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THE PONTRYAGIN MAXIMUM PRINCIPLE FROM
DYNAMIC PROGRAMMING AND VISCOSITY SOLUTIONS TO

FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

EMMANUEL NICHOLAS BARRON1 AND ROBERT JENSEN2

ABSTRACT. We prove the Pontryagin Maximum Principle for the Lagrange

problem of optimal control using the fact that the value function of the problem

is the viscosity solution of the associated Hamilton-Jacobi-Bellman equation.

The proof here makes rigorous the formal proof of Pontryagin's principle known

for at least three decades.

The Pontryagin Maximum Principle (PMP) is the major tool in optimal control

theory used in deriving an optimal control. The PMP is a set of necessary conditions

which an optimal control must satisfy. Because of its importance theoretically

and for applications, it has several proofs in the literature, beginning with the

original proof by Pontryagin, et al. [7] in the early 1950s. We refer the reader to

the recent book by Cesari [2] for two proofs of the PMP and the references cited

there for other proofs and related results. In general, these proofs are technically

difficult and very long. However, for many years a formal derivation of the PMP

using dynamic programming and the associated Hamilton-Jacobi-Bellman (HJB)

equation has been known. See for example, Berkovitz [1], Lee and Markus [5], or

the end of §1 of this paper for the formal derivation. While the formal proof is

very short and simple, it is strictly formal in that it requires the value function

for the control problem to be G2. Of course, the value function is usually not C2,

but it is a solution of the equation HJB (see below), a first-order, nonlinear partial

differential equation.

In recent years, commencing with the pioneering paper of Crandall and Lions

[3], a notion of global solution to a first-order nonlinear pde has been developed

which leads to global existence, uniqueness, and stability. This solution is called

the viscosity solution. (Refer to §1 for definitions.) For optimal control theory it is

important that the value function is the viscosity solution of the equation HJB.

One of the most important aspects of the theory of viscosity solutions is that it

provides a sort of maximum principle (in the sense of partial differential equations)

for first order pde's. In fact, it is part of the definition. (This definition is given

in §1 and is introduced in the paper by Crandall, Evans, and Lions [4].) It is

this aspect of viscosity theory that we use in this paper to prove the PMP by the

dynamic programming approach.   We use only the fact that the value function
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636 E. N. BARRON AND ROBERT JENSEN

is the viscosity solution of the equation HJB (actually we need only that it is a

subsolution) and a differentiability property of the value function along trajectories

to prove the PMP for the Lagrange problem under the standard hypotheses for the

PMP. Other than these facts, the remaining results of viscosity solutions are not

used.

The proof given in this paper thus makes rigorous the formal proof using dynamic

programming and Bellman's equation. It retains the simplicity of the formal proof

and uses only elementary results.

1. Preliminaries. We will consider the following optimal control problem to

illustrate the use of viscosity techniques in optimal control. The dynamics are given

by the system of ordinary differential equations

(1.1) dx/dt = f(t,x(t),u(t))    ifO< s <t<T,

(1.2) x(s) = y,        y in Rn.

The control functions u: [s, T] —> U are chosen from the class K[s, T] of measurable

functions with values almost everywhere in the fixed set U C W, p a positive

integer. The controls are chosen to maximize the payoff functional

(1.3) P(u) = g(x(T))+ [   h(r,x(r),u(r))dr.
J s

The given functions /, g, and h are assumed throughout this paper to satisfy the

condition (which can be weakened):

/: [0, T] x Rn x U —► Rn is bounded and continuous in all arguments

and df(t,x,u)/dx is continuous;

(A)        h: [0, T] x Rn x U —► Rx is bounded and continuous in all arguments

and dh(t,x,u)/dx is continuous;

g: Rn —> Rx is continuously differentiable and bounded.

If we look at this problem as depending on the initial conditions, then we define

the value function

V: [0,T] x Rn -» Rx,        V(s,y) = sup{P3,y(u);u G K[s,T]}.

We also denote the trajectory corresponding to a control u by x(t; s,y) if x(s; s, y)

— y is the initial state.

It is well known that, under condition (A), V is uniformly Lipschitz in (s, y) and

hence has a total derivative almost everywhere. At each point (s,y) of differentia-

bility, V satisfies the Hamilton-Jacobi-Bellman equation

(HJB) Vs(s,y) + max{/(s,y,u) ■ Vy(s,y) + h(s,y,u)} = 0

with terminal condition

(TC) V(T,y) = g(y),        Vy in Rn,

where Vs and Vy = (Vyi,..., VVn) denote the partíais of V.

It is also true, and easily proved (see [6]) that V is the unique viscosity solution of

(HJB)-(TC). For the reader's convenience we recall the definition here of a viscosity

solution of a first order Hamilton-Jacobi equation.
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THE PONTRYAGIN MAXIMUM PRINCIPLE AND VISCOSITY SOLUTIONS 637

DEFINITION. Given H:[0,T] x Rn x Rn -> Rx continuous and g: Rn -> Rx

bounded and uniformly continuous, a bounded, uniformly continuous function

u: [0, T]x Rn —> Rx is a viscosity solution of

(1.4) ut + H(t,x,ux) = 0   in(0,T)xRn,

(1.5) u(T,x) = g(x)    inRn

if (1.5) holds and if for each <f> in Cx((0, T) X Rn)

(a) if u — 4> attains a local maximum at (to, xg) G (0, T) x Rn, then

(ßt(to, Xg) + H(tg, Xg, d)x(tg, Xg)) > 0

and

(b) if u — d) attains a local minimum at (in, xg) € (0, T) x Rn, then

<Pt(to, x0) + H(t0, xo, <f>x(to,x0)) < 0.

The function <¡> can be assumed to be infinitely differentiable. All that is neces-

sary is differentiability at the extrema. For the basic results concerning viscosity

solution see [4].

Our interest here is to derive the Pontryagin Maximum Principle for the optimal

control problem using the idea of viscosity solution. We now recall the formal proof

of Pontryagin's principle for convenience.

Suppose u* is optimal and x* is the corresponding optimal trajectory. Then

V(t,x*(t)) = g(x*(T))+f   h(r,x*(r),u*(r))dr

satisfies V(T, x*(T)) = g(x*(T)) and, since Vt + maxu{Vx ■ f + h} = 0,

Vt(t,x*(t)) + Vx(t,x*(t))f(t,x*(t),u'(t)) + h(t,x*(t),u*(t)) = 0.

Differentiate with respect to x evaluated along (t,x*(t)) and let p(t) = Vx(t,x*(t)).

Noticing that dp/dt = Vxt + Vxxf, we get

(1.6) dp/dt = -p(t)fx(t,x*(t),u*(t)) - hx(t,x*(t),u*(t))

and

(1.7) p(T) = g'(x*(T)).

Hence, if u* is optimal, we have u* satisfying

max (p(t)f(t,x*(t),u) + h(t,x'(t),«)}
u in U

= p(t)f(t,x*(t),u*(t)) + h(t,x*(t),u*(t)),

and p is given by (1.6)—(1.7). The utility of (1.6) is that the Bellman equation does

not have to be solved to determine u*.

2. The Pontryagin principle by viscosity methods. Assume that u*: [s, T]

—> U is an optimal control for (1.1)—(1.3) with initial state (s, y) fixed, and suppose

that x* = x*(t;s,y) is the associated optimal trajectory. The control u* will be

fixed for the remainder of this paper. Thus, we define

F(t, x) = f(t, x, u*(t))    and    H(t, x) = h(t, x; u*(t)).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



638 E. N. BARRON AND ROBERT JENSEN

Then F: [s,T] x Rn -> Rn, H: [s,T] x Rn -> Ä1 are measurable in i, are bounded,

and have continuous partíais in x uniformly in i.

Define the function w: [s,T] x Rn —> Rx by

(2.1) w(r,t:) = g(x(T;T,c:)) + l   ff (r, z(r; r, £)) dr,

where

(2.2) dx/dt = F(t,x(t-,T,Ç)),        s<r<t<T,

(2.3) ï(t;t,0 = €    inÄn.

Proposition l. (i) w(s, y) - V(s, y) = P(u*).

(ii) w(t,x*(t;s,y)) = V(t,x*(t;s,y)) ifs<t<T.

PROOF, (i) is by definition of u* and V. Part (ii) is the statement of Bellman's

principle of optimality. Namely, that if (it*, z*) is optimal for the initial point (s, y),

then it remains optimal starting from any point along the optimal trajectory.

The proof of Pontryagin's principle given below depends in an essential way on

the differentiability properties of w contained in the following.

LEMMA 2. Let condition (A) hold. Then w is differentiable along any trajectory

(t,x(t;r, £)) for almost every s < r <t <T, where

(2.4) dx/dt = F(t,x(t-r,t:)),        s<r<t<T,

(2.5) :e(t; r, £) = £    in Rn.

Furthermore, at a point of differentiability

Dw(t, x(t; r, £)) = (dw(t, x(t))/dt - F(t, x(t))wx(t, x(t)), wx(t, x(t))).

PROOF. We first claim that w has the following properties:

(a) w is differentiable almost everywhere in [s, T] x Rn;

(b) the functions 0(i) = dw(t,x(t))/dt and (¡>x(t) = dwx(t,x(t))/dt exist as

bounded measurable functions.

The claim is easily proved using the definition of w, condition (A), and stan-

dard results from the theory of ordinary differential equations. In particular,

that <t>x(t) is bounded measurable follows from condition (A) and the fact that

l(t) = dx(t\r, £)/ö£ exists and is the unique absolutely continuous solution of the

linear system

d1/dt = Fx(t,x(t;T,t:)h(t),        i{t) = 1.

Now, let t be a point for which dw(t,x(t))/dt, dwx(t,x(t))/dt, and dx(t)/dt exist.

The set of such i's is of full measure. Let e, 6 > 0. We have

I = w(t + £, x(t) + 6)- w(t, x(t))

— w(t + e, x(t + s)) - w(t, x(t))

+ w(t + e, x(t + e) + 6 + x(t) - x(t + s)) - w(t + e, x(t + e))

= h + h-

For If, since dw(t,x(t))/dt exists, we get

h =<p(t)e + o(e).
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THE PONTRYAGIN MAXIMUM PRINCIPLE AND VISCOSITY SOLUTIONS 639

For I2, we obtain

I2 = w(t + e, x(t + e) + 6 + x(t) - x(t + e)) - w(t + s, x(t + e))

= wx(t + e, x(t + e))[6 + x(t) - x(t + s)} + 0(8 + x(t) - x(t + s))

(since <¡>x(-) exists everywhere)

= wx(t + e,x(t + e))[6 + x(t) -x(t + e)] +o(6,e)

= [wx(t + £,x(t + e)) - wx(t,x(t))][6 + x(t) - x(t + e)]

+ wx(t, x(t))[6 + x(t) - x(t + £)} + 0(6, e)

= [<j)x(t)£ + o(e) + <t>x(t)][S + x(t) - x(t + £)} + 0(6,e)

= [4>x(t)e + o(£) + <px(t)}[6 - F(t,x(t))£ + o(e)] + 0(6,e)

= <¡>x(t)8 - 4>x(t)F(t, x(t))£ + 0(6, £).

Hence

I = If + I2 = (ch(t) - (¡>x(t)F(t,x(t)))£ + <px(t)o + 0(6,£),

and the lemma is proved.

REMARK. The essential point of the lemma is that w is differentiable at almost

every point of-an arbitrary trajectory—a set of measure zero.

REMARK. Notice that

wx(t, 0 = g'(x(T; r, i))dx(T- r, ft/di + j   Hx(r, x(r; r, 0)ôz(r; r, 0/3$ dr.

COROLLARY 3.   At almost every (t,x(t;r, £)), s < r < i < T, we have

wt(t, x(t; t, 0) + f(t, x(t; r, t), u*(t))wx(t, x(t; r, 0) + h(t, x(t; r, 0, u*(t)) = 0.

Also w(T,x(T;r,0) = g(x(T;T,0)-

PROOF. By definition of w,

dw(t, x(t; r, 0)M = -H(t, x(t; r, $))•

But, by the chain rule,

dw(t, x(t; t, 0)M = wt(t, x(t;t, $)) + wx(t, x(t; r, tf))F(t, x(t\ r, 0),

and the corollary follows.

Now, we have that u* is optimal for the initial state (s,y), and x* = x*(t;s,y),

s < t < T is the optimal trajectory. Then

w(T, y) = g(y),        w(s, y) = V(s, y),

w(t,x*(t;s,y) =V(t,x*(t;s,y))    if s < t < T,

and

V(T,t:)>w(T,0      if (T,t;)e[8,T}xRn

since V provides the largest payoff for each initial state.

Therefore, V — w attains a minimum (of 0) along the entire optimal trajectory

(t,x*(t;s,y)), s < t < T. Since V is the (unique) viscosity solution of (HJB)-

(TC) and since iu is differentiable at almost every (i, x*(t; s, y)), we may apply the
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640 E. N. BARRON AND ROBERT JENSEN

definition of viscosity solution to conclude that

wt(t,x*(t)) + max{it;x(i,x*(t))f(t,x*(t),u) + h(t,x*(i),u)} < 0
uEU

for a.e s < t < T.

By Corollary 3 we have instead that for a.e. s <t <T,

wt(t,x*(t)) + max{K;x(i,x*(t))f(t,x*(i),u) + h(t,x*(t),u)} > 0.

Hence the left-hand side must equal 0 for a.e. s <t <T. Combining the resulting

equation with that in Corollary 3 we have

max {wx(t,x*(t))f(t,x*(t),u) + h(t,x*(t),it)}
u in U

= wx(t,x*(t))f(t,x*(t),u*(t)) + h(t,x'(t),u*(t))

for a.e. s < t <T.

We have proved

THEOREM 4. Let condition (A) hold and let u* be an optimal control on [s, T)

for the initial state (s,y). Let x*(t;s,y) be the corresponding optimal trajectory.

Then u* satisfies

max {wx(t,x*(t))f(t,x*(t),u) + h(t,x*(t),u)}
u in U

= wx(t,x*(t))f(t,x*(t),u*(t)) + h(t,x*(t),u*(t))

almost everywhere in [s,T], with wx(t,x*(t)) absolutely continuous on \s,T),

wx(t,x*(t))=g'(x*(T))dx*(T;S,y)/dy+f   hx(r,x*(r),u*(r))dx*(r;s,y)/dydr,

and where

(t,x*(t)) = g(x*(T)) + j   h(r,x*(r),u*(r))dr.    D

The classical adjoint or costate equations can now be derived rigorously by ap-

proximation of /, h.

For each e > 0, let H£(t, £) and F£(t, £) be Cx([s,T] x Rn) satisfying the prop-

erties that

I|g£(-,0-G(-,OIIlM3,t]-o,

\\K£(t, ■) - K(T,-)\\L°o,Rn) ^0   ase^O

for G = F and H,K = F,H,Fx, Hx. Then

wt(T,t) = g(x€(T;T,Ç)) + J   H£(s,xe(s;T,t:))ds

with

dxe/dt = F£(t,x£(t;r, £)),        x£(t;t,cI) = ^

is the unique C1 solution of the linear problem

w£t(t, 0 + w£i(r, 0F£(t, 0 + H£(t, 0=0   in [s, T) x Rn,
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w.(T, 0 = 9(0    >n^n-

Furthermore, ||«;e - iu|| and \\we6 - iu€|| -> 0 in L°°([s,T\ x Rn).

Now we apply the classical theory of characteristics to this problem since w is

smooth, to derive that the characteristic p£(t) — iüex(t,x(t;T, fl) satisfies

dp£/dt = -p£(t)F£x(t, x£(t; t, 0) - H£x(t, x£(t; t, fl)    if s < r < i < T,

p£(T) = g'(x£(T;r,fl).

Taking the limit as e —» 0 of both sides of the above equations, we have

dp/dt = -p(t)Fx(t,x(t;r, fl) - Hx(t,x(t;r, fl),

p(r) = ff'(x(T;r,fl),

with p(i) = w;x(i,x(i;r, fl). That is, wx(t,x(t;r, fl) is the solution of the classical

adjoint equation.
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