept are

]

X

1 - ety + (y1f7tl)stl

B | 1)
y = STi'+ (y1-711?°Tl .
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A conlugate‘point, C, is located on the lowest such trajectory by the
condition yl'- 711~= 0 . Here it is‘easily seen that thé conjugaté
point conQitidn is met; i.e., whén T, = yl/yi, fhe.Jacopian determinant
is, using (1): : '
. ST (1-7)511
o (x '
d(;l,ri) f - S e

ety (1-7)CT1

An EDL emanating from C marks'the right end of trajectories to the
y-axis, and the time along these trajectories is Tl < yl/z for those
above the point-tangential trajectory. A trajectory-slope discontinuity
occurs across the EDL,, this d;sqontinuity decreaSing to zero at the
point C . The tangency of<fhe point—tapgential trajectory and the - EDL
at C impliés that an_indeterminacy exists in the expreésions_for 1he
derivatives at this point. THis indeterminacy is evaiuated iﬁ Appeh-»
dix B. | )

.fhe parameter—spake locus for which the dispersal boint A becomes

the conjugate point ‘C is found by requiring r(B,7,11) =B, i(B,y,Tl)

I

= 0 , where T < s B/y , using (i)'with y, = B . Considering these

‘as two equations in 8 and T, , we determine T

y ds the smallest root

T
to

<

2 2 , ‘ ) o .
(lecrl-£7 11)(7-011) + (1-7{;11(511-711) =0 . . (3)

When this is solved numerically for jT(y) , the correspdnding parameter

is

B(7) = 7t

_ (1t7)srT/(74c1T) : 4)...

v

and a parameter locus is generateé for all TT

7 . This curve will be denoted as C7* in the pafémeter'space drawing

in the interval O " to

to be shown as.Fig. 4.10 in Sec. 4.6,

The last point on C7 “has the cqordinétes =2, 7 = 2/n = ,635 ,
and here C is at the right edge of the capture circle, with the trajec-
tory depgrting tangentially upwardi This means that i - c(yl/y) =

62/2 , and s(y1/7) = 0 . Together these conditions imply that y, = 17
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and ‘that-the conjugate point.region is bounded from above by the 1line, -

B =2 , this locus to be denoted as C. in Fig. 4.10.
2 .o

9
For parameters in Region I1I, the effect of crossing the.-locus C7
is shown in Fig. 4.2, Tke EDL calculation is diséﬁgsed in more detail

in Appendix B,  but here it is noted that the initial vélues of»'y1 and

Ty, = y1/7 - Tr derivg from éxpgndiné r(ylﬂTT? =B, f(yl,TT).= o .
Eliminatingl Y, leads to a cubic in ?TT , ° |
27c31T'+ (I+47+72-Bg)c21TJ— 2[1+72+7(i-52)]ch + 72(1162) +1 = 0; (5)
and the corresponding.prdihatenis .
| Y; = 7T& + (1-7)STT/(7-CTT) . (6)

FIGURE 4.2, EDL from Point C in Region III
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gomparing Fig. 4.1 with Fig. 4.2,illustrates the difference between tra-
jectories for parameters in Region III, on .either side of ‘the. locus

‘given by (4). - ' . .

4,4 Pursuer's Dispersal Line Replaces-Open Barrier

* We recall that in Region 1II, P's .strategy when T = B was
® =+1 with ¢ & 2 up and @ =-=1 otherwise. The barrier 1ntersection
with the capture cdircle thus marked a discontinuity in P's strategy.,

2.
For B + 7 > 1 ,. however, we have séen in Sec. 4 1 that safe—contact

motion is 90551b1e for ¢ '= l', e > 6 . When parameters pass from

Region III to 1V, the equilibrium point ex1sts as long as B <1l+ 7,
but the barrier from this point will be open, since the parameters will
then fall above the locus given by (4) of Sec. 4.1. This barrier starts

on the capture c1rcle at @

» and when ® = +1 , therrelative inward

motion w1ll be very slow when E is located on the capture circle JUSt
ahead: of eeq . Indeed the time:to-go w1ll approach infinity, so that
P should obviously- turn away (p =-1) when' :E is cloge to this

.equilibrium point. Accordingly, there must be a'disperssl'line for P
starting on the capture circle slightly.in front of .the open barrier,f

which then loses its significance.,

A7

) \Hence? when the barrier from eeq is open’.captnre in a‘finite
time is possible from all initial conditions, and we may think of this
barrier as being "replaced" by the PDL' . We note that the gradient and
P's switch function areﬂdiscontinuous acroSS this line, and when the'
equilibrium point exists (i. e., AJE:;§‘< B<14+ 7 ), the PDL begins
at an angle ep' very slightly less than e as given by (2) of.Sec.
4.1. When B >1+ 7y, so that .8 - no longer exists?’the PDL may
begin on the capture c1rcle at an angle ep > n/2 ,.or on the negative
y-ax1s, or even on the equivocal line, as will be sHown. The variety of

" possible configurations of PDL makes its numerical computation diffi- "

‘cult, as is further implied by the following possibilities

i) The tragectory for o ="+1 can depart tangentially from the

PDL ,,indicating thatsthe SE is present for these para-
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meters. That is, the exten51on above Reglon II of C4 (see

Fig. 3. 9) is requlred e )
» - @

ii) The SE ,-in'turn, may be interrupted by the FL ; i.e., we

smust locate the extension of ~ C6 of Fig. 3.9.
iii) The dispersal point A is replaced by the conjugate point C

for parameters to the right of 'C7 , as discussed in Sec. 4.3.

iv) The point A may separate ‘the ; SL from the EL , or may -

fall inside the capture circle, the EDL no longer existing.

3 S

That is, C and C_. of Fig. 3.9 must be extended upward
out of Region II. ' . '

?

w

These cons1derat10ns have an obvious signiflcance in the computa-
tion of the PDL , but for the present we restrict attention to the
equations which describe it, and_te the determination,of those para-

meters for which it exists.

For'parameters slightly above‘ Cl ‘such that the lﬁpL 'eiists, the
.configuration of'eXCeptional lines will resemble that shown in Fig.

4, 3(a3 This conflguratlon is representative of parameters in the neigh-
borhood,of p:21.4 ; Y= .6 ; such that the PDL is not 1nterrupted
‘/y/the SE as mentloned above. The turn—away reglen resembles that
ewhich exists for parameters in Reglon II and when parameters are'close
to the locus Cl , the‘ EDL and - PDL are nearly coincident, so that:
they can be thought of as "replacing” the barrier which exists in

Region 11.

In (b) of the figure is shqyn a config&ration for parameters near
the values B =1,82 , 7 = .8, so that .eeq' does hot exist, and such
that the point A has been supplanted by the conjugate point C . For
these parameters, the two dispersai“lines are more widely separated, and

the turn—away region is proportionately smaller.

The equations which specify the PDL are Similar to those described
in Sec. 3.3. That is, the position is the same for two different retro- .
grade’ paths, and the main equation holds for either of P's strateg:es.
Using the notation of Fig.‘4.3§a),_for,example, the PDL yould be found

r
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by simultaneous solution of the

three equations,

x+ gﬁl + x+‘i:£ = x- + X E:E -
8 d62 ., T dez e T d92
‘ o : (1)
: s R W
eﬂdQZ T dez T d92
vo-vt
dy T S .
Cdx V-"-V+
Y. Yy

(a) B.< 1+

. FIGURE 4.3,

PDL

(b) B > 1+Y

v

" EDL and PDL in Region IV
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At any point 5?(91,11) = zf(azyrz) , thesge equations can be solved
for the indicated deriVatives, feé Ahaviﬁg heen taken as the independent
variable. The superscrlpts in (1) are chosen to agree with the sign of
the switch function, Hence, providing the configuration actually is as’
shown in the figure! it remains only to find a set of "initial" condi-

tions in order for the PDL to be ﬁumericaily calculable.

The - first few attempts to integrate the PDL 'were carried out for_
parameters only slightly above Ci , So that the relevant initial condi-
tions were those at the near:end.of the PDL sllghfly 1nward ‘of 9
Initial condit1ons could be found only after numerlcal 1ntegrat10n of
the EDL , the_ EL and the safe-contact equations of retrograde motion
back to .eeq . _The-initial conditions required for the PDL integra-

“

t = = o = ='
ion would then be Tl ;2 0 and 91 92 6

‘needed to be determined numerically, as described in Appendix B. This

v

, and hence only ep

procedure was followed by a subsequeni PDL ihtegretion, which con-
tinued until the sWitch function equalled zéro on the "+" side of it.
It was found that the end point of the PDL was "elose" to the end point
of ‘the EDL , as pictured in Ref. 2. Subsequent numerical studies
showed{ how;ver, that theEevendpoints are actually coineident, and {hat
the,tﬁo dispereel lines join the EL -.at a common point, labelled B as
in thedbarrier case of Regron T1I. This, means that for co?figurations
similar to that sho;n in Fig.'4.3(b), the ,PDL can be profitably inte-
grated ihward from the far end, simultaﬁepusly with the EL . This’hasr~

important numerical advanteges, particularly when B8 > 1 + 7 , such that

the approximate location of the near end of the PDL is unknown,

In determining the parameters for which the PDL exists, we con-
sider the changes in its appearance due to changes in B , for a fixed
value ef o 4 ,vthis fixed value lying between Q» and" 1 . The largest
value B for which it can exist will be found, anq_this locus B(7)-

will be denoted C8 , for reference purposes.

When 7 1is sufficiently small, the boint A 1is not.a dispersal

point, because the retrogressive switch time is
A, . A

= - < = .

Ty 2(n 90) B/ s
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Also, when the point-contact trajectory is tangentvto the capture-circle

at the angle eT = n/2 , the retrogressive equations are

X

1 - cT + (B-70)s(@ _+1) = B

ST + (B-7T)c(60+1) =0 »

<y

- But, at this point we gnow ‘E”s optimél direction must be tangential,
Vv o= 90 + 7T=mn, so (2) yields o ' .
x=B=1- CFT yo ; (3)

where T is the least positive root to the equation;

~

‘ STy + CTp + YT = 1=0. (4)

While this ahalysis appears unmotivated, it may be observed that,

when the independent variable is changed to Tt= 1 - the trajec-

-
. T'
‘tory (2) is obviously symmetric with respect to the x-axis. That is,
with time Tf measured from tangency at 96 = n/2 , and wo = n , the

.trajebtory is given by

1 + (B-1)ect' + 7y1'sT’

b
1}

_ (5)
y = =(B-1)st' + yt'ct' .
‘This means that the switch function is also symmetrié and is therefore
equal to zero at both ends of .the tangential trajectory indicated in
Fig. 4.4(a). This finally means that parameters are sggp thaf the PDL
is of zero length, having just vanished into the capture circle. Hence,
ourysought function in parameter spacte 1S obtained by eliminating T

i T
from (3) and (4). 1In a relatively useful form, the result is

_ B -v2p-g?

7
dbs-l(l-ﬂ)

(6)

This function denotes the left end of the locus C (to be shown

8
in Ffﬁ. 4,10), and it is appropriate until > 1is so large that A ap-

pears on the capture circle. The criterion for’this circumstance is

T

% ZTT = B/y
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(b) .362<x .78

FIGURE 4.4. Trajectories for Parameters Just Under Cg
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T
lows that the last point on the locus (6) is

which, with (3) and (4), implies that 7t = cos-1(~3/5) =2.,21. It fol-

Y = 4/5TT = ,362

‘i (7)
8/5 = 1.6 .

g

When (6) yields a value of 7 > .362, the point A 1is outside the cap-
thré circle, and is the start of an EDL. The condition (6) must be re-

| placed by another, when y > .362, such ‘that S = 0 on the inner side

of the EDL when r =p . That is, 1f S =0 while r >B, a PDL

exists between this point and the capture circle.

The conditions descriSed above are not.subject to analytic treat-
ment, since the EDL equations must be 1ntegr$ted numerically. This
implies that £ is to be adjusted, at a fixed 7 , until ;he p&ﬁnt B .
at the junction of EDL and PDL oécurs at r = B;. The qualitative
appearance of the relevant curves for §8 Ju%t below C8 is shown in
Fig. 4.4(b). This procedure is sufficient as 7 increases until the’
- dispersal point A .is sugplanted by the conjugate point, at 7 é .78 ,
when C8 is crossed by C7 . For larger 7 , the calculations relate
to the point C , and the conditions for the vanishing of the 'PDL are
‘slightly cpanged. For 7 greater than about .7, the léft end of the
PDL shrinks toward its right end at the point B , as shown in Fig. ‘
4,4(c). As the speed ratio approaches unity, it is found that the con-
figuration near B is very sensitive to parameter changes, and conse-
quently the p:eéise location of C8 is difficult to assess in this
region. The locus appears to pass through the point B =2, 7y=1

'1n'parameter spaée, but this observation has only a numerical basis.

We have.discussed safe-contact motion in Region II for ¢ = -1 ,
‘when P turns away from E . Likewise, tangential relative motion
appears for ¢ = +}', when E 1is inboard of the equilibrium point, for
parameters in Region III. For parameters below B =v1 + 7 in Region
1V, moreover, safe-contact motion can occur for both of P's .turn
directions. As f approaches C8 , however, particularly for largé
7 , the turn-away region does not necessary border the capture circle,

so that tangential motion can occur only-for ¢ = +1 . 1In this case,

" o 2
S .
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/
tangential motion appears whenever a point-tangential trajeetory Jjoins
the point A , or the point C , to the capture circle. These trajec-

‘tories can be expressed in terms of the arrival angle 90 , and the retro-

gressive time-to-tangency" Tp o by expanding r =%, r =0, as two .
equations in (B,7) . & o ‘

If the parameters are in the region above C8 ,» P never turns away
from ‘E , and tangential motion ‘can occur only for @'— +1 . The maximum

angle on the capture 01rcle for whlch tangential motion is posszble is
_fouhd by equatlng the radlal acceleration to zero in unconstralned motion,:
with r = B and & =0 . Rearranging the result y1elds an equation

’

= pse_ - (s9m+7\41-c29m/72)2 -0 . - (8)

satisfied by this “eﬁ > 90°

For parameters below‘ C8" the PDL exists, and the maximum angle
at:which tangential motion occurs for ¢ = -1 depends on the subsequent
trajectory. - We heve determined one such relatibn in (5) of Sec. 3.1 for
" the case when the departlng traJectory encounters the negative y=-axis.

Ih Region IV, the "last" tangential path for @ may encounter the -
EL or it may not exist at all. ' That is, all paths departihg the circle

‘with ® = =1 may do so non-tangentially, as shown in'(a)_of Fig. 4.5.

When the speed ratio is high and B > 1 + 7 , the shape of the PDL
is extremely sensitive to parameter changes. Typical trajectory varia-

tﬁons for” 7-= .9 are shown in Fig., 4.5 for three slightly different

values of B .

p=+1

’/ @--/im

i. ' —EL

-EL

(a) B=1.914 (b) P=1.916 . e . (c) p=1.918

FIGURE 4.5. PDL Variations with B for 7 = .9

-
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4.5 Other Loci and Trajectories in Regions IV and V

Thq condition for the disappearance of . the EDL ”(the extension
above Regiop II of locus 03 ) is that the switch function vanish at the
. . . ) s J .
- point ‘A on the point-tangential trajectory. Using the solution for

this trajectory, the condition‘requires satisféétion of the équality'
Ty = B/y = T = 2(n79°) , | (1)

where 80 and TT are coﬁpled through r =8, # =0, as given in (1)
of Appendix B-1. v

The result of eliminat;ng; 90 and Top. to give B(y) 1is the seg-
'ment of C§ lying between C1 and ZCé » as will be shown in Fig.- 4,10,

In Fig. 4.6 is shown the nature of the switch lines and trajectories for'

. ' ' ’ . i «
N~ » . :

uLy o

v

FIGURE 4.6. Trajectories for Parameters Between
Cz3 and Cz in Region IV

3
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‘parameters slightly to the left of this portion of C3 . Extending C

_ S
aboveA Cl is accomplished simply by requiring the dispersal point A to .

fall on the capture circle, using (1) of Ssc. 3.2 for <2 ., For

(B,7) 1left of Cy » but below C8" the EL 1is absent and the configura-

tion is as shown in Fig. 4.7.

PDL

FIGURE 4.7. Trajectories for Parameters Left
. of Cs in Region IV

For parameters in Region V above C_ , the disappearance of the EDL

. 8
again results when A is on the capture circle., This is the same func-
tion as mentioned above, and it extends from B =7 =0 to the point

B=2, 7y=2/n% /635 . .It will be seen in Fig., 4.10 that C3 and C5

intersect C_ at the same point (where = n/2 ).

Cq ; S0\

T



_The locus C4 denotes the upper border of an area in which the SE

‘ exists, and it.,is found by fix1ng Y ' and determining the largest B forr
which the, required cotangency condition holds.. A test of a given pair of
‘parameters thus requires the retrogressive integration.of the &EDL , EL
and safe-contact eguations, until ep is found at theﬁbase‘of the PDL
on the capture circle, (See'Appendix B.) 'Integration of the PDL then
determines if the SE is present ‘by the condltlon del/dTl ; o . If

_ this equation is not satisfied at any p01nt on the PDL , the correspond-

ing parameters are above the locus 'C4 . .

Sinilarly; the locus Cé bounds an area of Region IV for which the

SE is interrupted by a FL:, and this locus is found as in Sec. 3.4, by

integrating the. SE until the FL ”condition_is satisfied or not. .This
again is a straightforward but tedious‘numerical trial and error pro-

cedure.

'In Fig., 4.8 is shown a qualitatiue sketch of the switch line and .
traiectories-resulting for a pair of parameters just above locus C2 in
Region IV. Here it is seen that the EDL meets the y-axis while the
PDL , SE and FL do not.“ This combination of parameters generates the
most complex structure believed to exist in the game. As many as 15
‘stages are possible for certain initial conditions, -and for these para-

meters a chase can include every qualitative feature of the homicidal

chauffeur game except the barrler and the switch line.

A brief discussion of the 15-stage chase may be instructive. From

‘an initial position on the PDL , as shown in Fig., 4.8, P . chooses

@ = +1 until just after the forward portlon of the SE is encountered.

' The turn-away (p = -1) 1leads E down to the FL , on whichAany number
of'switChes by P can be performed This leads x again onto the SE ,
for Wthh Q = , until the PDL is met again, where P now chooses
to turn away{' Safe—contact with ¢ = -1 1is followed by a reverse chase;

wnich is continued along the EL until the point B is reached. Here
E chooses the UL strategy of the'y-axis and therefore ¢ = +1 until

" this singular arc is reached, when. ® =0 . This leadsA‘x' down to the
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FIGURE 4.8. A Fifteen-Stage Game in Region IV
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EDL again, where E chooses to run‘ toward the right equilibrium point,
thus forcing P to take ¢ = +1 . ‘The final stages include a second

brief safe-contact episode.

"4

Continulng our discussién of the parameter space loci in Regions IV

o

-and V, the locus C7 continues to B =2, and denotes the border of a

zone in which .a conjugate point exists. The array of dispersal"and
equivocal lines when the point C exists, for (B,Y) below C8 and to
~ the right of C7, has been shown in Fig..4.3(b). '

The left-hand portion of 08' (y §'.362), above which'the PDL does
' not exist, is given by (6) of S€C-’4-4;1 This can also be considered .as
the 'locus of tangential contact‘at 6; % 90° , and it can be extended
'upward to B =2, as in Fig. B-2, where it-provides a convenient refer-

ence line for visualizing the point-tangent trajectories.

-

We can~alsobfind a parameter locus above which optimal tangential

motion does not occur for ¢ = +1 ., When 7 < 503 this locus is given
by .simul taneous solution of three- equations in 9 ’ 'TT and B ( 7 be-
ing a fixed parameter). The equations are = B , r =0 ,'and.(8) of

Sec. 4.4, which is equivalent to =0 in’two-dimensioual motion. This'
locus will be- labelled C10 in the parameter space draw1ng of Fig. 4 10.

For 7 > .503 ; thlS curve is extended by C_. , for which A is on the

5

capture circle,_w1th T =Ty @ Typical'trajectony configurations in

T.
AReglon V.are shown 1n/F1g. 4 9 - Here it is seen that 'P never turns

away from E , but that- safe—contact and the EDL are:still"possibilities.

For suff1c1ently large B , as in (d) of this“figure, only the y-axis re-

a

mains -as an exceptional line.

. s

4.6 Parameter Space, gegions III, IV and V
A ' A

In compieting our -study of the parameter space for the game, it has
been convenient to define three new regions. These are bounded by the
heavy lines in Fig. 4.10. RegiOn III, features a closed barrier and an
EDP , IV is characterized by both PDL and EDL ; and for parameters in
V the situation becomes relatively simple again, the evader's dlspersal

line and safe—contact trajectorles disappearing one by one as this

region is.traversed. -
. 3 -



PDL

PDL"

(a) Parameters Between Cg ‘and Cio (P)

UL |

PDL

G

(d) Parameters Above C

.and C

8

(c) 'Parameters Between C .

9 and -C10

FIGURE 4.9. Trajectories for Parameters in Region V
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S

. Parameter éurve'-C2 is continued to } = 1.’ defiining-the closed
barrier parameters of Region III. ‘Here the new barrier contacts the
qapture circle at én equilibrium point, and in the capture region there
exists an ED]. which starts at-a disbersal point, or at a conjugate.

poiht, this distinction being sbecified,by a'parameter locus C7

ey

FIGbRE 4,10, Regions in Parameter Space
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In Region IV very complex games are possible, as tHe barrier is re-/ .
placed by the_ EDL-PDL .eombination. ‘The upper boundary to this region, .
C8 , specifies the disappearance of P's turn-away strategy, and the
other curves in this region are extensions of loci first defined for

-Regions II'andﬁIiI. ‘In particular, the possibiiity exists for both the

¢ ' ) \

SE and FL in Region IV, and safe-contact is optimal for both extreme

strategies of P . ‘

Tye loci of Region V are contlnuatlons of those in 1V, except, for.
105, above Wthh

) e
_safe- contact for ¢ = +1 disappears. The high maneuverabllity of P

9, above which the conJugate point disappears, and C
)
when B 1is above C9 or ClO" means ;hat an optlmal'game ‘is simply
played by ‘both players, P's strategy being at most a sharp turn fol-
lowed by -a straight chase, and E's path being straight throqghout.

The parameter cha*t of Fig. 4.10 also includes an unlabelled dashed
lihe thch passes diagonally through the space. This locus corresponds
to a configuration in which the EL (or EDL ) passes behind P and to
the point x =0, y =-8 . Wh/)e not an important locus in the sense
of denoting the presence or absence of switch lines, dzspersalﬁlines{
etc., it does assist in the sketching of qualitative features of a .

.

specific game.
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Chapter V

CONCLUSIONS |

v

It has.been shown that the type of solution .to the homicidal chauf-
feur game is detérm;ned bx’the values of two independent parametefs.
The sbeéd ratio and P's maneuverability rétib-are the two parameters
of the game, and the form of the\solution is believed to be known for
all combinations ofithese hérapeteré. An optimaily played géme can con-
sist of from one to fifteen stéges, depending upon the parameters and

the initial relative positibn. . ‘ ' B

The exceptional lines which arise in the game border the regular
regions in the relative space,, and the exceptidnai lines themselves may
or may not be Erajectories. In Table I are given the distinguishing

characteristics of the exceptional-lines which can occur in the solution

to the game.

The:barrier is an optimal path;when it is clésed, such "that the
capture region is finite. When the barfiers,are open, a range of para-
meters_exists for which a segment of the barrier is an optimal path,
along which® P lunges toward E . The remaining portion is a locus of
initial conditions for which P's strategy is a turn-away. The uni=-

versal line, or singular arc, corresponds to straight-line motion of

both players, and is found ‘to occur for all values of the parameters.

:Dispérsal lines for P are found to exist both a3 a straight line
directiy behind P and as curved lines to the right and left of P .
_For initial conditions on fhese lines, P must choose between a hard

left and a hard rigpt turn, and E's stratégy depends on this choice.
Similarly, a disperéal line for E 1is found as a locus o§ initial con-
ditions for which E chooses fr6m7tﬁo equivalent strategies. For most
parameters, P's strategy does not depend on E's choice. However,

wheﬁ a segment of ‘E's. dispersal line falls directly ahead of the

pursuer, P's strategy does depend.on E's choice.

. ' )
Safe contact motion, for which E f0116§§ a curved path in real

space, is found to occur for both extreme turn directions of P,
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TABLE I
EXCEPTIONAL LINES AND THEIR CHARACTERISTICS

Line

Definition and Characteristics *

UL

PDL

PDL

EDL

EDL

1D

1D

EL

SL

SE

FL

Safe contact motion (r = B ,

Barrier, across which W .is discontinuous. It may be’

‘open (Region I1I), in which case it is an optimal path only

if S has the same sign on either side 6f it. It may also

.be closed (Regions I and III) and it denotes a discontinuity

in V in Regions I and II.

Universal line, a portion of the y-axis which is a path cor-
responding to straight line ‘motion .of both playcrs, across
which "W is continuous, and along which 'S =8 =0

.
-

A portion of the negative y-axis which is a pursuer's dis-
persal line, on which ‘P must choose between hard left and
hard right turns. Both W and 'S are disgontinuous
across this line. ’ ) :

Pursuer's dispersal line for x # 0 , whigh is found by
numerical intégration. Both W' and S are discontinuous,
and S changes sign, across this line. '

Evader's dispersal line emanating from a-dispersal point A
and across which W and. S are discontinuous, but S re-
tains its sign across it.

Evader's dispersal line emanating from a conjugate point C .
= 0) for which P turns
toward E , who follows a curved path in real space while

malﬁtalnlng safe contact.

Safe contact motion for which P turns away from E .

-Equivocal line, along which S =0 and E has a choice of
- two strategies,” one of which keeps x on the EL . W and

S . are discontinuous across this line.

Switch line, along which S =0 and across which P's stra-
tegy switches.. E's strategy across the SL is continuous,
since W and S are smooth across it.

Switch envelope, across which W and S are discontinuous,
and which is a trajectory or not, according to P's choice.

Focal line, across which W and S are discontinuous, and
which is a trajectory requiring either © =+1 or ¢ = -1
according to P's choice.

’
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Other exceptional lines which can also be ootimal trajectofies include
-the equivocal line, the switch envelope, and the focal line. While
these lines are more difficult to .explain or justify on physical grounds,
their abpearance in‘the. solution adds interest to the problem. In fact,
a general conclusion of the.study is that a more complete understanding

" of the theory often follows from attempting a solution to a particular
application. Thus, for example, it is unlikely that the switch envelope

phenomenon could have been predicted from a purely analytical attack on

the problem.

As to the parameters for which each’ type of exceptional line occurs,
«Fig. 5.1 labels twenty significant subregions of the parameter space,
and Table II summarizes by listing the exceptional lines which exist in

each subregion, using the notation given in ‘Table I.

. A%
L d :
2.0 p
b
f
i
1.5 .
IV
a b
/ c
1.0
2 /p . 18
I1. , a g + h
: /h
ST c | e 11
d a
B i
I
’ L 1 1
0'0 2 4 .6 8 1.0 J
Y

N

FIGURE 5.1. Definitions of Subregions
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TABLE 1]
DISTRIBUTION OF EXCEPTIONAL LINES .

Region Sub=- | - Exceptional Lines Present in Each Subregion
region | B | UL | PDL | PDL |'EDL_ { EDL_ | 1D"} 10" |EL [ sL [sE [FL
I 'i T x .
HE{; a x X X x x
' , b % |* % X- x x| x =
' c X X X X X ’
. d X X X X X X
L e X X X . x; X X X
III a X X x %
b > < X X
IV a X X X X X X
‘b X b 'S X b'e - X X X
c X X X X b'S b'q X
d- X x X X X X X '
e x X X X X - X b'e X X
f X X X ct X X X X
g . X X X x X X X X
h X x X X X X X X X
\Y a X X - X
. b, x X x X
= - c -1 x x X X
4, X b

The loci. Cl,,v C, and Cg which separate the five regions of the

par;meter space are particularly significant because
i) for (B,7) above Ci , the barrier through eup no longer '

exists, and the time-tohgo'is everywhere continuous;

ii) for .(B,7) Dbelow uC2 , the capture region is finite;

iii) for (6,7) above 'C8 , .P never turns away'from E .

It is. to be noted that minor changes in the configuration can occur
even in a sbecific subregion of parameter space. Thus, for example, the
configuration of Fig. 4.8 occurs ohly'forAparameters in a minute strip

at the lower edge of,subregion“IVe. ‘Similarly, near the upper edge of
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subregion iv, PDL may or may not contact the capture circle. The loci separating these vari-
ous possibilities, however, are not considered important enough to be calculated, particularly

since this would entail very lengthy and error methods.



APPENDIX A

. SWITCH ENVELOPE

The SE appears for pargmetefs near the lower boundaty of Regions II
and IV. 1In Region II, it is specified as beginning on tﬁe barrier at the
lower bound of points for which P saves time by ‘turning toward E. The

criterion for this occurrence is

visT e vi 9T o, ' (1)
% y
where _ ’
V+ = s(y -1 )/D
x o o
: (2)
Vi = c(y -1 )/D
. c(y -1,
V =60 - cos-l(ce /7)
o o o
2z, 2 PO P
D =V1-c"6 /7" (B + 86 1-c78 /7 ,
and where
X =y - 7s(6up+1b)
(3)
vy =

1 - X - 7C(6up+1b) .

Retrogressive trajectories needed in this study are the barrier,

constructed with @ = +1,

x =1=-c1_ + (B - 71b)s(6up+tb)

b
5 (4)
'y =8t + (B - 71b)c(9up+1b) ,
and the turn-away paths (9 = =-1) which encounter the capture circle
tangentially,
‘4 ' o
x = -l +cT + ﬁa(&o-ro) - 7108(W6 10)
" - . ‘ . (5)
y =81 + 5c(9°-1o) - 71°c($6-10).
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The SE exists if and 'only if (1) holds at some point, Tb’ on the
barrier. To find such a point, 'a barrier time Ty >'0 is chosen, and
‘the resulting (x,y) are solved for the parameters »(8 T ) "using (5).
These are then used in (2) and (3) so that the left side of (1) can be

evaluated. The time T is adjusted until this left sSide equals l, or

until it is found that the left side is always less than 1, for all
T < 2(n - 9 p)' ~For parameters between C2 and C , the results of the

iteration .are initial values of éo, 10 and W s e + T which are

b’
then used as initial conditions in the retrogre331ve SE integration.

The local slope of the SE is then expressed-as a bilinear function
of the unknown deo/dT

day Y1 + yg(db_/dz ) e
dx =~ x_ + x,(d6 /dt )
, T 8" 0" o’ '

and (1) is used with the incoming velocity on the SE,

X =y - ysy

l - x - 7CW- 5

<
I

to give an equation for E's prior control, W-.' Following some simpli-

fication, this equation ‘is*

= : 2 “n 2 2
c(y -W6+To) = R(GO,TO) =1+ 5 {c(w6-10)~cw6-B-J1-c 90/7 } - (7)

- ‘The prior control then permits calculation of the SE slope in terms of
6,,3.):

.
-

dy 1 - x - yc¥

ax = r——— . (8)

*While multiple-valuedL the inverse-cosine operation is trouble-free if
it is recalled that remains practically normal to the barrier as
the SE is integrated away from it,
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Finally, (6) gives

v

1
deo ¥, = xT(dy{dx)

dr =~ Yg = Xgldy/dx) ? ~ )

iand‘numerical integration of (9) for a small change in the independent -

variable’ (here taken as 10) is followed by updated values for x. on

the SE. The derivative in (9) is never indeterminate. This retrogres-

sive integration proceeds until either of two geometric circumstances

arises;

i) the curvature of the incoming path equals that of the
s <

SE, implying that the SE is here tangentially extended
by a PDL, or |
ii) the derivative (9) equals zero, implying that the depart-
ing trajectory is tangential to the SE, which in this
éase is tangentialiy joined to an FL.

The first case is equivalent to a requirement on the- time-derivative
of W— for motion élong the SE, in that the integration proceeds only

while - dw-/drs < 1. This derivative is expressed more conveniently as

dy_ _ dy /d6, dy : (16)
- - dTg ~ dy/dé, dr '’

where, using (7),

v

av ) dwb Re R dTO

) T
- .- [1 + s(@=_w6+To)1

49 d?o . By o A | deo.

dy  _

39 =Yg * ¥ (dTo/deo)

. O ' ’ R
Y 1% - ver

e 1 X '7cw .

-

When dwr/de = 1, a PDL starts, as shown in Fig. 3.5, and it is neces-

sary to have the adjoints on the prior side, which are;

[y
-
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(11)

The denominator in (l11) is,expressed in terms of the current position

on the SE, using the main equation on the prior side to give
D = (14x)cw- + ysw. -7 . (12)

Because the SE is tangential at the barrier, this function vanishes, and

the adjoints are infinite, at this lowest point of the SE.

The 1ntegration of the SE when parameters are in Region 1V is'much

" the same, except- that the barrier no longer exists. The lower end of
the SE is instead coincident and cotangential with the upper end of a
PDL and with a trajectory for ¢ = +1, as shown in Fig. 4.8. The con-
dition denoting this point on the PDL is d@ /d1 = 0 (or its equivalent,
'dC/drl = 0). f The prior trajectory thus takes the place of the barrier
in the énal?sis above, and the integration of the SE then proceeds, with

. np'indeterminacies, by calculating the derivative according to (9).
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APPENDIX B .

COMPUTATION OF DISPERSAL LINES

v

B-1 Evader's Dispersal Line

In the simplest: case, ﬁhich serves to illustrate the steps involved, =
we may consider the configuration of Fig. B=1, for which the parameters
v .
fall in Regions III or IV, to the left of locus C7.. The equations which

determine the EDL are three, in the four variables indicated.

For a given pair (B,y) it is first neceséary to calculate the
initial values GT, 12 for the point-tangential trajectory'}eaving the
point A farthest to the right in the Figure. This trajectory is read-
ﬁly;exp?essed in terms of 60 and the rgtrogressive time to tangency

To such that r(eo,TT) =B a?d.-r(eo,wT) =0, or

v

FIGURE B-1. Notation Near Dispersal Point A
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~ : 1.2 2
1 - et + (ﬁ-7TT)[s(90+1T)-560] - ByfT - %7 p =0
; . (1)
STy +~(B-7TT)[C(90+1T)-71 - z[s(60+1T)jseo] =0

Fixinge 60 and To at convenient values permits calculation of

the corresponding P, shown in Fig. B—2,,td‘fhe left of the locus -.C

7
The initial value of the time var1ab1e shown in Fig. B- 1 is 1 = B/V-Tf'
When the congugate point c is present (B, right of C7),‘the equa-
tions take the form ' | '
1 - ct + (y, -71.)8T., + [y =71 )2- 52] =0
< i B s AL SO ' o
Yo 7 v (2)

(1—7)51T + (y1771T)(91T - ?):= o,
which can then be "solved for the parameters, given convenient levels of
s and 1T,. These functions of (B,7) are-also shown in Fig. B-2, to
the right of locus C,: The points of special interest in this Figure

are:

i) Ihé tangency angle is GT = 90° along the dlagonal dashed

locus, and in. general can be found by

BCGT = 8T, +’(B-7TT)¢(60+TT2,

@

where . 90 ~and 71, are read from the Figure.
ii) The arrival angle 60 approaches 90° as 7y approaches-O0.

iii) Thé locus Clb denotes the parameters above which tangential

~ 3

motion does not occur. For 7y < .503,‘ C10 is determined

by the requirement that in free motion, r = 0 at tan-

gency, and for .503 < y < .632, it is determihed by having

A fall on thg capture circle. . The locus is completed with

‘the straight line B = 2; along which Tp = % ‘

In developing the EDL by numef&cai.integration, it is neceésary only
to express the positions and adjointélas functions of the‘barameters

| (yi,xi) or (92,12). Referring'tO'the general saiutions of éhap: I

and to Fig. B-1l, these are:
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FIGURE B-2. Parametric Solutions for Points A and C
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2

. . Y
x =1 <ct, + PsOy+1,) - 712s(ﬂb+12)
' (3)
+ - | : .
y =81, 4+ 50(92+12) -;712C(W2+12)
s o ; . '
.# =1 - CTl‘B,(y1-7Tl)STl_
, | (4)
y =81, + (y1-711)c11 -
V' = s(y.+1.)/D .
x = 8LV, T2 ' ‘
.§+ S e (W) /D a | E .
Yy = ety e g | (5)
[z, =2 | >
p =V1-c%0,/7" (& - so, - N 1-c%0,/7%
. Vx - 511/(1-7) f .
. - (6)
- e :
.Vy CTl,(l T 5

-

Thegf functions and their derivatives are used in (3) and (4) of Sec.
4.2, which are then solved for the derivatives dTl/dyl,'dez/dyL and
dwz[dyl.' | .

.. R ” 2‘
For parameters in the range ~-1-y° < B’ 14+ , the equilibrium point
eeq exists, and as the EDL is integrated outward towdrd the point B

(where it meets the PDiL), the angle 6 is very nearly equal to eeq

A 2 . .
For. numerical reasons, therefore, a more sujtable variable is [, de-
fitied by & .= éeq - é}, as will be discussed in App. B-2.

In terms of this variable, the sldpe of the EDL is then express-

ible as

. . D ST, - (1—7)s(¢2+12) . S(Wéq+12)

dx

D CT; - (1-7)c(¢é+12) '“c(Wéq+12)

since
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<

V2

and further substitution permits cancellation of e-C from numerator and

denominator of the derivatives; the results are:

-

d11 c(w +1 -1, ) .

~dy1 =‘- y[1 - c(weq+1 -1 )]

o (y, = T, )c9
at  _ ot T (7)
dy, 7(1-7)1 (B - 59 ) | ,
dr, Vi ST . = s, ‘ -
=~ dy, =

71 v7212[1‘- p(wéf+12-1i)]

The 1nitial values of the four parameters are easily computed (yl—B ’
T =B/7 » Ty and 9 from Fig, -2), and the equations (7) are integrated
simultaneously until the switch function vanishes on the inner side (this

. -occurs long before S = 0 on the outer side) of the EDL, or when

: + + | ' s '
S = ny - Vyx = cweq - Bs(veq-eeq) = c(weq+T2) =0 .

For parameters right of C7 the conjugate point ' C marks the near
end of the EDL, and because the traJectories on either side reduce to the
.same .path at C, the necessary derivatives are indeterminate. Referring

to Fig. B-3, the two paths give, at the point C,

»
]

: 1 f cTy = 1 - cT, + 65(62+12) - 7128(W2+12).

y, = 8T, = 8T,

(=

+ Bc(62+12) - 7120(w2+12) ;

and equating adjoints provides two more equations,

-
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) 2 2 a 2 2
1 = 7y =41=¢ 92/7 P - 892 - 7N 1l=c 92/7 )

The last equation is solved for 62 = GT‘, in terms of the parametefs,
‘and then the preceding equations.gize initial vaiues for
o (1-7)c62
e 723 1-c"6_/y
2
T, =1 ; 8, + cos-l(c9’/7) ; (8)
1 2 2 . 2
yl = 711 o,

FIGURE B-3. Notation Near Conjugate Point C
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The indeterminacy at C requires that second-order expressions for

the derivatives be found. The slope of the EDL is

- +

vx-vx
a}"’—'COtTl“"’ - +'

v <V

y y

and when expanded to second order in A1., 471 LB we find

) By 2’ 2’

2 2 6
bty = b1, = 1 -y 72

where De = BD/Bez, as given by (5). Likewise, expressing changes in x

and y to second-order yields, after some effort,

L4

Ly bty %(1-27)(A1$ - AT;) = (5092/7 - 712V6)é32

Ayl + (1-7)(A~r1 - A12) = 0, ..

~ Eliminating A92’ and A12 gives a large quadratic in Af,/&yl, but
when the identity

5c82/7 - 7‘2*9 = De

is used, the quadratic becomes the very simple linear éxpression,

A4

! 2-3y
Dy

1

T 2(1-y)(2y-1) ° . (5}

The other two derivatives then fol}pw as

.A’rz * ) . ) .
= Lo ' (10)
by, — 2(1=7)(27-1)
= - z (11)
, . 2 - e e——— (1-7)s6 ’
M 227-1)c,[s0, + 7~/1-c292/72 " . 22 ]
' : 7(1-c.92/7 )
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These expressions are useful only for the first step of the integra-

tion, after which it can proceed ﬁormally,'the indeterminacy no longer

existiﬂEf’vnﬁ\‘\\.

B-2 Pursuer's Dispersal Line

We first discuss the.near'indeterminacy in the‘COnstruction of the
- PDL which exists just under the bar;ier for parameters near C6 in‘i
Region II, For these parameters, if may héppen that (9) of Sec. 3.3 is
"numerically' indeterminate, as it is ‘based on differencing nearly equal
numbers, A straightforward means of overcoming this problem consists of
finding a point on the PDL which is "far away' from the indeterminacy.

‘That is, an intelligent guess is made as to the parameters (81,11,12)

which correspond to a.convenient value of. 60. This value 60 is known
from the integration of the SE and is taken back from the end of the SE,
where 1, = 0 and 6, = 90. The PDL. conditions are written at this

estimated point as .

x+(90,12) ='x-(91,11)
Y6 ,1) = y (6, ,1,) 1)
¥ Shgtige= X SEqitg .
Vi .6 1) = V(1)
1’70’ "T - Sy

2

where initially only 96 is known. The initial estimates of the other
variables allow calculatidn of the six indicated quantities, though, and

linearization gives

- s : x 857 - x =
Xg 691 tx_ 611 - xT-612 = x x = 0x
- - + + e
- = - = A
Yo 591 Y, 611 Vo 81, =y y y 2)
- - + o ot -
-V6 661 + VT 611 - VT 612 = ¥ V = AV,

-
where the 3X3 matrix of partial derivatives is evaluated using the
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current estimates of the sought quantities, Inverting the matrix gives

corrections to the previoué estimates as

- - ) ) o -
80| [ x x el N
1 e T T _
st |=| s> Pl I N (3)
Pl & B M |
KT Syt 1 -1 AV
L( 2.{ . 6 = L o

and the steps are then repeated until thé“ca;culated errors are negiiéi:
bly small.‘ The result of the brocess just described is a set of variables
(91,11,12) ‘and_gwéofreébonding pbint (x,y) on the PDL. The'numerical
integration of the PDL can then proceed in either direction; i.e., ;oward
or away from the numerical indeterminacy. 'In a‘typical case, integration
toward the indeferminacy iq/carried out only until the computed values of,

say, fz become'nbiéy as the poiht D of the SE is'épproached‘from above.

We next consider the numerical-probleﬁs associated gith the genera-
tion of the PDL which exists-fof‘(ﬁ,7) in Region IV. For parameters in
the lower portion of this region, the equi}ibrium poiht eeq is defined
on the capture circle, and the near end of the PDL begins just above the
possible equilibrium as in Fig, 4;3(a). When the parameters are closer
to the upper edge of Régibn Iv, eeq, is no longgr.définéd'(according to
(2) of Sec. 4+1) and the PDL may resemble the locus of Fig. 4.3(b).

For the type of configuration shown iﬁ'(a)'of this Figure, it is
“qualitatively clear that the safe-contact motion is very slow at posi-
tions between ép and GT, because the time on  this brief segmgnt is
practically equal to the time reguired.for thé 'long way around", via
fhe'ELAand the positive y-axis, éay.. Hgnce, ép may be nearly equal to
eeq (where 6 = 0 for Q = +1) in which case an-appropriate dependent
variable is (, as defined in Section B-1. In the region of parameter
space hetween 8 =\[I:;§ and B = 1+7,'the smallest value of this vari-“
éble. Q, is;found to be ig the range 2 to 5; éorresponding-to angles

between point-tangency and equilibrium of from .4° to 8°, virtually at

the near end of the EDL. At the‘other extreme, the largest value of (

”
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occurs in measurlng the very small angle between the PDL and the equili-

brium point. A typical value encountered for perameters near locus C

is { = 1000, which corresponds to an angular separation of 10'435 ra-

11
dians*. These facts imply that { is a necessary type -of variable for
use in numerically'integrating the PDL, when '5 < 1+7.

The sdlutions to be used for at least the beginning of the PDL are
* . ‘

+ . . :
x =1 - Ty + ﬁs(91+11) - 7113(4/1”1)
R (4)
+ 3 . :
X _,STI + Bc(91+11) - 7110(W1+11)
‘and
x = -1+ cT, + Bs(62-12) - 7T%S(W2-T2)i‘
o | . )
y =81, + ﬁc(92-12).- 7120(W2-¢2)
wnere

-1
¥, =6, + cos (c61/7)

-1 :
v, = 6, - cos (c6,/7) ' :

The set (5) may require replacement by equations describlng motion to the

_ negative y-axis, or to the EL, as suggested by Fig. 4.3,

According to the definition of the ?DL, we first locate the angular
coordinate 9p, at its near end, such that the total time to termlnation
is the same by two pathst For parameters below P = 1+7%, the configura-

tion is as shown in Fig. B-4.,

* The angle subtended by-an electron at a radial distance of one light—

year 1is about 10 i radians.
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FIGURE B-4, Detail of PDL Near Capture Ci;cle

The integral for the elapsed time duriné-safé-contact with P=+1 1is

P :
dé.
Tl =f . P e (6)
o B -850 = y1-c29/y2 :
T .
where the denominator is zero just outside the upper limit of integra=
tion, 4t eeq - Gp + e =¢ . An accurate evaluation of the-integral is
v - v

accompiished by expressing the integrand as

1 . 1 : 1 ' i 1
= - - + —
D(6) D(e) De(eeq)(e-eeq) De(eeq)(e Geq) :

By - adding and subtracting the linear term in a Taylor series, the dif-
ference of the first two . terms remains small as 6 approaches .6

while the last term is integrable as a logarithmic factor, using

sf v
eq

D6, )==-cO6 [1+ ]
0 Ceq SR ey
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Approximating the upper limit of integration in (65 by ‘éeq then

gives

= - En(Geq-eﬁ?. - zn(eeq-eT) - De(eeq)(ﬁé-TTfTi)

9 N . . i

R

’ (7)

where

. 1
: f D(G) " D8, ) (68 y) a8 | (8)
: 9 ( Loeq :

has been determined numerically. This procedure results in initial val=-

ues of (, Ty =T, = 0, and '82 = 9p, as required for the integration of
the-coupled;PDL equations.

Because the initial values of { are quite large (in contrast ‘to
their values at* 6 ) it is essential to express both .numerator and de-
‘ nominator of the derivatives as factors of e-g. Following cancellation

of this term, we find

3yt .
dat D 7‘J1-029 /72 J1-c2e /72 s:(¥ 7 ) + 3?; s(wz-fé-w =17,)
= , (9)
dt

1 57~J1-c29 /72‘J1-c26 /72 B + se - 7'J 29 /7§)s(w +1 )

— . =

where

9’|8’
— +
|

ety = Bs(eeq+11) - 7[e(weq+11) - Tps(we9+11)]

e
’

In terms of this derivative, the remaining two are written

dé R x =-R y
2 = y =T X 7T (10)
d'1"1‘ X y. -y %,
T y9 yT e
dt R y. -R x_ s
2 _ X )6 y 6 o _ - (1)
dt - - -l =
XT y6 y1 xe
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Digital integration of (9)-(11) then generates the PDL until one of

two things- occurs:

i) The derivative dg/d11 vanishes, implying that d81/d11 =0,

so the PDL condition becomes

+ - + - +
+ e -
dy _ y. + ¥g(do,/d1)) ) -y_“r . V. -V,
dx ~ 4 + T+ T - +
X, +’x6(d91/d11) X vV - Vy
+ e+,
Together with the main equation, Ao §f = -1, this implies

. B
the SE condition, W . x = =1, Hence, when dg/dtl =0, a

“switch envelope begins. This occurs for parameters below' C4
in Region 1V. ’
ii) The PDL meets the EDL at the point B, where the switch func-
tion S = Q.' In thi; case, for parameters above C4, it is
often more convenient to perform the integration of the PDL
from the point B inward, rather than from the capture

circle outward.

In the first case; the SE is generated as described in App. A, while
in the second case, a different set of equations is required to generate
the PDL, 'Referring to Fig. B-5, we have a relation between & and 71

1 1
- + + .
from the switch function equation, S = Vx y = Vy X = 0, which yields ,

ey +1) = 7 +-\/1-c291/72 (B - s6, - 7~/1-c291'/72) . (12)

The object of the following analysis*is a set of differential equations

relating Te’ T,, and Gi; thus permitting simultaneous generation
s .

Tor
2 1
(//6} both EL and PDL. Taking LA as the independent variable, the PDL

equations give

x+ gfl + x i:l =x +'x 3:2
6 d1 1dt 1 7. dT1 .
e e e 2 -e (13)

y+ del . y+ dTl ) y_ . y_ de

e d1e T dTe . Te 12 dTe
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s
FIGURE B-5. Detail Near Junction'of PDL and  EDL
‘ \

and .
yT + yT‘(dfz/dTe) v - V+
dy - e 2 - _ X X (14)
dx x  + x (dt./dT ) v - V+ K
T - T 2 e y y
e 2 X
where .
'Vx = S(WQ-TZ)/DI(X’Y), ' :
Vy = c(we-Tz)/Dl(x,y)
" Vi = s +1,)/D(8)
: , g T BTy I
V' o= ey, +1,)/D(8,)
y_.cwlTl )

- + '
At the point B, of course, W = VWV , because Te = 1, = 0; hence

2
-1
VT, = v, = tan (xB/yB) , and
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D1 = =y/r =y=D ;‘dl—czel/;2(5 + 591 - 7rJ1-c291/72),

The indeterminacy of (14) can then be evaluated by 1'HOopitél's rule. Af-
ter cross-multiplying, we find

. o_dty e dt, dT o 5
(yT 7, 3?_)[(DGY+DXW6)E?— + DX(E?_ -~ 3?—) + 7 (9=x/r°))
e 2 e . e e e
‘ _ (15)
- _ d12 d81 d12 _d11 . o o
+ (XTv+x’r E?—}[(DGK-DyWe)E?— - Dy(a;— + a?-) - (r+7y)(2=x/r“)] = 0
e 2 e e e e

-

where the subscript 6 is an abbreviation for the partial derivative,

a/aei.» The pair of equations (13) is then solved for

de, o
aT— = Al + Az(d‘l’z/d‘fe)
€ (16)
dT
E = A3 + A4(d1’2/d1e) ’
where
Al = (y+yr) (@-1) /0
A2 = = 2(y+yr) /A
Ay = [OFP1 ¥ -Beo)) (ry/r) + Br N1-c26 /72 Gmx/r )] /0
-~ ' "
: 2 f T 25 /.2 ) )
Ay = [O T 0g=Peo)) Qay/om) = Br1-c20 /72(Lex/rD) 1ty
o= 1 [(s0, + y~/1-c291/7§)2 - Ps6, ]
and
v 127x+r Jr2-2x
PS4 =

r(r=-y)
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Substitution into (15) yiélds a quadratic with-intimidating co-

efficients,

A(Tz) +B—T-g +C=0 (17)
e e

where -

A=y [(Dgy+Dxy)A, + Dx(A,+1)] + x_ [(Dgx-Dyvy)A,=Dy (A +1)]
2 2.

B = yTe[(D8y+wae)A2 + Dx(A4+1)]
+ y; [(D6y+DxW9)A1 + DxA_ + 7x(5-x/r2)]

2 3

+ xTe[(Dex-Dywe)Az = Dy (A, +1)]

+ x;z[(Dex-Dy\ye)Al - DyA, = (r+7y) (B-x/r%)]

‘and

C = y; [(D + 7x(5-x/r2)]

€

+DXW8)A1 + DxA

6Y 3

- o %
tx [(Dex-Dyve)A1 - DyA,, - (r+7y)(@-x/r2)]

e .

3

The positive root to (17) is then given by

L

< T |
) dr,/dt_ = (- B - JBZ - 4AC)/2A, (18)

which permits calculation of the remaining derivatives by (16), and the-
local slope of the PDL by (14).
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APPENDIX C

TRAJECTORIES IN REAL SPACE

It is interesting and instructive to determine the mdtion of P and

E in the fixed coordinate system, us;hg_(l) and.(2) of Sec. 1.2. The

integration is simple to carry out, requiring only @ (t) and v(t) for

any initial condition, so that

x (t) =
P " o Y

1}
>
ol
t;:\
()]
: D
o
~~
vy
N
Q.
v

yp(t) B y'P +—/‘ c?p(g) d%

where Y
N

.8 = f 3 ’
6,0 = epo % o"?(g) dg
gé(t) =x_ + 'J(.s[w(§)+eﬁ(§)] dg

o o

.

N t
1o =y, + 7 [ ervore (©)) ag

o | .0

>

(1)

(2)

In these equations, of course, ®(t) and y(t) have been deter-

mined by retrogressive integration of the .equations of relative motion,

and éitﬁer control or both may-be discontinuous when.an exceptional line

is crossed. Because the relative trajectory has been computed'for dis-

crete time intervals, it is obviously 1mportanf to
step size, such that the intermediate switch times
estimated, and yet so that the total computer time

excessive.

In real spaEe, E's motion is often a sequence
might be expected intuitively. In portions of the
lows a curved path, as in safe-contact motion, and

-

and the FL.

. " ! "
choose a proper

can be mccurately

required is not

of straight lines, as
game, however, E fol-

along the EL, the SE

Motion along the EL (Ref. 1) has E following a gradually curved pur-

suit path in real épéce, while P turns at an intermediate rate. Both
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paths can be interrupted whenever E chooses to flee along the tangent to

] N ; .
P's minimum=-turn circle, whereupon P turns at maximum rate.

The FL trajectories also present intefesting real space characteris-
tics. If P so chooses, his path can be a series of brief tangential
circular arcs,.while E's corresponding motion is an equal number of near-
ly straiéht.jagged segments having a sawtboth appearance. On the other
hand, the SE trajectory for P is a sharp right turn, while E's strategy
thereon~§s a transcendental function of the relative position which
amounts to a gentle curve in real space. When P finally turns away,

causing E to leave the SE, E's strategy is again discontinuous.

The equilibrium point in Region III corresponds to the following
real space trajectory: As E traverses the barrier towards the equilibrium
point, he is following a straight path in realk Space. After arrival at
the capture circle, however, witﬁ zero relative velocity, E's path is a
circle of radius 7, P's path in real space being a concentric unit cir-

cle, described at the same angular rate.

For initial cénditions slightly inward of the barrier, E's path dur-
ing safe-contact motion is,:nearly" circular. That is, P's motion.is
circular and E is moving very slowly tangentially inward to the usable
part. The same characteristics hold for paraﬁéters in Region IV, if E's

péth brings him to the cépture_circle at an angle between GT and Gp.

4

In the course of this research, brief animated films were prepared
of multi-stage cbases for three set§ of parameters, using the computing
an; plotting facilities of the Stanford Computatiod Center. " In the films,
the chatffeur was represented by the capture, circle, and the pedestrian
by'a'small square. The pursuer was t}pically drawn in six successive po-
§1tiohs during ‘the time required to traverse one diameter of the captﬁre
circle, and gach drawing was photographed four times, the standard 16mm
projector spéed.being 24 frames/sec: A repreéentative 100-second film
of a chase, shoWn'in both relative and rgal coordinaté systems, required

some 400 simple'draw;ngs'of’P and E, together wfth'a few coordinate lines.

The Calcomp plotting facility at the Stanford Computation Center was used
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for this task, and subsequent camera work was ably executed by animation specialists at the

Stanford Film Workshop.
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