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Optimal Evasive Maneuvers in 

-Maritime Collision Avoidance 

A. W. MERZ 

.Abstract 

EVASIVE MANEUVERS are determined for each 
.of two potentially colliding ships, such that their 
miss distance is maximized. These maneuvers 
are frequently contrary to the established rules 
of the road. It is assumed that the ship speeds 
are constant during the encounter, and that the 
turn-rates of the ships are bounded between sym- 
metrical limits, corresponding to hard right and 
hard left turns. The optimal turn dir&tions are 
found to be explicit functions of the range, bear- 
ing and heading between the two ships. The co- 
operative case, when both ships maneuver, and 
the non-cooperative case, when only one ship 
maneuvers, are both analyzed. Examples of the 
optimal maneuvers for two identical ships are 
presented in detail. 

Introduction 

Some seven per cent of the world’s maritime 
fleet was involved in a two-ship collision in 1970 
(Ref. 1). As traffic densities and ship dimensions 
increase, we can expect this alarming figure to 
rise proportionally, unless substantial improve- 
ments are made in both the international colli- 
sion avoidance regulations and the associated 
equipment. While the regulations are due for 
revision in 1972, it is expected that these rules 
will continue to deal principally with the respon- 
sibilities for maneuvering, rather than with the 
collision-avoidance maneuvers themselves. 

The maritime regulations for collision preven- 
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tion relate to many aspects of the two-ship en- 
counter (Ref. 2). The specification of evasive 
maneuvers, however, has generally been based on 
ignoring the ship dynamics and on applying 
intuitive reasoning to specific relative geometries 
(Refs. 3-7). While these maneuvers can provide 
safe clearance when the initial range is large, the 
resulting miss distance may be unacceptably small 
for other initial geometries. In fact, cases can be 
found in which the recommended maneuvers 
actually lead to a collision when more realistic 
ship dynamics are assumed. 

For example, consider two ships having equal 
speeds and maximum turn rates, located relative 
to each other as shown in Fig. 1 (a). Assume that 
the two identical ships have minimum turn radii 
equal to 4000 ft., and suppose that they are first 
aware of each other when ship B is 1600 ft. to the 
left and 3280 ft. ahead of ship A, and headed to 
A’s right. Reference 5 cites the following regula- 
tion governing this situation: 

“When two vessels are proceeding in such 
directions as to involve risk of collision, unless 
one is a hampered vessel, each shall alter 
course or speed or both so as to cause the line 
of sight to the other to rotate in an anti-clock- 
wise direction.” 

Assuming that the speeds cannot be sig- 
nificantly altered, the above regulation requires 
that both ships turn hard right, in order to cause 
a counterclockwise rotation of both lines of sight. 
As shown in Fig. l(b), the resulting motion may 

lead to a collision. 
On the other hand, the evasive maneuvers de- 

termined by the method presented in this paper 
require both ships to turn left, which produces the 
motion of Fig. l(c). Here the lines of sight rotate 
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Fig. l--Ship Motion for Two Sets of Maneuvers. 

clockwise, and the minimum value of the range 
is 2000 ft. This dramatic example, which is by 
no means artificial or contrived, illustrates the 
practical implications of the present mathematical 
approach to the determination of the “optimal” 
or “best” collision-avoidance maneuvers. 

The present analysis models the transient 
portion of the two-ship encounter, and emphasis 
is placed on determining the turn directions which 
should be used by the ships in order to best avoid 
a collision. Here the “best” maneuvers are defined 
as those which maximize the miss-distance, or 
the separation at minimum range. This simple 
performance index permits a quantitative com- 
parison of any two sets of maneuvers. It is used 
to determine those maneuvers which are ‘lop- 
timal”, in the sense that the miss-distance is 
maximized. When a collision is truly imminent, 
this index accurately reflect’s the concerns and 
interests of the personnel aboard both ships. 

Method of Analysis 

The “optimal” evasive maneuvers can be 
determined in at least two ways, which are briefly 
described as follows: 

1. The equations of motion for each ship 

2. 

(Ref. 8) including realistic transient effects 
caused by the rudder deflections (controls), 
can be used in a trial-and-error procedure 
with different relative initial conditions. 
Each trial uses a specific set of controls and 
the resulting miss-distance is found by 
integrating forward the two sets of equa- 
tions of motion until the range between the 
ships is a minimum. The best control se- 
quences for each initial condition are those 
which yield the greatest miss-distance. 
The dynamic equations of the ships are 
simplified so as to include only the principal 
effects of the controls, and the equations of 
motion are expressed in an axis system 
which gives the motion of one ship relative 
to the other. For this simplified model, ana- 
lytical methods are used to find the controls 
of both ships at the time of minimum range 
(i.e., at termination of the evasive maneu- 
vers). When the equations of relative motion 
are integrated backwards in time, using 
these controls, a path is determined along 
which the terminal relative condition could 
have originated. 

The first approach has at least two disad- 
vantages. The computational load quickly be- 
comes very great for multiple initial conditions 
even when attention is restricted to specific 
ships. Furthermore, it is possible to overlook 
certain sets of maneuvers which might yield 
greater miss distances than those resulting from 
the assumed maneuvers. The second approach, 
however, leads to conclusions which are as valid 
as the equations used to approximate the motion. 
If  the simplified equations provide an adequate 
approximation to the actual motion, it is safe to 
conclude that the derived maneuvers are nearly 
optimal in a practical sense. Thus, the second 
approach based on simplified dynamics has been 
chosen as the basis for the analysis of this paper. 

The method of determining the optimal colli- 
sion avoidance maneuvers is based on “optimal 
control theory.” In recent years, techniques based 
on this theory (Ref. 9) have been developed for 
analyzing problems having the following two 
characteristics: 

1. The time-variation of the variables (i.e., 
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.* the “state”) defining the dynamic system 
is implied by the equations of motion. These 
differential equations have forcing func- 
tions, or “controls”, to be determined. 

2. The performance of the system in response 
to any control variation is measured by a 
given “payoff” criterion, which is an index 
to be maximized by the choice of control. 
Constraints oti the state or the controls are 
accounted for in this kaximization. 

In. the collision-avoidance problem, as is pres- 
ently explained, the controls are the turn-rates 
of the two ship (due to rudder deflections). 
The payoff is the miss-distance separating the 
ships at the time of closest approach. 

A detailed mathematical description of the 
motion of a typical ship in response to changes 
in the rudder setting is very complex. For 
present purpose, however, the short-term motion 
of the ship can be represented by a constant-speed 
model, for which lateral accelerations are the only 
means of control (Ref. 3). Speed changes are 
assumed to be negligible, and therefore each ship 
can maneuver only by changing its heading. 
These assumptions reflect the fact that normal 
forces acting on a ship in a turn are typically 
much larger than the available axial forces which 
would &use changes in speed. The turn rates of 
both ships are assumed to be bounded between 
symmetrical limits, corresponding to hard left 
or hard right turns. A ship’s path corresponding 
to a specific constant turn rate is therefore a 
circular arc, and the path itself is smooth, even 
when the rudder switches from hard left to hard 
right. 

The motivation for the above choice of dy- 
namic model is that the relative motion is de- 
scribed by only three variables, which are the 
range, bearing and heading of one ship relative 
to the other defined in (Fig. 2). Despite the 
simplicity of this model, it is found that the 
optimal maneuvers must be determined by nu- 
merical computation for a specific pair of ships. 

The differential equations of relative motion 
give the time derivatives of the position and head- 
ing of one ship relative to the other, in terms of 
the turn rates of the two ships. These equations 
are presented in the Appendix. The equations are 
simplified by normalizing the units of length and 
time; i.e., so that the fast,er ship (Ship A) has 
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Fig. S-Geometry of the Two-Ship Encounter. 

unit speed and unit maximum turn rate. The 
slower ship (Ship B) then has the dimensionless. 
speedy = V,/VA 5 1, and a maximum turn 
rate equal to w. The maximum miss-distance 
achievabIe from a given relative position and 
heading is denoted by rf , and this has also been 
normalized by the minimum turn radius of the 
faster ship. 

In the “cooperative” collision avoidance situa- 
tion, both ships maneuver so as to maximize the 
miss-distance, and for this problem the turn 
rates of both ships are considered as available 
controls. In the “non-cooperative” problem, it is 
assumed that only one of the ships is capable of 
evasive maneuvers, while the other ship follows 
a straight path. A significant result of this study 
is a demonstration of the effect of cooperation on 
the avoidance maneuver and the resulting miss- 
distance which can be achieved from a given 
initial relative position and heading. In the co- 
operative case, the normalized controls (turn 
rates) to be determined are bA and (TB , which 
have magnitudes no greater than unity. Thus, 
for example, uA = $1 corresponds to a hard 
right turn for ship A. The non-cooperative case is 
analyzed under the assumption that ship R does 
not maneuver during the encounter, and there- 
fore U’B = 0. 

As shown in the Appendix, the turn directions 
of the ships at the time of closest approach can 
be easily determined mathematically, and these 
maneuvers are exact,ly as would be expected 
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intuitively. The retrograde solutions* to the 
equations of motion are then used with these 
terminal controls to find where any specific ter- 
minal condition could have originated. 

Numerical Results for Identical Ships 

Quantitative results for this model of the colli- 
sion-avoidance problem require that the speeds 
and maximum turn-rates of the ships be specified 
numerically. For purposes of illustration, these 
parameters are chosen to be those of two identical 
ships: i.e., y  = w = 1. Results of the analysis 
are now given as optimal maneuver strategies 
for both ships, in the cooperative case, and for one 
ship, in the noncooperative case. These results 
were obtained using the optimal control technique 
just discussed, The mathematical details are 
presented in the Appendix. 

Cooperative Ca.se 

In the cooperative case, both ships maneuver 
so as to maximize the final miss-distance. As 
shown in the Appendix, bot,h ships turn hard 
right or hard left until the range-rate is zero. 
The dependence of the maneuvers on the relative 
position is shown in Fig. 3, for several values of 
the relative heading 0 in the range 30” to 180”. 
The evasive turn directions of the ships are in- 
dicated by the subscripts "R" and “L". That is, a 
typical notation in this diagram is “ARBL". 
This notation indicates that Ship A (located at 
the origin of this relative axis system) is to turn 
hard right while B turns hard left, whenever 
ship B is located in this region relative to Ship 
A. Relative positions to the right of the diagonal 
line through the origin are those for which the 
range-rate is positive, and for which maneuvers 
are therefore unnecessary. 

The contours of constant rf shown in Fig. 3 
are the normalized maximum miss-distances 
which can be obtained when both ships maneuver 
as indicated; for example, if ship B is initially 
located on the contour rf = 1, the final miss- 
distance can be no greater than one minimum 
turn-radius, and will be less than this value if 

* “Retrograde” is used to mean “backwards- 
time”, i.e., the independent variable of the dif- 
ferential equations is the “time-to-go” until the 
range is a minimum. 

either ship deviates from its optimal turn 
maneuver. 

It is seen that for each relative heading (except 
0 = 0” and 180’), the plane of positions of ship 
B relative to ship A may be divided into three 
regions. These will be referred to as “maneuver 
regions,” since the optimal maneuver for each 
ship depends on the region in which B is located 
relative to A. At the intersection of these regions, 
the same miss-distance results from use of any 
of the three maneuver strategies. This intersec- 
tion is referred to as a dispersal point (Ref. 10). 
Possible paths from the ‘dispersal point” are 
illustrated in Fig. 4 for the initial heading 0 = 120’ 
(the initial position can be read from Fig. 3(d)). 

Non-Cooperative Case 

The non-cooperative case is analyzed by assum- 
ing that ship B does not maneuver, but instead 
travels in a straight path on the surface of the 
sea, with uB = 0. Relative to the cooperative 
case, it is found that for some positions, a differ- 
ent evasive maneuver may be indicated for ship 
A. The optimal collision avoidance maneuver for 
one ship then depends upon whether or not the 
other ship is cooperative. 

Numerical results for the non-cooperative case 
are shown in Fig. 5. Evasive maneuvers for ship 
A are seen to be nearly independent of whether 
or not B cooperates. That is, the line separating 
the maneuver regions for ship A has approxi- 
mately the same location regardless of B’s co- 
operation. However, the increase in miss dist,ance 
due to B’s cooperation can be appreciable, as 
shown by comparing the rp contours of Fig. 
5 (a) to those of Fig. 3 (b). For example if ship B 
is initially located near the point x: = -.9, 
y  = .5, 0 = 60”, the miss-distance for the co- 
operative case is given by Fig. 3(b) as rf N .8. 
I f  B does not maneuver from this initial relative 
position, Fig. 5 (a) shows that the non-coopera- 
tive miss-distance is approximately rf = .5, 
or about 6070 of the value for the cooperative 
case. 

The constant-heading diagrams of Figs. 3 and 
5 can also be used to determine the miss-distance 
which results if neither ship maneuvers. In this 
case, the heading remains fixed and B’s relative 
motion is a straight path, perpendicular t’o the 
line 1: = 0, which passes diagonally through the 
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b) e = 60' 

d) e = 120’ 

e) e = 1500 f) e = 1800 

Fig. S-Optimal Maneuvers and Miss-Distances for Identica1:Ship.q Cooperative Case. 
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origin in these figures. In particular, the straight of the twoship encounter. The criterion maxi- 
line segment of Fig. 3 which separates the region mized by the choice of turn directions was the 
(‘A&” from the region “ALBL” is a locus of miss-distance. Both cooperative and non-coopera- 
initial conditions leading to a collision if neither tive cases have been examined, with results 
ship turns, i.e., if (TA = ffB = 0. presented for the special case of identical ships. 

Summary of Results 
The analytical methods used here modeled the 

Optimal collision avoidance maneuvers have 
relative motion, or the set of future relative posi- 

been found for a simplified mathematical model 
tions of the ships. This dynamic approach is in 
contrast to the intuitive maneuvers based on the 

6 

-c- 

present relative position, and given in the ref- 

\ 

erences as recommended “Rules of the Road”. 
-4 

f f 
The avoidance maneuvers recommended in 

Ref. 2-6 were specified as functions only of the 
/ bearing of the threatening ship. We have shown 

here, however, that the optimal evasive maneu- 

t 

1’ 
I 

vers also depend upon the relative range and 
heading. Normalized diagrams were presented 

A for the case of identical ships which show the 

a) ARBL 
optimal turn maneuvers of the ships and the 
resulting miss-distance.* It was demonstrated 

<y ?y 

that initial conditions exist for which a collision 
can be avoided only if turns in the directions of 
the optimal maneuvers are used. It was also 
found that these maneuvers are not necessarily 
unique. That is, certain relative positions exist 
for which more than one set of maneuvers is 

\ I optimal. These multiple-maneuver or dispersal 
A A points help to explain the underlying tactical 

c) ARBR 
* While results are given here only for two iden- 
tical ships, it is known that the evasive maneuvers 

Fig. &Dispersal Point Trajectories, Cooperative also depend on each ship’s speed and maximum 
Case (00 = 120”). turn rate. 

a) e = 60’ b) e = 120’ 

Fig. 5-Optimal Maneuvers ancl MT&-Distances for Identical Ships, Non-Cooperative Case. 
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difficulties in solving the collision avoidance 
problem. 

Appendix 

Equations jar Rekctive Ship Motion and Terminal 
Conditions 

Under the assumptions given in the body of 
the paper, the position and heading of ship B 
relative to ship B obey the following normalized 
differential equations : 

i= -l+fJ~Al:+ycose (1) 

ti = -CT* + w(Tg 

Here, CZ, y, and 0 are the position and heading 
variables shown in Fig. 2. The slower ship B has 
the speed y  _< 1 and a maximum turn rate equal 
to w. The controls gA and WcB are respectively 
the normalized turn rates of A and B, which are 
boundedinmagnitude;i.e., -1 _< CA, CTB _< + 1. 
The position equations can also be written in 
polar coordinates as 

1’=-cos~f-ycos(e-q5) 
(2) 

d = -TA + [sin $ + y  sin (0 - 4)1/r 

For the simplest version of the collision avoid- 
ance problem, the quantity to be maximized is 
the miss-distance, r(tf) = rf . The time of closest 
approach, tf  , is given implicitly by Eq. (2) as 

P@,) = --cos l#Bf + y  cos (Sf - &) = 0 

That is, when the range-rate is zero, each termi- 
nal bearing is associated with two values of rela- 
tive heading, which are 

Bf = l#lf * cos-1 cos 4, ~ [1 1 (3) 
Y 

For the case of identical ships, y  = 1 and 0f = 0 
0rBf =2+f. 

Necessary Conditions for Optimal Trajectories 

The problem of maximizing the miss-distance 
can be posed as a free-time, terminal-payoff type 
(Ref. 9), with eit,her or both turn rates as the 
governing controIs. The methods of optimal con- 
trol theory may be used to define the “Hamil- 
tonian” for the problem as the total time deriva- 
tive of the payoff along an optimal path. The 
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can be expressed in polar coordi- 

= max [h,i + X,8, + As&] = 0 (4) 

Hamiltonian 
nates as 

max H 

aA , CB ‘JA , ‘JB 

This fundamental equation provides an im- 
plicit description of the optimal maneuvers, cA 
and gB. Substituting into this equation from 
Eqs. (1) and (2) gives the controls for ships A and 
B in terms of AT = [A,, h+ , As], as follows*: 

CA = -sign (A+ + AS) 
(5) 

QB = sign X8 

The adjoint vector (sometimes called a La- 
grange multiplier) X(t) can be shown to satisfy 
the equation 

iT = -aH/ax (6) 

where the state vector is Z* = [r, c$, 01. That is, 
x, = -aH/dr, A+ = -aH/d+ and xs = -dH,/dO. 
The terminal boundary conditions for this equa- 
tion are most easily expressed in polar coordi- 
nates as 

XT&) = [A* ) x, ,x01 = 11, 0, 01, (7) 

since the performance criterion is r(tf) = rf , 
which is independent of the bearing and heading 
angks. Therefore, the arguments in Eq. (5) are 
equal to zero when the time-to-go, 7, is zero. 
The retrograde time derivatives are then needed 
to determine the maneuvers immediately before 
?: = 0. Using Eqs. (6) and (7), we find 

kr (if) = sin 4f + 7 sin (ej - 41) 

i0Ct1) = -Y sin (0, - +f) 
(8) 

where the superscript circle denotes a deriva- 
tive with respect to the time-to-go, 7. That is, for 
example, 2 = i&r/& = Ax/&, since r = tf - t. 

The two terminal conditions of Eq. (3) are asso- 
ciated with the following strategies : 

cm @f 0, = +f - cos-’ - : 
( ) Y 

oA = cB = -sign +, 

cos dr 
( ) 

(9) 
01 = +/ + cos-1 __ : 

Y 

* The Signum function is defined as Q = sign a = 
a/[ a 1 = &l, unless a = 0, in which case it is 
undefined. 



Vol. 20, No. 2 Merz: Maritime Collision Avoidance 151 

B 

I 
/ c rf ,A 

/ \ 
/ \ 

\ 
\ 

6 

-- 

f  
rf 

A I 

I 

/ 
/ 

/ 

a) ARBL b) ARBR cl ALBL 

Fig. 6-Optimal Terminal Maneuvers for ldenlical Ships. 

a ) Large Initial Range b) Small Initial Range 

Fig. 7.-Dispersal Point Trajectories, Non-Cooperative Case (& = hP). 

unless cos +f = y  < 1. In this case, it is easy 
to prove that B’s optimal strategy may be gB = 
0. corresponding to straight-line motion. 

The terminal maneuvers for identical ships are 
easily stated: Each ship is turning away from the 
other at the time of minimum range. When the 
solutions are expressed in retrograde time, it is 
possible to learn where any terminal condition 
must have originated. In the non-cooperative 
case, UB = 0 by assumption, and here A is turn- 
ing away from B when t = tf . 

Maneuver Regions, Identical Ships 

When the ships are identical, it follows that 
y  = w = 1, and the only optimal maneuvers are 

sharp right or left turns, according to Eq. (9). 
For a specific choice of initial heading angle, the 
lines separating the various regions can be deter- 
mined by using the solutions to Eq. (I), with 
gA and r~ as determined by Eq. (9). Thus, if 
Bf # 0, the turn rates are the same, as shown in 
Fig. 603) and 6(c). When 0f = 0, the turn rates 
are opposite, as illustrated in Fig. 6(a). 

For any choice of terminal range, the solutions 
to Eqs. (1) are expressible in terms of of, y f  , 
01 and T. The two geometric constraints 
dm = rf and tY,($f) are then imposed 
on these relations. The parameter r can be elim- 
inated, so that when 8 is fixed, loci of the form 
f(z, y, rf) = 0 are determined. These loci have 
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the geometric form shown in Fig. 3, where all of References 
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the maneuver combinations of Fig. 6 are used. 
The heavy lines of Fig. 3 denote the so-called 
“dispersal” lines, for which two different sets of 
maneuvers are optimal. 

In the non-cooperative ease, a similar analysis 
leads to the determination of a dispersal line for 
ship A, at a specific value of the heading. That is, 
a terminal range rf is chosen, and the heading 
angle 0 is fixed. The relative position is then ex- 
pressible parametrically as Z(T), y(7), for a given 
value of the terminal bearing. As in the coopera- 
tive case, when ship B is located where two of 
these loci intersect, the ship A can turn either 
way. This is illustrated in Fig. 7 for an initial 
heading of 60”. The initial relative positions here 
can be read from Fig. 5(a). 
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