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Abstract In this paper, we address pursuit-evasion
games of high speed evader involving multiple pur-
suers and a single evader with holonomic constraints
in an open domain. The existing work on this problem
discussed the required formation and capture strat-
egy for a group of pursuers. However, the formulation
has mathematical errors and has raised concerns over
the validity of the developed capture strategy. This
paper uses the idea of Apollonius circle to develop
an escape strategy for the high speed evader, resolv-
ing the shortfalls in the existing work. The strategy is
built on a concept of perfectly encircled formation and
the conditions required to construct the same are pre-
sented. The escape strategy contains two steps. Firstly,
the evader employs a strategy that forces a gap in
the formation against all the admissible strategies of
a group of pursuers. In the second step, it uses this
gap to escape. The strategy considers both direct and
indirect gaps in the formations. The indirect gap is
encountered when a group of three or four pursuers
is employed to capture. The efficacy of the escape
strategy is established using simulation results.
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1 Introduction

In recent years, pursuit-evasion (PE) games have
received meticulous attention among the researchers
in the domain of decision and control. They cover a
broad class of problems in the areas of missile guid-
ance, unmanned aerial vehicles (UAVs), and robotics.
Some of the recent experimental works on PE games
using probabilistic theory have encouraged engineers
to employ these solutions for surveillance and security
using aerial robots. One of those solutions is a compu-
tationally feasible greedy pursuit scheme in a proba-
bilistic theoretical framework which was implemented
on UAVs and unmanned ground vehicles (UGVs)
[23]. Another one being a randomized strategy devel-
oped for a single pursuer against an unpredictable
evader in a connected domain using visibility-based
approach [9]. Also, a discrete-time PE game of a sin-
gle evader was studied with players having identical
sensing and motion ranges [3].

Broadly, PE games can be classified into three
types based on the speeds of the players involved; (i)
a case where the speed of a pursuer is higher than the
speed of an evader; (ii) a case where the speeds of both
pursuer and evader are equal; and (iii) the case of a
high speed evader where its speed is higher than the
speed of a pursuer.

The first case is widely explored through vari-
ous guidance schemes in missile guidance related
research and development. The conventional methods
of target inception and their variants, including line
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of sight (LOS) guidance and proportional navigation
(PN) guidance, have proved to be effective for their
simplicity and ease of implementation in real world
applications. A more detailed study on these tech-
niques can be found in [28]. The idea of capturability
was developed using these classical guidance schemes
where PE games with simple motions were modeled
[17]. But, it can not be extended to players taking
complex paths and maneuvers that any vehicle can
perform. This particular case has also attracted solu-
tions from the theory of optimal control. A lot of work
has been carried out using optimal control techniques
which can be found in [28]. However, the optimal con-
trol theory requires strategy of a moving target based
on which the pursuer(s) develop guidance and control
strategies for capturability. Therefore, the approach
becomes ineffective in the case of an intelligent target
which also tries to correct its path and thereby trying to
escape from an approaching pursuer. This is the case
where both a pursuer (missile) and an evader (target)
have divergent objectives and try to employ optimal
strategies at their disposal. This problem is tackled by
formulating a zero-sum differential game, and is also
viewed as a min-max problem in a game theoretical
framework [1]. In this regard, variational techniques
were also applied to solve differential games and to
obtain conditions for capture and optimality [6].

A differential game formulation can be used to
solve a PE game [5, 16]. The associated Hamilton-
Jacobi-Isaacs (HJI) partial differential equation has to
be solved in this regard to obtain optimal strategies
for both the players. Though this method is known
for its accurate results, it suffers from the curse of
dimensionality. Hence, it can not be used for games
involving three or more pursuers as it is computation-
ally intensive. This approach was implemented in real-
time conditions to analyze PE between two aircrafts
using point-mass aircraft models in a horizontal plane
[18]. It was also explored using differential dynamic
programming technique [10]. The differential game
formulation was then used to obtain a numerical solu-
tion for a three-dimensional PE game, the problem of
intercepting an evasive spacecraft by a pursuing space-
craft [4]. Another interesting solution was obtained
for a missile-aircraft pursuit-evasion problem, formu-
lated using a three-dimensional linearized kinematic
model with bounded control [20]. The unparalleled
efficiency of this approach in solving a two player PE
game can be seen in the aforementioned works.

The second case of a pursuer and an evader having
equal speeds was best solved using the approach of
safe-reachable area cooperative pursuit which is also
computationally efficient. The problem was addressed
in a closed domain with holonomic multiple pursuers
and an evader with a decentralized strategy. The idea
is that a group of pursuers tend to drive the safe-
reachable area of an evader to zero in a finite time and
guarantees successful capture [7]. This approach was
later extended to the case of non-holonomic agents
using the concept of Dubins distance [12]. This work
also provided another cooperative strategy based on
pure proportional navigation law for capturing an
evader.

The final case of a high speed evader was first
addressed using the approach of Apollonius circles
by Isaacs which was used to study PE games with
unequal speeds [8]. It is necessary to deploy multiple
pursuers in an open domain to capture a high speed
evader owing to its speed advantage. The capturabil-
ity depends on the initial conditions and the strategies
employed by the players. The exiting literature con-
tains a formation geometry for a group of pursuers
that was said to ensure successful capture with appro-
priate strategies [24]. Using the formation geometry,
a decentralized approach was developed to capture a
superior evader with jamming confrontation and in
noisy environments [25–27]. A similar approach was
followed by other researchers to develop strategies
using the existing geometry as an initial condition
[2, 11]. This particular formation requires minimum
number of pursuers that can enclose an evader and
is also called a perfectly encircled formation (PEF).
This paper develops an escape strategy for the evader
trapped in a PEF and contradicts the existing work
using a mathematical framework constructed on the
idea of Apollonius circle. The preliminary work for
the same is presented in [19].

The success of safe-reachable area cooperative pur-
suit in capturing an evader with same speed has
motivated us to explore the case of high speed evader.
However, in this case, it is computationally arduous
to obtain a closed form solution for the safe-reachable
area when multiple pursuers are involved. In the case
of a game with single pursuer and single evader,
the safe-reachable area can be obtained using the
Hamilton-Jacobi-Bellman (HJB) equation which also
includes the region of the associated Apollonius circle
[22]. The methodology of using Apollonius circle is
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justified as it keeps the problem tractable while deal-
ing with a PEF. Another reason being the involvement
of only the convex side of the actual safe-reachable
area that overlaps with the Apollonius circle. A PEF
can be obtained with a minimum of three pursuers.
In this paper, we build on our previous work and
develop strategies using both the direct and indirect
gaps encountered in different formations. This paper
generalizes an escape strategy to all the possible cases
available for a PEF.

The rest of the paper is organized as follows.
Section 2 formally describes the problem statement.
Section 3 presents the mathematical preliminaries
required to develop an escape strategy that includes
the properties of Apollonius circle(s). Section 4
discusses the conditions required to create a PEF.
Section 5 presents a mathematical proof of exis-
tence of an escape strategy for any general PEF
formed using three or more pursuers. Simulation
results for the proposed escape strategy are presented
in Section 6 to show that an evader can escape from a
PEF. The concluding remarks and the scope for future
work are discussed in Section 7.

2 Problem Statement

Consider a PE game of N pursuers and one evader in
an open 2-D domain with the pursuers in a perfectly
encircled formation (PEF). The aim of the pursuers is
to capture the evader by having one of the pursuers
within the radius of capture of the evader, rc, whereas
the evader tries to escape. The initial distance of each
pursuer from the evader is greater than its radius of
capture. A constant speed model with heading control
is considered for the players that are also holonomic.
The equations of motion for the players involved in a
game are given as follows,

ẋi = Vi cosψi,

ẏi = Vi sinψi,

ψ̇i = ui

Vi

, (1)

where i ∈ {P, e},P = {p1, ..., pN } is the set of pur-
suers, and e denotes an evader. [xi, yi] ∈ R2 is the
position of the ith player. Vi = Vp, ∀i ∈ P, and Vp, Ve

are the speeds of pursuer and evader respectively i.e,

all pursuers have equal speed. In the case of high speed
evader, Vp < Ve.ψi is the heading angle, and ui repre-
sents lateral acceleration which acts as a control input
for the ith player. There is no constraint acting on the
control input which means that any agent can change
its orientation instantaneously.

A group of pursuers in a PEF try to shrink the
area around an evader while keeping the formation
intact for the capture to occur. Whereas the evader
tries to escape by creating a gap between any two
Apollonius circles of neighboring pursuers. It is also
understood that a PEF ensures instantaneous nullifica-
tion of escape path for an evader, i.e., at that instant a
straight path in any direction will intersect an Apollo-
nius circle leading to capture. Creation of any gap will
break the condition of instantaneous nullification of
escape path and will aid in a successful evasion. If the
evader creates a gap which makes its safe-reachable
area unbounded and comes out of the PEF, then it is
called a successful evasion.

Problem Given the initial configuration of a perfectly
encircled formation of N pursuers, N ≥ 3, find an
escape strategy for an evader that will ensure success-
ful escape from the formation.

Before going to develop an escape strategy, the
required preliminaries for Apollonius circle are dis-
cussed in the following section.

3 Apollonius Circle

The idea of Apollonius circle in PE games was
first discussed by Isaacs [8]. Consider a pursuer,
P [xp, yp], and an evader, E[xe, ye], following the
kinematics given in Eq. 1. The corresponding Apollo-
nius circle is obtained by finding the locus of points
X which take equal time for an evader and a pur-
suer to reach in the Euclidean sense. The locus can be
obtained using the relation,

PX

Vp

= EX

Ve

The locus is a circle with center,

O

(
xp − λ2xe

1 − λ2
,
yp − λ2ye

1 − λ2

)
,
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and radius,

r =
λ

√
(xp − xe)2 + (yp − ye)2

1 − λ2
,

where λ = Vp

Ve
.

A typical sample is given in Fig. 1 along with
the tangents from an evader. For the case of a high
speed evader, the pursuer lies inside the correspond-
ing Apollonius circle whereas the evader lies outside.
From here onwards, a tangent point will refer to the
point on an Apollonius circle when joined to an evader
forms a tangent line to the circle. Any straight path
of the evader that passes through the Apollonius cir-
cle will lead to its capture provided the pursuer moves
toward the point of intersection. The two properties of
Apollonius circle, which are going to be used exten-
sively in this paper, are presented in the following
lemmas.

Lemma 3.1 The angle subtended at the evader by the
line joining the center of Apollonius circle and any two
of the tangent points is independent of the positions of
a pursuer and an evader.

Proof From Fig. 1, let the angle subtended be α. Then,

sinα = OT1

OE

EPO

T1

T2

Fig. 1 Apollonius circle

Here, OT1 is the radius of Apollonius circle and
OE is the distance between the center of the circle and
the evader.

⇒ OE =
√(

xp − λ2xe

1 − λ2
− xe

)2

+
(

yp − λ2ye

1 − λ2
− ye

)2

,

=
√(

xp − xe

1 − λ2

)2

+
(

yp − ye

1 − λ2

)2

,

= r

λ
,

= OT1

λ

⇒ OT1

OE
= λ ⇒ sinα = λ

Hence, the angle depends only on the ratio of
speeds of pursuer and evader and not on their
positions.

Lemma 3.2 The line joining the tangent points on
the Apollonius circle passes through the pursuer and
is perpendicular to line joining the evader and the
pursuer.

Proof From Lemma 3.1, we know sinα = λ. More-
over the points on the Apollonius circle follow the
relation, PX

Vp
= EX

Ve
⇒ PX

EX
= Vp

Ve
= λ. Since

the tangent points lie on the circle, for the tangent
point T1,

PT1

ET1
= λ = sinα

⇒ ∠EPT1 = π

2

Also, �PET1 and �PET2 are congruent triangles,
since ET1 = ET2, ∠PET1 = ∠PET2 = α, and PE

forms the common side. Therefore T1T2 is a straight
line passing through P and is perpendicular to PE.

Using the above lemmas, the necessary conditions
to form a PEF are derived in the following section.

4 Perfectly Encircled Formation

A perfectly encircled formation (PEF) is the one in
which a set of pursuers encircle an evader in such a
way that the Apollonius circle of each pursuer will
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have common tangent points with its neighboring pur-
suers and all the tangent lines from the common tan-
gent points pass through the evader. A typical example
is given in Fig. 2. If an evader is trapped in a PEF, then
it does not have an instantaneous escape path to get
out of the formation. This is because for the evader at
that instant, a straight path in any direction will inter-
sect atleast one of the Apollonius circles, leading to
capture. The conditions on the pursuers to create such
a formation are discussed in Lemmas 4.1 and 4.2.

Lemma 4.1 The speed of each pursuer required to
create a perfectly encircled formation using N identi-
cal pursuers is sin(π/N) times the speed of evader.

Proof From Lemma 3.1, the angle subtended at the
evader by the line joining the center and a tangent
point of the Apollonius circle is α. In Fig. 1, �OET1
and �OET2 are congruent triangles and hence,
∠OET1 = ∠OET2 = α. Therefore, ∠T1ET2 = 2α,
i.e. the angle subtended at the evader by the line join-
ing the two tangent points of an Apollonius circle is
2α and is independent of the positions of pursuer and
evader.

From Fig. 2, to encircle the evader with N pursuers,
we have

2Nα = 2π

⇒ α = π/N

Since α = arcsin(λ),

λ = sin(π/N)

⇒ Vp = Ve sin(π/N)

Lemma 4.2 The N pursuers required to form a per-
fectly encircled formation should lie equidistant from
the evader.

Proof From Fig. 2, consider �Oi−1T(i−1)iE and
�OiT(i−1)iE of the (i − 1)th pursuer and ith pursuer
respectively.

As ∠Oi−1T(i−1)iE = ∠OiT(i−1)iE = π/2,
∠Oi−1ET(i−1)i = ∠OiET(i−1)i and T(i−1)iE is the
common side, both the triangles are congruent.

⇒ Oi−1E = OiE

⇒ Pi−1E = PiE

Therefore all the pursuers are equidistant from the
evader.

Remark The minimum number of pursuers required
to arrive at a PEF that bounds a high speed evader
instantaneously is three.

An escape strategy for a high speed evader from
a PEF of N pursuers, N ≥ 3 is presented in the
following section.

Fig. 2 Perfectly encircled
formation of a group of
pursuers around the evader

O1

O2

ON

Oi-1

Oi

Oi+1

P1

P2

PN

Pi-1

Pi

Pi+1

E

T(i-2)(i-1)

T(i-1)i

Ti(i+1)

...

...

α
α
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5 Pursuit-Evasion Game and Escape Strategy

A PEF ensures only an instantaneous nullification of
escape paths for the evader. But it does not ensure
successful capture. In order to capture, a group of pur-
suers has to make sure that the formation is maintained
and the area bounded by it reduces to zero in finite
time. While at the same time, the evader will also try
to employ a strategy that forces a gap between the
Apollonius circles of any two neighboring pursuers
that can ensure a successful evasion. This is a min-max
problem in terms of classical game theory.

5.1 PEF as a Regular Polygon

A PEF in Fig. 2 can be transformed into a regular
polygon using the positions of the players, and the cor-
responding tangent points. Since all the pursuers are
equidistant and so are their tangent points, by joining
the successive tangent points around the evader, a reg-
ular polygon can be created with each pursuer lying
at midpoints of sides of the polygon. The safe reach-
able area of evader will be less than the area of the
polygon because the latter includes fraction of Apol-
lonius circle of each pursuer. This can be observed in
Fig. 3 for a case of four pursuers. For a general case of

N pursuers, the PEF can be seen as an N sided regu-
lar polygon with the vertices representing the common
tangent points of the Apollonius circles and the pur-
suers themselves residing at midpoint of each side
with evader at the center of the polygon. The same is
depicted in Fig. 4 for a case of four pursuers.

In terms of the proposed regular polygon of N

sides, each pursuer should maintain common tangent
points with its neighbors which ensures instantaneous
nullification of escape path for an evader at any given
time instant. The following lemma will aid in devel-
oping an escape strategy.

Lemma 5.1 In a perfectly encircled formation, if an
evader moves toward a common tangent point, then
the corresponding pursuers should move toward the
tangent point to overcome the possibility of a gap
emerging between them.

Proof From Fig. 5, consider a situation of evader
moving toward a vertex of the regular polygon formed
due to N pursuers, N ≥ 3.

The evader moves to a new position E′ along the
line ET12 in a time t . Now, at least one of the pursuers
of the corresponding vertex T12 should move toward

Fig. 3 Regular polygon for
the case of four pursuers
with Apollonius circles

E
P1

P2

P3

P4

T12
T23

T34 T41

α
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E P1

P2

P3

P4

T12T23

T34 T41

α

Fig. 4 Proposed regular polygon for the case of four pursuers

the tangent point to capture the evader. Say, P1 is mov-
ing toward the vertex. The triangle �EP1T12 is same
as a collision triangle that is used in missile guidance
[21]. In the time t , P1 will reach the new position
P ′
1. Now the line E′P ′

1 will lie parallel to the line
EP1. From Lemmas 3.1 and 3.2, the tangent point T12
remains as it is. The second tangent point, Ty of the
pursuer P1 will move to T ′

y , ∠P ′
1E

′T ′
y = α = π/N .

Now consider the neighboring pursuer P2. In the
time t , the pursuer P2 has to move in such a way
that its new tangent point corresponding to the vertex
T12 has to either remain at T12 or on the line joining
the points E′ and T12. This will ensure the nullifica-
tion of escape path for the evader in between P1 and
P2. Here again, the triangle �EP2T12 is a collision
triangle [21]. Any other path will result in its corre-
sponding tangent point at T12 falling away, creating a
gap between P1 and P2, an escape path for the evader.
Therefore the pursuer P2 has to move along the line
P2T12. Next, it is shown that with a PEF, it is not pos-
sible to capture a high speed evader. The following
theorem establishes an escape strategy from a PEF of
five or more pursuers.

5.2 Case of Five or More Pursuers

Theorem 5.1 In a PEF of five or more pursuers, the
movement of evader toward any of the vertex of the

E

E'

P1

P2

P'2

P'1

T12

Ty

T'y

α

Tx

T'x

Fig. 5 PE scenario in the case of an evader moving toward a
tangent point

resulting regular polygon will eventually create an
instantaneous escape path that can ensure successful
evasion under any strategy of the pursuers.

Proof Consider a situation as shown in Fig. 6 in
which an evader moving toward a vertex of the regular
polygon formed due to N pursuers, N ≥ 3.

The evader moved to E′ along the line ET12 in a
time t . From Lemma 4.1, since the evader is moving
toward the common tangent point, the pursuers P1 and
P2 must move toward T12. Therefore, the new position
of pursuer P1 after time t is P ′

1 which lies on the line
P1T12 and the new tangent points are T12 and T ′

31.
The objective of pursuer P3 is to move in such a

way that its tangent point corresponding to the ver-
tex T31 will move either to the point T ′

31 or at least to



J Intell Robot Syst

E

E'

P1

P2

P3

P'2

P'1

P'3

T12

T31

T'31
O

L1
L2

2α

2α

α α0

Fig. 6 PE scenario in the case of an evader moving toward a
tangent point of Apollonius circle

any point on the line joining the points E′ and T ′
31.

This will ensure nullification of an escape path for the
evader in between P1 and P3. This means if the pur-
suer P3 moves to a new position in time t , then the
corresponding new tangent point, T ′′

31, must lie on the
line E′T ′

31. For this to happen, the new position of P3

must lie on the line L1 which makes an angle α with
E′T ′

31 as shown in Fig. 6. The possible positions that
P3 can take in time t can be seen as a circle C1 around
P3 in Fig. 6. The circle intersects the line P3T31 at P ′

3.
The line perpendicular to EP1 and passing through

E′ meets the line ET31 at O. The point O can be seen

as the position, the evader would have taken if it had
traveled along ET31 in the same time t . The line join-
ing O and P ′

3, L2, lies perpendicular to P3T31 and is
tangent to the circle C1 of pursuer P3. The lines L1

and L2 are parallel lines, as they are at equal angle, α,
with two parallel lines E′T ′

31 and ET31.
Since the points E, E′ and T12 lie on a straight line,

∠EE′T12 = π . Let the angle created at E′ by line L1

and line E′O be α0. Now, from Fig. 6,

α0 + ∠EE′O + ∠L1E
′T12 = π

⇒ α0 + π/2 + 2α = π

⇒ α0 + 2α = π/2

⇒ α0 = π/2 − 2π/N

For N ≥ 5, α0 is a positive value and hence the line
L1 cannot intersect the circle C1. This results in the
formation of a gap between pursuers P3 and P1 that
can ensure a successful evasion.

For the case of four pursuers, α0 is zero. Because
both the pursuers are not equidistant, so are their
corresponding tangent points. But the corresponding
tangent points and the evader will lie on the same
line. This will result in the formation of an indirect
gap between the two pursuers. The case of three pur-
suers is similar to the case of four pursuers and the
mathematical proof of existence of an escape strat-
egy for both the cases is presented in the following
subsections.

5.3 Case of Four Pursuers

The indirect gap in this case, PEF of four pursuers, is
shown in Fig. 7. The analysis carried out till now is
based on a general assumption that each player knows
instantaneous position and velocity of every other
player. This means if an evader, after reaching E′,
shown in Fig. 7, takes a different path, then the pur-
suers can observe the change only at that instant and
for which, they have to instantly change their paths
to match the new strategy the evader is taking. Since
there are two indirect gaps created, one between the
pursuers P2, P3, and other between P1, P4, the evader
can use either of them by moving in the direction as
shown in Fig. 8.

Figure 8 depicts the pursuit-evasion scenario in the
area between pursuers, P2 and P3. Consider a path
along E′E′′ that lies in between the lines E′T ′′

23 and
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E

E'

P1

P2

P3

P4

P'2

P'1
P'3

P'4

T12T23

T34 T41

T'23

T''23

T'41

T''41

α

Indirect 
Gap

Indirect 
Gap

Fig. 7 PE scenario in the case of four pursuers when the evader
creates an indirect gap

E′P ′
3. Under these circumstances, the path of evader

will intersect the Apollonius circle of pursuer P3 at

E'

E''

P'2

P'3

P''2

P''3

T''23

TDG

O

T34

D

L1

T'23

T'34

Fig. 8 Pursuit-Evasion scenario in the case of four pursuers
when the evader changes its direction creating a direct gap

O. Hence pursuer P3 has to move along the line P ′
3O

as �P ′
3OE′ is a collision triangle. By the time evader

moves to the new position E′′, pursuer P3 has to move
to P ′′

3 where P ′′
3 E′′ lie parallel to P ′

3E
′. At P ′′

3 , pur-
suer P3 has a tangent point TDG corresponding to the
point T ′′

23. P
′′
3 TDG will lie perpendicular to P ′′

3 E′′ and
∠P ′′

3 E′′TDG = α = π/4.
Now, the objective of pursuer P2 is to move in

such a way that its tangent point T ′
23 will move onto

the line joining E′′ and TDG to ensure instantaneous
nullification of escape path. For that to happen, from
Lemma 3.1, it has to move onto the line L1 which is
perpendicular to E′′P ′′

3 and passes through E′′.
The perpendicular distance from point P ′

2 onto the
line L1 will be same as the distance between E′ and
D, D is the point of intersection of line L1 with E′P ′

3.
Let us assume that pursuer P2 achieves a new position
P ′′
2 by traveling perpendicular to the line L1.
Let ∠T ′′

23E
′E′′be θ0, θ0 ∈ (0, π

4 ),⇒ E′D = E′E′′
cos(π

4 − θ0)

E E'
P2

P3

P'2

P'3

T31

T12

T23

T''12

P1

P'1

T''23

Indirect 
Gap

T'12

T'23

Indirect 
Gap

Fig. 9 PE scenario in the case of three pursuers when the
evader creates an indirect gap
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Since there are four pursuers,

λ = sin(π/4) = 1√
2

⇒P2
′P2

′′ = E′E′′
√
2

⇒ P2
′P2

′′ < E′D,∀θ0 ∈ (0, π/4)

Therefore pursuer P2 cannot reach the line L1 and
there is a gap created between the pursuers P3 and P2

that ensures successful evasion. For the sake of form-
ing a gap, the evader has to changes its direction within
the admissible range of angles given above.

5.4 Case of Three Pursuers

The case of three pursuers is similar to the case of four
pursuers and the scenario of an indirect gap forma-
tion is shown in Fig. 9. The pursuer P2 in the figure
has no other choice than to go behind the evader as it
is understood that moving in any other direction can
cause a direct gap for the evader to escape. The move-
ment of evader toward the point T31 creates an indirect
gap between P2 and P3. And, the reason for the forma-
tion of an indirect gap is that the pursuer can not match
the speed of the high speed evader in this case. Since
the pursuers are not equidistant, they are not able to
keep the PEF intact. Now, the scenario of P2 and P3
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Fig. 10 PE scenarios with five pursuers under the proposed strategy at different time instants
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in this case, can be compared to that of P2 and P3

respectively in Fig. 8. Using a similar approach, from
Fig. 8, the equations and angles involved are presented
below.

∠P ′
2E

′T ′
23 = ∠P ′

3E
′T ′

23 = π/3,

∠DE′T ′
23 = π/6,

∠E′′E′T ′
23 = θ0

⇒ E′D = E′E′′ cos
(π

6
− θ0

)
; θ0 ∈

(
0,

π

6

)

Since there are three pursuers,

λ = sin(π/3) =
√
3

2

⇒ P ′
2P

′′
2 =

√
3E′E′′

2
⇒ P ′

2P
′′
2 < E′D,∀θ0 ∈ (0, π/6)

Therefore pursuer P2 cannot reach the line L1 and
there is a gap created between the pursuers P3 and P2

that ensures successful evasion. Similar to the previ-
ous case of four pursuers, the evader has to change
its orientation within the admissible range of angles
as given above to create a direct gap. Now, the escape
strategy is presented in the following subsection.

5.5 Escape Strategy

The escape strategy of an evader can be summarized in
two elements. In case of an evader in a PEF of N pur-
suers, for N ≥ 5, the evader will initially move toward
any one of the tangent points. A gap will then be
created between the corresponding pursuers that the
evader uses to escape by changing its course toward
the gap created.

In the case of N = 3, 4, the evader will first move
toward any one of the tangents points that results in
formation of an indirect gap between two sets of pur-
suers, each set has two pursuers. Now, it will select
one of the two indirect gaps and changes its courses,
to create a direct gap between the pursuers. Finally, it
has to change its course toward the direct gap created
to escape. In both the cases, the evader has to create a
gap big enough depending on its radius of capture to
escape successfully.

6 Simulation Results

In this section, the performance of the proposed strate-
gies is demonstrated using two examples. In the first
example, the PE game is played with a set of five
pursuers in a PEF around an evader. In the second
example, we set the number of pursuers to four to
show a special case of indirect gap. The simulations
are carried out in MATLAB and the time step is,
�t = 0.1 sec. The parameters kept constant for both
the examples include the evader’s radius of capture
and its speed, and also the initial positions of the pur-
suers in a PEF. The radius of capture for the evader is
considered to be 5 m. The evader’s speed is fixed to,
Ve = 13 m/s. The initial positions of a set of pursuers
in a PEF are at a distance of 75 m from the evader.

The scenarios of the game at different time instants
for the first example of five pursuers are shown in
Fig. 10. A PEF of five pursuers is first presented. As
N = 5, the speed of pursuers is, Vp = Ve sin(π/5) =
7.6 m/s. The evader employs the proposed strategy and
starts moving toward one of the tangent points. Due to
this, two direct gaps are created between the pursuers
that can be seen in Fig. 10 at the time instant, t = 3.8
sec. The evader takes advantage of this opportunity
and deviates from its initial path. It takes an escape
path by moving toward the gap which can be seen at
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Fig. 11 Case of five pursuers: Paths traced by the players, each
agent can be identified from its corresponding color given in
Fig. 10
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the time instant, t = 6.9 sec. This results in a success-
ful evasion which is also shown in Fig. 10 at the time
instant, t = 12.9 sec. The paths traced by the players
are shown in Fig. 11.

Next, the special case of indirect gap formation in a
PEF of four pursuers is presented. The scenarios of the
game at different time instants for this case are shown
in Fig. 12. A PEF of four pursuers is first presented. As
N = 4, the speed of pursuers is, Vp = Ve sin(π/4) =
9.2 m/s. The evader employs the proposed strategy and
starts moving toward one of the tangent points. Due
to this, two indirect gaps are created between the pur-
suers that can be seen in Fig. 12 at the time instant,

t = 4 sec. The evader takes advantage of this oppor-
tunity and deviates from its initial path. It takes a path
to create a direct gap which can be seen at the time
instant, t = 8.4 sec. Finally, the evader uses the direct
gap to escape which can be seen in Fig. 12 at the time
instant, t = 11.4 sec. The paths traced by the play-
ers are shown in Fig. 13 and the successful evasion
can be observed in this case. The videos demonstrating
these simulations are published in Youtube [13, 14].
And, the video for the simulation demonstrating evasion
from a PEF of six pursuers is also uploaded [15, 19].

It can be observed from the simulations that the
proposed strategies guide an evader successfully to
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Fig. 12 PE scenarios with four pursuers under the proposed strategy at different time instants
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Fig. 13 Case of four pursuers: Paths traced by the players, each
agent can be identified from its corresponding color given in
Fig. 12

escape from the PEFs and is in line with our mathe-
matical development.

7 Conclusions and Future Work

In this paper, we have studied pursuit-evasion games
of multiple pursuers and a single high speed evader
with perfectly encircled formation as an initial condi-
tion. The idea of Apollonius circle is used to describe
the perfectly encircled formation. In this process, few
properties of Apollonius circles and the required con-
ditions to create a perfectly encircled formation are
also established. It is shown that a perfectly encircled
formation only ensures instantaneous nullification of
an escape path. For successful capture, the formation
should remain connected until the area bounded by it
shrinks to zero. For such games, it is mathematically
proved that the capture is not possible with the num-
ber of pursuers required to form a perfectly encircled
formation. An escape strategy for the evader has also
been identified using the properties of Apollonius cir-
cle and the formation geometry. The idea of perfectly
encircled formation and the proposed escape strat-
egy unlock an idea of analyzing a formation which
includes overlapping of Apollonius circles. This may
potentially reduce the possibility of direct and indi-
rect gaps being created during the pursuit which will

be considered in our future works. Also, it would be
interesting to study pursuit-evasion games of this kind
in closed domain.
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