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To Pursue or to Evade—That is the Question

A.W. Merz*
LockheedPalo Alto Research Laboratory, PaloAlto, California

The one-on-one air combat problem has been analyzed under a variety of assumptions regarding the aircraft
dynamics and the weapon-system characteristics. However, most of these studies have not considered the
problem of role determination and the possibility of real-time implementation of the derived guidance laws.
These questions are addressed for a simple but plausible dynamic model of the problem. The two capture
regions, the mutual kill and draw regions, are found for a single value of weapon range. In addition, the min-
max optimal time controls for both are found when either is in the capture region of the other. Finally, the
feasibility of applying these guidance laws is discussed.

Introduction

MANY published papers have dealt with the differential-
game representation of the one-on-one air combat

problem,1"7 but relatively few have considered the question of
role determination.8'10 Since realistic representations of the
problem require that either aircraft, in principle, can win
from some relative geometries, it is of basic importance to
find the optimal pursuit-evasion maneuvers associated with
the capture regions or "sure-kill" geometries for both air-
craft.

The aim of this study is to apply differential-game theory to
a "game of two cars" dynamic model11 of the air-combat
.problem. The procedure used here treats the role-specification
and maneuver-determination problems, in that order,
assuming that the opposing aircraft and their weapons are not
significantly different. In particular, the combatants are
specialized as identical in all respects, and each knows
everything about the other. This means that geometric
symmetries in the third-order state can be exploited. The hope
is that actual application of the method will be feasible, since
the simple dynamic model requires a minimum of data
regarding state and parameters. Clearly, we are not aiming
for fidelity in the model, but, instead, are hoping to find a
guidance law that can be implemented easily and retains the
essence of the question, "Pursue or evade?"

For an arbitrary geometry, the range vector and the two
actual velocities define two separate planes in space, as in Fig.
la. .The range and relative velocity vectors define a single
plane, however, with the two normal components of actual
velocity being equal. In the analysis and results to follow,
these normal velocities are ignored, since they have no
kinematic effect on the optimal turn-rate controls. Of course,
test simulation must include these normal velocity effects, but
the analysis is done in the coplanar system of Fig. Ib.

As shown in this figure, the position and heading of aircraft
B relative to aircraft A are indicated by (x,y,H) in axes fixed
to A. The kill zones or terminal surfaces11 are line segments in
the direction of the velocities of each, and the final heading is
unconstrained.10 The forward-firing "envelope" is meant to
represent either guns or missiles, with only the range as a
parameter. Generalizing the shape of this envelope obviously
complicates matters, so this generalization is left as an
exercise for the reader.
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The velocities and limit turn rates of A and B are assumed
equal and constant. This is a troubling assumption for most,
since combat aircraft are never identical; e.g., one F-15 will
have an edge in top speed over another F-15, even at the same
flight condition. Furthermore, aircraft speeds can vary over a
wide range, and hard turns generate large drag forces, which
can cause speed changes as well. But, again, the results of this
study are meant to apply to aircraft which are dynamically
similar in a "more or less" context. Since combat aircraft are
usually "equal" within 20-40% or so, the identical features
assumed should at least provide a reference solution to which
later refinements can be added.

The purpose of all of these simplfications is to transform a
problem we cannot solve into a simpler one which we can
solve. If the results can be actually implemented as a guidance
law, the significance of the approximations can be tested in
piloted one-on-one simulations. This is the practical measure
of value of the results.

Many would reasonably argue that the proposed dynamic
model and kill zone are far too simplified for any practical use
to come from the analysis. On the other hand, any un-
constrained version of the one-on-one air combat problem has
the following characteristics which help justify the model.

1) The relative position and velocity vectors define a single
plane in space for any initial condition. This plane is un-
defined only if the geometry is colinear, i.e., head-on or tail-
chase.

2) Neglecting pilot and attitude dynamics, the optimal
normal accelerations of both A and B are applied in this
plane. In general, this plane is tilted with respect to the
horizontal during an engagement.

3) Air-to-air weapon ranges are so much greater than
aircraft dimensions that point-mass, low-order dynamics are
appropriate for describing the relative motion. This
representation is particularly apt just before termination or
capture of one by the other, and this short-term sort of
maneuver is the kind which results when the speeds are equal.

Another motivation is given by earlier studies of the simpler
ship collision-avoidance problem.12 Here it was found that
optimal (maximum miss-distance) maneuvers are surprisingly
insensitive to realistic variations in the speed and maximum
turn-rate parameters. That is, starboard- and port-turn
regions for a range of values of speeds and turn rates were
very similar from an operational standpoint, so accurate
estimates of these parameters appeared unnecessary. The
maneuvers and miss distance at short range, however, often
depend strongly on the state (x,y,H). The range, bearing, and
relative heading, therefore, are the important independent
variables in the control algorithm.

Differential games or "min-max" control problems are
found to be more difficult to solve than equivalent "max-
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162 A.W. MERZ J. GUIDANCE

max" optimization problems. It is common to find extreme
complexity9'10 in the solutions to apparently simple models of
the combat problem. Therefore, if a workable pursuit-evasion
guidance law cannot be developed under the stated sim-
plifying assumptions, role and maneuver determination by the
methods of differential games will have to remain a
fascinating problem of only academic interest, as far as air
combat is concerned. The following analysis and results
should answer this question regarding practical usefulness.

Role Determination and Necessary Conditions
Both aircraft are given unit speed and unit maximum turn

rate in the plane of the relative motion; this fixes the units of
length and time. The common kill range is the normalized
range /3, and the evader must be dead ahead of the pursuer at
termination. This constraint allows both aircraft to be pur-
suers, both being aware of the identical dynamics and weapon
of the other in this differential game of full information. The
roles can then be specified using the following geometric
observation: When the roles and turn-rate controls are known
at the relative position and heading (x,y,H), the roles and
controls are both reversed at (x' ,y',//'), where

x' = — xcosH+ysinff

y' = —xsinH—ycosH

H' = -H CD

These equations merely transform the state of aircraft B
relative to A to A's state relative to B in the plane of the
relative position and relative velocity. This static symmetry
implies that the role-reversal or mutual-kill conditions are

and
//=180deg (2)

R(x,y,H)=xsin(H/2)+ycos(H/2)=0 (3)

as shown in Fig. 2. These are angular heading symmetries
about the relative range, and both serve as stop conditions in
the backward integration of the relative motion equations
from an arbitrary end condition. More generally, when speeds
and turn rates differ, the equivalent role-reversal loci are
initial geometries which lead to simultaneous kill in the head-
on or collision geometry when both pursue. The states and
trajectories for which A pursues B require R>0, and con-
versely. These necessary conditions specify roles by static
considerations alone, both aircraft being assumed to have a
weapon of infinite range, and each aware of the other's.
Whether the pursuer actually can succeed in capturing the
evader depends additionally on the common weapon range, 0.
This parameter is used with the dynamic equations of relative
motion to determine controls and capture regions for the
specified roles of the two aircraft. In addition, the mutual kill
or Kamikaze end condition, represented by the intersection of
the surfaces of Eqs. (2) and (3), at the range 0, can be an
option of the evader for certain geometries. These relative
positions and headings will also be determined.

a) Arbitrary. b) Coplanar.

Fig. 1 Relative geometry.

The equations of relative motion describe the changes in
position and heading of aircraft B relative to A; in Cartesian
coordinates (x,y,H) , these are

x= —

y- -

/ = A,B) (4)

In coplanar range-angle off coordinates (r,<£A0B), the
dynamic equations are more symmetric:

r— — cos</>A -

(5)

The kill zone is the line segment of length $. In physical units,
the minimum-turn radius is V2Ing, where n is the maximum
load factor, and the weapon range is /3 times this radius. There
is no constraint on the final relative heading Hf, but the
evader must be dead ahead of the pursuer at temination.
As with the terminal angle-off, including limits on the final
heading10 is in the class of "suggestions for further work."

Assuming that A is the pursuer, the necessary conditions on
the controls COA,COB in the "game of kind"11 are expressed
in terms of the adjoint vector ~(Vx, Vy, VH) and" the state

R>0: A Pursues

R « 0: Symmetry
R'O: R Pursues ^

B* - ^

Fig. 2 Geometry of role specification at arbitrary heading.

a) Near-miss in relative space and real space.

b) Tail-chase, two part pursuer path.

c) Tail-chase, two-part evader path*

Fig. 3 Barrier maneuvers.
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MARCH-APRIL 1985 TO PURSUE OR TO EVADE—THAT IS THE QUESTION 163

(x,y,H) using the Hamiltonian,

. 3C= min max ( Vxx+ Vyy + VHH) =0 (6)
«A COB

The implication is that the controls must satisfy

(7)

where a positive turn rate for either A or B is to the right. In
addition, the adjoint components must satisfy the differential
equations

Figure 4 shows cross sections of the three-dimensional
barrier at eight relative headings in axes fixed to A and for
/3 = 2. This value is chosen so that features of the solution will
be clear, and not to represent a certain type of weapon. The
notation gives pursuer and evader maneuvers, in that order;
A/?SBL, for example, means A pursues by following a right-
straight path, while B turns left until termination at (0,/3,0).
The role-reversal or mutual-kill surface R = 0 is indicated by
the dashed line at each heading. Increasing the range 0 in-
creases the outer envelope size without changing the circular
near-miss paths. Again, for the head-on geometry, Eq. (2),
the roles are indeterminate for all relative positions. Hence the
diagram of Fig. 4h actually corresponds to a relative heading
just less than 180 deg.

VH= - VxcosH+ VysinH (8)

where the terminal adjoints depend on the terminal geometry.
The "barrier" is a surface in the relative space composed of

optimal trajectories which end with the evader just contacting
the pursuer's kill zone in a tangential or "near-miss" manner.
Optimal pursuit-evasion paths preceding these end states are
on the barrier and are developed as the solution to the game of
kind. This is followed by the solution to the game of degree,
in which the final time is optimized by both players, for initial
states inside the closed barrier. As mentioned earlier, the
evader may also have the option of maneuvering for the
simultaneous kill end condition from initial states inside the
barrier. Important details of these solutions will be given for a
specific value of weapon range, j8.

The Game of Kind
As suggested by the preceding discussion, there exist four

regions in the state space. Two of them are determined by
near-miss barrier trajectories for which A pursues B and for
which B pursues A. These paths intersect each other on the
surfaces of Eqs. (2) and (3) which bisect the mutual-kill
region. For such initial conditions, each must turn toward the
other to avoid being killed prematurely. The remaining
"draw" region outside the barrier is infinite because the
speeds are equal by assumption.

The solution to the game of kind, the barrier, is a rather
complex two-dimensional surface in this third-order problem.
It is a closed surface and those states inside the barrier are
relative geometries for which the evader cannot avoid capture
if the pursuer maneuvers optimally. Conversely, of course,
the pursuer cannot bring the evader inside the closed barrier if
the evader maneuvers optimally while in the draw region
outside the barrier.

When A pursues, one type of near-miss trajectory ends with
Xf = Xf = Q, so that by Eq. (4), yj = smHf when A is turning
hard toward B, and B is turning hard away from A's weapon
"envelope" or line segment of length /3. The terminal adjoint
vector is (± 1, 0, 0) with the sign depending on whether B is to
A's right or to A's left at this time. The switch functions of
Eq. (7) do not change sign for this end condition, and relative-
space and real-space paths are typically as shown in Fig. 3a.

A second type of barrier trajectory ends in the static tail-
chase geometry with >>/ = /3 and xf = Hf = Q, so the terminal
adjoint vector is (0,1,0).

Either A or B can precede this end condition with a dash,
and a pair of real-space paths are shown in Figs. 3b and 3c for
two sample cases when ft = 2. Notice that evader B cannot use
his weapon in these cases, because the conditions of Eqs. (2)
and (3) are not met. If B were to do other than an optimal
evasion, B would be killed at short range; this is the definition
of the barrier.

a)//=0deg.

c)//=60deg. d)//= 73.5 deg.

e)//=90deg. f)//=120deg.

g) //= 150 deg. h) //= 180 deg.

Fig. 4 Barrier cross sections; 0 = 2.
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164 A.W. MERZ J. GUIDANCE

Fig. 5 Barrier trajectories near kill zone and H=90 deg.

a)//=60deg. b)//=90deg.

A \

c) H = 120 deg. d) //= 150 deg.

Fig. 6 Optimal-time pursuit evasion maneuvers.

The near-miss barrier paths illustrated in Fig. 3a are found
by using the solutions to the equations of motion for
WA = WB ~ 1 • By eliminating the time to go from the solutions
we find

2 (9)

Notice that H is constant when the turns are the same, so the
relative motion stays at this heading. When inside these
circles, the evader is in the "draw" region since the circles
cease to be closed at the heading of Fig. 4d. These circles are
tangent to A's kill zone, and apply only to relative headings
below 90 deg, as shown in Figs. 4b-d.

The configuration of Fig. 4d is of special interest, since it
shows the first occurrence of the evader's dispersal point on
the barrier. At this heading, the concentric barrier segments
of Figs. 4b and 4c coalesce to a single circle, and only the
forward half remains as an actual barrier. When at the initial
condition of the cusp, the evader must choose between a hard
right turn (o>B = 1) and a dash (OJB =0), while A takes COA = 1
for either choice. The resulting paths lead to end conditions
(0,sin//*,//*) and (0,0,0), respectively. By equating x and y
coordinates as given by using these end conditions and
controls in the retrograde equations of motion, we find the
following analytic expression for the heading at which the
cusp occurs:

//*-cos//* =8-1 (10)

For 0 = 2, this yields H* = 73.5 deg as shown in Fig. 4d.
A second type of near-miss barrier trajectory results

for more nearly "head-on" initial geometries, and for final

headings between 90 and 180 deg. For the final heading
Hf = 9Q deg, the necessary conditions show that the evader's
terminal maneuver can be hard right, hard left, or dash
(COB = 1, - 1, or 0), while A turns right. But, for any heading
//>90 deg, the barrier ends at (0, sinHf, ///), ///>90 deg
using optimal maneuvers A^BL. At this heading the barrier is
extended for Hf = 90 deg using two-part maneuvers A^BLS

The barrier trajectories near //=90 deg are shown sche-
matically in Fig. 5. These lines are relative motion paths
which end at ^=^=0, for which only the (*,//) depen-
dencies are indicated. The evader's singular arc and its
tributaries are shown here more clearly. The coordinates of
this singular-arc intersection with any plane //>90 deg are
easily found as

x= 1 - cos//+ (//+/- 7T/2) sin//

y= -sin//- (//+7-?r/2)cos// (11)

and this point is noted in Figs. 4f and 4g. For the "near"
head-on geometry of Fig. 4h, this point is just outside the
barrier A/?SBL, and, therefore, does not occur on the barrier
at this heading.

The remaining type of barrier end condition corresponds to
the tail-chase geometry. Optimal controls preceding the end
state (0,0,0) require either pursuer or evader to use a turn-
straight control sequence, depending on geometry. The dash
maneuvers for either A or B are special cases occuring at
smooth junctions of two segments of the barrier, as indicated
in Figs. 4b and 4f. If maneuvers are LS and RS on either side
of a junction, the optimal maneuver at the junction is a
straight dash, 5.

If the kill range is changed, the volume of the kill region
must change in proportion; i.e., a larger ft can never be a
handicap to the pursuer. But the conical escape volume merely
changes its length (i.e., the dispersal point angle //*), since
these circular sections do not involve the range ft. The draw
region to the pursuer's right for //>90 deg is also bounded by
optimal paths independent of the weapon range, Eq. (11).
But, at a given heading, the length of the adjacent A.RERS
locus is an indirect function of weapon range. As shown for
//=150 deg in Fig. 4, if the locus A/?SBL is modified by
changing the weapon range, the dispersal-line intersection
with the locus A^B^S also changes. Furthermore, a new
feature arises when the weapon range is such that these
surfaces no longer intersect. The capture region for //>90
deg then takes a larger but as yet unknown form.

The Game of Degree
When capture can occur, the pursuer and evader are pre-

sumably interested in optimizing the time to capture. An
algorithm is sought for determining the controls for both
which accomplish this objective. When A is the pursuer, the
corresponding optimal controls are implied by the
Hamiltonian, which is now the time derivative of the optimal
capture time, which A is minimizing and B is maximizing,

3C= min max [Vxx+Vyy+VHH+l]=0

The controls are then given, as in the game of kind, by

(12)

(13)

where again the adjoints satisfy Eq. (8) with final values to be
specified by the terminal geometry.

There is a dash surface for A in the game of degree which
ends with the evader at (0,/3,/fy) . This singular arc control can
be preceded by hard turns in either direction, and the
corresponding surface is indicated in Fig. 6 by AUS for
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H - 180°*

Fig. 7 Mutual-kill barrier at three headings.

"universal surface" in Isaacs' notation.11 The maneuvers for
the evader are left turns on and near this surface.

Two dispersal surfaces for the evader are also found inside
the capture region. In both cases, B must choose between
hard-left and hard-right turns when initially on this locus,
while A's control is independent of B's choice. End conditions
for these trajectories are y/-& and j>/<& respectively. Both
of these dispersal surfaces are shown at H= 90 deg in Fig. 6,
although one exists only for //<90 deg and the other one only
for//>90deg.

The maneuvers of Fig. 6 are optimal in that the guidance
law provides a saddle-point solution with respect to the
capture time, with roles specified according to the function
R (x,y,H). But, there may be geometries13 for which evader B
can also choose to pursue, resulting in the mutual-kill end
condition (0,0,180 deg). To find these states, a second barrier
must be developed. It is found as the family of trajectories for
which the "evader's" right turn is countered by a left-right
sequence of the "pursuer," as A gets within range of the
nominal evader just before the latter has completed his of-
fensive turn. This barrier exists only for headings greater than
about 100 deg, as shown in Fig. 7, and it bounds the region
labeled EC, for "evader's choice." Any encounter beginning
at locations inside this barrier results in A capturing B, but
both tactics depend upon how the evader values his remaining
maximum lifetime relative to an earlier mutual kill.
Therefore, these short-range evader tactics can be subject to
personal interpretation, and, in practice, some statistical
considerations of the weapon systems would apply as well.

Summary and Conclusions
The purpose of this study was to determine a feasible

method for role specification and combat maneuvers in the
one-on-one aerial combat problem by the optimization
principles of differential games. It was first noted that the
relative position and relative velocity vectors for any geo-
metry define a unique plane in which the principal control
accelerations of both aircraft should be applied. The
equations of relative motion, for coplanar motion at constant
speeds, were then analyzed for the case in which the combat
aircraft are identical. This led to identifying a role-
determination function by geometric means alone. Use of this
function, together with the common weapon range, then
required real-time estimation by both aircraft of relative
position and relative velocity vectors, in terms of which roles,
optimal maneuvers, and capture regions for both were
determined.

The capture regions, as computed by methods of dif-
ferential games, of course depend in general on all of the
problem parameters. For arbitrary nonsymmetric aircraft and
weapons, even the third-order problem can require days of
analysis of computer-generated trajectories. This is because
only the necessary conditions are provided by the optimality
criteria, and a large proportion of these candidate trajectories

may not be used because portions of other trajectories are
more suitable. The extreme complexity in the resulting
solution is entirely inappropriate for application to the
combat problem.

In this paper, results have been more simply obtained
because many complexities are assumed away. For example, a
sort of "average" pair of combat aircraft is studied. This, of
course, means that neither can exploit the performance
weaknesses of the other, since they are identical. The results
are therefore graphically symmetrical. On the other hand,
airborne sensors and computers may soon enable application
of these results to actual aircraft/pilot engagements. This
encourages the development of good combat maneuver
algorithms.

The low-order aerial combat model has produced results
which have a simple interpretation. First, the pursuit-evasion
roles are specified according to the sign of a function of the
range, bearing, and heading. The finite capture regions of
both players are then found for these roles, and these regions
are the states for which the nominal evader will be captured if
the pursuer maneuvers as shown. Then, the controls for both
players for states inside these regions are optimized with
respect to the time to go. But from certain relative geometries,
the evader can choose an earlier simultaneous kill strategy,
and these regions are also found. The pursuer need be con-
cerned by the evaders's weapon only for these geometries. The
roles cannot be reversed unless the state passes through the
mutual-kill surface which bisects the relative state space, and
this can occur only if the pursuer is inattentive when the
geometry is symmetric, on this surface.

At best, the analysis and results given here might be a first
step in the actual implementation of combat guidance laws
with a foundation in the min-max optimization theory of
differential games. Modifications would be included, when
necessary and possible, to account for departures from the
present model. At worst, the results could be easily im-
plemented in pilot ranging as the first video differential game.
The name of the game would probably have to be Pursuit-
Evasion Aerial Combat Maneuvers: PACMAN.
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It is hoped that these volumes will be useful references for those working in these fields who may wish to bring themselves
up-to-date in the applications to spacecraft and a guide and inspiration to those who, in the future, will be faced with new
and, as yet, unknown design challenges.
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