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Coplanar Tail-Chase Aerial Combat
as a Differential Game

A.W. Merz* and D.S. Haguet
Aerophysics Research Corporation, Mt. View, Calif.

A reduced-order version of the one-on-one aerial combat problem is studied as a pursuit-evasion differential
game. The coplanar motion takes place at given speeds and given maximum available turn rates, and is described
by three state equations which are equivalent to the range, bearing, and heading of one aircraft relative to the
other. The purpose of the study is to determine those relative geometries from which either aircraft can be
guaranteed a win, regardless of the maneuver strategies of the other. Termination is specified by the tail-chase
geometry, at which time the roles of pursuer and evader are known. The roles are found in general, together with
the associated optimal turn maneuvers, by solution of the differential game of kind. For the numerical
parameters chosen, neither aircraft can win from the majority of possible initial conditions if the other turns
optimally in certain critical geometries.

Introduction

THE "tail-chase" version of the aerial combat problem as
studied in this paper requires that one aircraft be directly

ahead of the other at the end of the combat encounter, with a
"near-parallel" heading. The relative motion in this con-
figuration is assumed to be slow enough to permit the for-
ward-firing weapon system of the pursuing aircraft to be
effective. Many refinements can obviously be made in this
model of the weapon system. However, it is believed that this
termination criterion is at least representative of realistic
termination criteria for aircraft equipped with conventional
guns or air-to-air missiles.

In a reduced-order mathematical model of the relative
motion, the two aircraft are assumed to fly in the same plane
at constant speeds and with bounded turn rates, so that the
relative motion is described by only three variables: the
relative position (range and bearing) and the relative heading.
These are the dynamics used in the Game of Two Cars, first
studied as a differential game by Isaacs. J In Isaacs' version of
the problem, however, the roles of pursuer and evader were
fixed a priori, and termination occurred at a specified
"capture" range, independent of the bearing and heading
angles. This model is therefore associated with relatively
simple transversality conditions on the adjoint variables. The
present version of the problem, in contrast, terminates when
either aircraft is directly in front of the other, with the
heading difference bounded. This means that the roles at
termination depend on the relative bearing and heading, but
not on the range. As in Isaacs' version, however, both pilots
are assumed to have exact knowledge of the relative geometry
and of the speed, turn-rate, and weapon characteristics of the
other aircraft, insofar as these influence the optimal
maneuvers of the pilots.

In this paper we consider for illustrative purposes a slower,
more maneuverable aircraft engaged in combat with a faster,
less maneuverable aircraft. The problem of principal interest
is the determination of the roles of pursuer and evader as
functions of the relative position and heading. That is, when
should the faster aircraft pursue, and when should the slower
aircraft pursue? In this context, the pursuing aircraft is
maneuvering into a tail attack on his opponent, and con-
versely the evading aircraft maneuvers to frustrate a tail
attack by the pursuing aircraft. In many situations, the role of

each pilot can be intuitively predicted. Thus, for example, in
the geometry of Fig. 1, when aircraft B lies well ahead of
aircraft A, with a near-parallel heading, it could be assumed
with reasonable certainty that A should pursue, and B should
evade. Conversely, when aircraft B lies well to the rear in Fig.
1, the roles would be assumed to be reversed. However, at
some intermediate point or set of points between these two
extreme positions, intuition fails, and role specification is in
doubt. Since certain initial conditions are then obvious "set
ups" for one pilot or the other, it is clear that at least two
regions must always, exist in the relative geometry state space.
These regions correspond to one of the following outcomes: 1)
the faster aircraft (A) can win, regardless of the maneuvers
used by the slower aircraft (B) and 2) the slower aircraft can
win, regardless of the maneuvers used by the faster aircraft.

The present paper examines the tail-chase end condition in
the aerial combat problem to establish the boundaries of the
two capture regions. That is, in the language of differential
game theory, a game of kind is solved. Now, the tail-chase
end condition considered involves both the relative bearing
and the relative heading, while the only control available to
each of the two pilots is the turn rate. It can be seen by
example that when the less maneuverable aircraft is suf-
ficiently faster than the other, a third region must exist. In this
region each aircraft can evade the other indefinitely, and it
therefore is termed a "draw" region. In the similar problem
analyzed in Ref. 2, both forward-firing weapons had finite

A pursues B

Fig. 1 The role deter-
mination problem.
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B pursues A
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ranges and no terminal heading requirement was imposed.
The draw region existed in this solution because the faster
aircraft could remain out of range of the slower, which had
the larger weapon range. In the present problem, if the faster
aircraft were also more maneuverable, the draw region would
presumably disappear, but this has not yet been verified
quantitatively.

The main result desired from the solution to the problem is
the geometric specification of the win regions of the two
aircraft. Optimal (min-max) time strategies3'4 of both pursuer
and evader would be a natural next step in the problem when
either A or B can win, but this extension is not undertaken
here.

Method of Solution
The problem posed first requires specification of numerical

values for aircraft speeds, maximum turn rates, and terminal
relative. heading angle requirements. State variable com-
ponents1 are the relative position (x,y), or the range and
bearing of B with respect to A, and the relative heading (//).
The optimal-turn maneuvers of both aircraft are to be found
as functions of the relative geometry, using the methods
described in Refs. 2 and 5. These techniques are briefly
outlined as follows:

1) Several types of "near-miss" or simultaneous-kill end
conditions are possible. For the near-miss end condition, one
aircraft trajectory just contacts the kill region of the other,
without penetrating it , and the roles of both pilots are known
by construction at the time of this near miss. Similarly, the
simultaneous-kill end condition corresponds to a collision
with near-parallel headings. For nearby geometric states, one
or the other aircraft wins without colliding with the other.

2) Families of optimal trajectories can be displayed as line
segments which bound the kill regions and which are com-
puted and shown at constant values of the relative heading.
These "barrier"1 line segments for the various potential
maneuver combinations must be such as to separate relative
positions leading to "capture" or to "escape". That is, on
one side of the barrier, capture is guaranteed if the pursuer
maneuvers optimally, and on the other side escape is
guaranteed if the evader maneuvers optimally.

3) The state variables and the adjoint variables together
imply optimal maneuvers of both aircraft, and relative
trajectories can be found in retrograde time, even when
switches occur in these backward-time paths.

Speed and turn-rate parameters in the present paper are
such that the kill regions of both aircraft exist for only a finite
range of headings. When the aircraft must move in the same
plane, it is clear that the relative heading rate can be con-
trolled by the aircraft with the higher maximum turn rate.
But, the specified tail-chase end condition also requires that
the relative angular bearing satisfy certain conditions, and the
bearing rate depends on both speeds and the relative geometry
(including range, bearing, and heading). Thus, even when the
range is unconstrained, both pilots wish to control two of the
state variables, but they have only their turn rates as input
controls.

The three equations of relative motion, together with the
three adjoint equations,1 '5 describe the maneuvers and the
resulting motion of the slower, more maneuverable aircraft B
relative to the faster aircraft A. That is, VA>VB, and
UA <coc . The combat encounter (or "differential^max Dmax v

game") ends in favor of aircraft A when B is ahead of A with
a nearly parallel heading; i.e., when the end conditions are

yf>o, \Hf\<HA (1)

where HA is a specified angle depending on the weapon
system of aircraft A. On the other hand, B is the victor for the
end conditions:

The angular parameters HA and HB are meant to be
descriptive of the tail-chase end condition geometry and are
assumed to be of the order of 30 deg.

The optimal turn-rate controls of A and B are given in
terms of the state . [ x , y, H] and adjoint [Vx, Vy, VH]
vectors, as follows :

(3)

The optimal controls thus depend on the present value of
both the state vector and the adjoint vector. These can be
determined simultaneously by integrating the equations of
motion backwards in time from a range of geometric terminal
conditions.

For the numerical parameters chosen, it is found that the
assumption of infinite weapon range prevents singular arcs
(straight dash trajectories) by either A or B from appearing in
the solution. This would occur when either bracketed
argument in Eq. (3) equals zero for a finite time. As noted
earlier, the present mathematical model is a differential game
of angles, while a singular arc for either aircraft would be
associated with a trajectory which is at least locally range
optimizing.2

Terminal Conditions
A total of 16 qualitatively different terminal configurations

are applicable to this problem, of which six correspond to
near -miss trajectories with A pursuing B, six to near -misses
with B pursuing A, and four to collision of A and B. As
defined earlier, the near -miss trajectories tangentially graze
the kill zone of the pursuing aircraft. For all these con-
figurations, the terminal adjoints can be determined as
functions of the terminal state and the other parameters in the
dynamic model.

The near-miss terminal geometry configurations are of
three different types. The first type occurs at short range with
both aircraft turning in the same direction, and with the
evader always to the same side of the pursuer, as shown in
Fig. 2a. The evader, B, is here just ahead of the pursuer, A, in
position A2B2, but both before and after this time, B is to the
right of A. The relative heading at this time is ///, and this is
less than the pursuer's maximum parametric value, HA . The
same type of trajectories can occur with the roles reversed;
i.e., with B pursuing A .

The second type of grazing miss also involves turns in the
same direction, but with the final relative heading equal to
HA. In this case the final range yf is a parameter which must
satisfy certain inequalities, but the appearance of the terminal
trajectories is similar to those shown in Fig. 2a. The
qualitative difference is that the bearing changes sign as B

xf=yftanHf, yf<o, \Hf\<HB (2)
Fig. 2 Near-miss barrier trajectories, a) Same turn directions
(ARBR). b) Opposite turn directions (AKBL).
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Table 1 Terminal conditions for the near-miss configuration

Final turn directions
Case

1
2
3
4
5
6
7
8
9
10
11
12

Pursuer A

A Right
Right
Right
Left
Left
Left

B Right
Right
Right
Left
Left
Left

B

Right
Right

Left
Left
Left

Right
Right
Right

Left
Left
Left

Right

Final heading

0<Hf<HA
Hf = HA
fff = HA

-HA <Hf<0
Hf = -HA
Hf — -HA

0<Hf<HB
Hf~HB

Hf — HB
-HB<Hf<0

Hf = -HB
Hj = -HB

passes from one side of A's velocity direction to the other. In
this relatively complex case, the final adjoint vector is [ (UA

0, s in /3] , where tan/3 = ( VBs\nHA -
A (UA — MB ) ] • Other terminal adjoints are given

inRef.5.
The third type of near-miss grazing trajectory also ends at

the maximum relative heading HA, but is preceded by turns in
the opposite directions. As shown in Fig. 2b, this means that
the relative heading increases through the value HA, and even
if B can subsequently be kept ahead of A, the relative heading
can be maintained by B at a value greater than HA, because of
B's greater maximum turn rate.

The turn directions and the pur suit-evasion roles of A and B
both can be reversed, to provide a total of 12 terminal
maneuvers and configurations for the near-miss end con-
dition, as listed in Table 1.

The four collision geometric conditions correspond to
terminal maneuvers in the same or opposite directions, and
these configurations involve certain inequalities in the ter-
minal heading which are specified in Fig. 3. These trajectories
are interesting because, if either aircraft discontinues its turn
slightly before the "collision," it will pass ahead of the other,
with a near-parallel heading. Hence, by the definition of
termination in this paper, the aircraft which seeks to avoid
collision will be "killed" by the other. This aspect of the
solution is of more than academic interest, because the
collision course has a very real place in aerial combat, and is
in fact one extreme hazard in aerial combat "hassles," where
friendly aircraft engage in mock combat with each other. In
this case, two aircraft which begin the hassle from a side-by-
side position will usually enter a series of scissor maneuvers.
The pilot who pulls harder will win such an encounter because
he will force the other aircraft ahead of him at very short
range. With two equally matched pilots and aircraft, there is a
high risk of a collision unless one or the other pilot yields -
and loses. Since fighter pilots are noted for their aggressive
flying, there are many cases on record in which pilots and
aircraft have been lost in this type of situation.

In the problem application considered by this paper be-
tween hostile pilots, the collision may therefore be the

a)

-cos x ( V R / V A ) < H f < 0

b) A

Fig. 3 Simultaneous kill barrier trajectories, a) Same turn directions
(ARBR).b) Opposite turn directions (ALBR).

preferable outcome to both pilots, with each hoping the other
will yield. As with other barrier trajectories, however, the
collision barrier can be more practically interpreted as a locus
across which the roles of pursuer and evader are reversed, and
the representation of each aircraft as a point means that this
locus in the three-dimensional state space is a two-
dimensional surface separating distinct regions in this state
space from one another.

Numerical Results
Retrograde solutions to the state and adjoint equations

show where a grazing miss or a collision end condition must
have originated. These solutions permit computation of the
switch functions of both aircraft, according to Eq. (3), and
these indicate when a retrograde switch occurs for either of
the aircraft.

In the present case, for numerical purposes, the speeds and
maximum turn rates of the two aircraft are taken as VA =
1400 fps, o^max = 10 deg/sec, KB=700 fps, «fl|nax = ll
deg/sec, while the terminal heading angular requirements are
chosen as HA =30 deg and HB=40 deg. Thus, the slower
aircraft B is slightly more maneuverable than A, while the
normal accelerations in a hard turn are about 7.6 g and 4.2 g,
respectively, for A and B. The minimum turn radii for A and
B are 8020 ft and 3650 ft, respectively. These parameters do
not apply to specific aircraft, but will guarantee that the
"draw" condition occurs.

The barrier and role-specification results are most easily
presented and interpreted by fixing the relative heading over a
range of values between 0 deg and 180 deg. At each chosen
value for the heading, barrier loci can then be calculated and
presented using the concepts of the previous section. As
shown in Fig. 4a for the parallel heading case, //=0 deg, the
loci subdivide the x-y space into an area where A pursues B,
and an area where B pursues A. The implication of this is that
when B is originally "outside" both A's capture region and
£'s capture region, neither can capture the other, and
therefore each aircraft can evade the other indefinitely.

The following details of the barriers for the chosen
numerical parameters are evident from a study of the
graphical results shown in Fig. 4:

1) Many different maneuver combinations are required to
completely define the barriers, several portions of which
require two-part maneuvers. These are denoted by the double-
subscript notation; e.g., BRLAL means that B turns first right
and then left in pursuing A, who turns left throughout the
encounter which ends with A contacting B's kill region.

2) A can win from some relative positions only if the ab-
solute initial heading is less than HA = 30 deg, since otherwise
£'s higher turn rate can prevent its reduction to this value
regardless of A9 s turns.

3) B can win from some relative positions only for absolute
headings which are less than about 56 deg, because A's higher
speed prevents B from controlling the bearing and the heading
simultaneously when the heading exceeds this value.

4) Several "dispersal point" corners1 occur in the barriers,
where the slope is discontinuous, and where two different sets
of maneuvers are optimal. The evader usually chooses the
initial maneuver, forcing the pursuer to make a unique op-
timal response. Similarly, corners occur where B's kill region
intersects A's kill region. At these points the roles are in-
determinate, as for the collision barriers.

5) A's kill region is of infinite extent for headings less than
HA, due to the assumption of unbounded weapon range.
Similarly, B's kill region is infinite for /f<44 deg, ap-
proximately. For small relative initial headings, the kill
regions are bounded by straight lines at large ranges,
corresponding to the one-stage near-miss maneuvers. In a
refinement of the present mathematical model of the terminal
conditions, these regions would be bounded at large range by
curves which depend on the weapon ranges.
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DRAW

•DRAW

5 x, kft

b) // = 20deg. c) f/=30deg.

5 x, kft

DRAW

DRAW

DRAW

d) //=45deg. e) //=50deg. f) //=55deg.

Fig. 4 Barriers and capture regions in axes fixed to A. VA =1400 fps; UA =10 deg/sec; //^ =30 deg; K f l=700 fps; UB =11 deg/sec;
rr At\ j max max//# = 40 deg.

Four typical real-space barrier trajectories are illustrated in
Fig. 5. The first of these corresponds to the initial location p}
of Fig. 4a, and the second corresponds to the initial geometry
P2 of Fig. 4c. The last two trajectory pairs of Fig. 5 emanate
from the dispersal point atp3 in Fig. 4e. The two sets of paths
are quite different, but both terminate with A ahead of B and
with the final heading ///= ±HB. These trajectories illustrate
the variety and complexity of the barrier maneuvers, while the
capture regions themselves can be used to answer the role-
specification question posed in Fig. 1, which is the central
question of interest in this paper.

In this "angular" pursuit-evasion game, the optimal barrier
maneuvers are often obvious, and in many cases can be
reduced to the guidance law: "Turn hard toward your op-
ponent," regardless of the roles of the two aircraft. The
exceptions to this simple rule can be noted for both A and B
on the barrier segments of Fig. 4. These exceptions, along
which the guidance law is "Turn hard away," occur only at
short ranges, where optimal maneuvers are not obvious (see
Fig. 1). These exceptions provide some of the important
conclusions of the study.

Conclusions

The one-on-one aerial combat problem has been modeled as
a differential game which ends with the pursuer headed
directly at the evader, who is headed in nearly the same
direction at this time. The analysis expresses the two optimal
turn controls (UA and UB) as implicit functions of six
vehicle/weapon parameters ( VA, VB> UA , UB , HA, and
HB) and as explicit functions of three state variables (x, y,
H). Even in this idealized version of the problem, it is clear
that all of these nine quantities should have some significance
as to the roles and maneuvers of both aircraft. Furthermore,
if the aircraft are at least qualitatively similar, either must be
able to win from some relative conditions, as illustrated by the
results obtained in the study.

The capture-regions in Fig. 4 show that the role-
specification problem is particularly complex when each
aircraft is inside the minimum-turn circle of the other. The
strong dependence of the kill regions on the relative heading
indicates that the magnitude and direction of the other's
velocity must be estimated in applying these results.
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a) Initial position pt, Fig. 4a. b) Initial position p2, Fig. 4c. c) Initial position p3, Fig. 4e

Fig. 5 Example barrier trajectories in real space.

If the weapon ranges are bounded, two more parameters
must be specified, and additional complications enter the
problem solution. As illustrated in Ref. 2 for weapon ranges
which, are large (but finite) compared to the turn radii, the
capture regions are of finite extent at all relative headings.
However, for practical values of the weapon ranges, the more
complex and interesting barrier segments seem to be those
which occur at short range; these barrier segments are in-
dependent of the weapon range parameters.

When both weapon ranges are finite, and when the faster
aircraft is less maneuverable, both of the aircraft's actual kill
regions will be finite. This means that the pilot who can apply
the optimal defensive maneuvers can evade the other in-
definitely, regardless of the other's offensive maneuvers.
Eventually, a tactical error might permit an initially defensive
pilot to take the offensive, should his kill region finally en-
close the other aircraft. Other applications of the present
method might deal with aircraft weapon performance trade-
off studies, near-optimal maneuver specification for combat
pilot training purposes, and Mach number-altitude variations
of capture regions for a pair of opposing combat aircraft with
their respective weapon systems.

The present dynamic model of the one-on-one combat
problem is subject to two immediate criticisms. These are: 1)
the constant velocities assumed for the aircraft, and 2) the
coplanar motion assumed for the encounter. Both of these
assumptions have been made in order to permit the third-
order problem solution to be shown graphically, as in Fig. 4.
However, the constant velocity assumption can be retroac-
tively justified by the numerical results obtained. Specifically,
all of the barrier trajectories are carried out at maximum turn
rate, and usually for a time less than that required for a
quarter-turn (Fig. 5). During such brief maneuvers, the
aircraft speed would be kept nearly constant even if the pilot
were not inclined to maintain the aircraft's energy. Fur-
thermore, if it is found that the size and shape of the capture
regions change slowly and continuously with the speeds, then
practical use could be made of the results found over a range
of constant speeds.

A variable-speed, noncoplanar model would require at least
three more components of state to describe the relative
position and velocity. Such a model could also incorporate
more elaborate end conditions; e.g., minimum and maximum
final ranges, finite final bearing intervals, zero final bearing

rates, etc. The difficulty with such higher-order models is in
the computation and presentation of the two capture regions.
A particular problem would be the dispersal points, which
must be found since the retrograde paths are not optimal
beyond these points.

Although coplanar motion obviously cannot be justified on
practical grounds, the actual terminal configuration occurs in
a plane defined by the range vector (or the pursuer's velocity
vector) and the evader's velocity vector. Optimal terminal
accelerations also occur in this plane, and hence the paths just
before termination are also coplanar. The optimal transition
from arbitrary initial conditions to coplanar end conditions is
a considerable generalization of the present problem which
has not yet been studied. The solution to the coplanar
problem; however, represents an easily understood and
quantitative result which combines the important aircraft and
weapon parameters and the coplanar position and heading
coordinates to specify optimal maneuvers for both aircraft.
This type of analysis thus develops an optimal global guidance
law for an approximate dynamic model of the problem. This
solution can be used to modify the approximate or intuitive
guidance laws as applied to more exact dynamic equations.
Both approaches must be exploited to develop a more
complete understanding of problems of this complexity.
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