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ment holds for ». The statement that (5.18)—(5.20) hold for the one-sided

limits now follows.
To establish (5.23) we first note that from (5.18) we have

(5.24) H)Y.* = —K,Y.*, HJZ,* = —pR.Z."

Since R(t, $*(t),2*(t)) = 0 and since R(¢, z, Z*(t, z)) = 0, it follows that
each component of R has a relative minimum at (¢, ¢*(t)). Hence
R. + R.Z.* = 0, and so 4R. + 4R.Z.* = 0. Since those components of x
not in i are zero on t; 1 < ¢t < ¢4, we have

wR. + wR.Z.* = 0.
Similarly, we obtain
vK, + vK,Y,* = 0.

Combining these last two equations with (5.24) and then substituting the
result into (5.17), we get (5.23).

Remark. It is clear from the proof that the assumption that on an interval
(tiz1 , ta) the components R’ of R such that R’ = 0 do not change, can be
replaced by the assumption that there are a finite number of changes in the
components of R.

We conclude by calling attention to one further necessary condition,
namely Theorem 6 of [2]. We refer the reader to [2] for the theorem, and
leave its proof in the present context for the reader. We also refer the reader
to [2] for a sufficiency theorem.
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APPLICATIONS OF FUNCTIONAL ANALYSIS TO THE THEORY
OF OPTIMAL PROCESSES*

F. M. KIRILLOVAt

1. Introduction. In the years of development of optimal control theory,
powerful general methods were created, based on the now widely known
“maximum principle” and “optimality principle.” The maximum principle
is the most convenient method for solving problems of optimal programmed
control; a detailed exposition is found in the fundamental work of L. S.
Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko [1].
The methods of dynamic programming are given for a large class of prob-
lems of control, together with computational schemes for solving functional
equations, by R. Bellman and his colleagues [2]. Parallel to the develop-
ment in these and other directions (see (3], [4]) starting in 1956, attempts
have been made to introduce methods of functional analysis into the study
of optimal control problems.

At first it seemed that the methods of functional analysis applied only
to a very restricted class of problems. But in spite of this, the number of
studies using the ideas of functional analysis has increased. This is ap-
parently explained by the fact that, in the solution of optimal control
problems, with the help of the maximum principle, or by reduction to the
Euler equations, there remains an indeterminate last step: as is known,
th(j,sg methods do not show how to select the initial condition for solving the
adjoint system. The methods of dynamic programming and the approach
that leads to the Hamilton-Jacobi equations do not have this deficiency.
However, the solution of functional equations, to which both paths lead,
18 not an easy problem, and the advantages of the equation u = u(z) over
U = u(z(t), t) are open to dispute if the control system is subject to the
influence of perturbing forces or is nonstationary.

The .functional approach to problems of optimal programmed control,
whxc}} is described below, reduces variational problems to operations with
functions of a finite number of variables. These are, as a rule, convex or
coneave functions, and determination of their extrema completes the
solution of the optimal control problem. Game situations arise in many
cases (§tatistical problems, pursuit problems, etc.), and the problem of
determming the control functions reduces to the solution of a game whose
Players have finite-dimensional vectors as their strategies.
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The method using the ideas of functional analysis turned out to be very
fruitful for a complete study of a wide class of problems in the theory of
optimal  processes (deterministic, statistical, adaptive), whether time-
optimal, or optimal in the sense of terminal error or other criteria, as well
as for two-point problems, both with variable endpoints and free endpoints.
One of the typical features of the method is that it yields necessary and
sufficient conditions for the existence of solutions. This fact makes it
possible to study qualitative aspects of optimal processes: questions of
controllability, existence and uniqueness of optimal controls, continuous
dependence of solutions on initial data or parameters, mutual dependence
of solutions of problems with various types of restrictions, etc.

Below we give a survey of certain works where the methods of functional
analysis are used in solving problems in the theory of optimal processes.
We describe methods for reducing variational (infinite-dimensional) prob-
lems to operations with functions of a finite number of variables, and we
give computational algorithms; in addition we give conditions for control-
lability and existence of solutions for certain optimal problems.

It is not the author’s intention to give a complete exposition of the prob-
lem of applications of functional analysis to the theory of optimal processes.
In particular, she does not touch on the work of A. Ya. Dubovitskii and
A. A. Milyutin, where the application of functional analysis to optimal
control problems is treated differently. The main concern is with results
obtained by the author and her colleagues in the Scientific Research De-
partment of Power and Automation of the Ural Polytechnic Institute. In
passing, results are also given from the work of other authors relating to
the compatibility of the approach to the study of optimal processes.

We discuss basically optimal processes for objects described by ordinary
linear differential equations, although the methods of solution may be
extended to integrodifferential equations, partial differential equations,
and certain nonlinear systems. We note that, from the point of view of
concrete computations, generalizations to nonlinear equations are usually
not as efficient as in the linear case. But since computation of optimal
processes in nonlinear systems is often based on successive linearizations
or piecewise-linear approximations, and leads to solution of the correspond-
ing problems for linear systems, a complete study of linear systems from
the functional analysis viewpoint is of interest, also, as a first step in anal-
ogous problems for nonlinear systems.

After describing in §2 the control systems on which the study is based,
we discuss the following questions in §§3-10:

1. The aspects of functional analysis applicable to the theory of optimal
processes (§3).

2. Problems of controllability of linear systems (§4).
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3. Examples of the reduction of control problems to functional problems.
Basic relations in optimal systems (§5).

4. Certain statistical problems of optimal control (§6).

5. Continuous dependence of solutions of optimal control problems on
initial data and parameters (§7).

6. Problems of numerical solution (§7).

7. Application of functional analysis to certain problems of pursuit

(59)- .
8. Possible generalizations (§10).

2. Basic control systems. Consider the vector equations:

(1) 2 — 4 + Co + 10
and
(2) le—f = A(t)z(t) + B(t)z(t — h) + C(t)u(t), B>0

where z = (21, -+, 2a), z € X, X is an n-dimensional space, A(t), B(t),
C(t) are matrices of dimension n X n, n X n, n. X r, respectively,
f(&) = (fu(t), -+, fu(t)), fi(t) are external perturbations, v is an r-di-
mensional control function, A is a constant delay.

The solution of (1) at time ¢ = T for a given function 4 = u(r) can be
written

.l‘()l, T,(u) = .l‘(T) e F(T,[n).l'ﬂ([n) '*’ ]:T F(T, 'r) [C(T)’M(T) + f(T)] dT,

where £y is the initial moment and the matrix # (t, ) satisfies the conditions

FU ) _ AyF(L, o),
at
E is the identity matrix.
Letting

F(l‘u s fo) = E,

/;T F(T, r)C(r)u(r) dr = Su,

F(T, t)x(te) = ¢,

I

g
[ p, o) ar

Cz,

Ive arrive at an operator form of the solution to (1), which we shall also use
ater:

(3) 2(T) =2z =8u + ¢, c=ca+c.
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We consider next (2). Suppose we are given the function ¢(r), and
z(7) = ¢(7),to — h £ 7 < ty. We can show that

(4) z = Su + ¢,

where S; is a linear operator, ¢' is a constant vector. If (2) is a stationary
system, then

T
Siu= j; F(T, r)Cu(r) dr,
0

"F(a‘;’) = AF(t,7) + BF(t — h,7), F(t,7) =0 for r>1{,
lim F(t,7) =0, lim F(t¢,r) = E,
7=>¢4+0 7>t—0
to
¢ = F(T,r 4+ h)B¢(r) dr + F(T, to)z(t).

to—h

Let W be a finite-dimensional normed linear space. We give a few well-
known definitions.

DeriniTION 1. The function ¥ = y(w) is said to be convex in the convex
region A, A C W, if for all wi , w; € A ande € [0, 1] we have the inequality

y(aws 4+ (1 — a)we) < ay(wy) + (1 — a)y(we).

DeriniTiON 2. The function 8 = B(w), w € 4, is quast-convex in w if for
each & the set ®(w) = {w:B(w) =< 8} is convex.

DEeriniTION 3. The hyperplane H = {w € W : f(w) = 0} is said to sup-
port the set M at the point wo € M if M lies on one side of H and wo € H.

DerintTion 4. Let X be a normed linear space. Let X denote the space
adjoint to X. If X** = X, then we say that the space X is reflexive.

3. The aspects of functional analysis applicable to the theory of optimal
processes. For the exposition of control problems we state some theorems
from functional analysis [5]-[8] which are basic to the solution of optimal
control problems.

3.1 Theorem on the separability of closed convex sets.

TueoREM 1. Let M, and M, be disjoint closed convex subsels of the reflexive
Banach space X, and let one of them be bounded. Then the sets My and M
can be separaled by a hyperplane. :

Thus the theorem asserts the existence of a linear functional f, f € X7,
and a number o, such that

f(h)y £a for € M, and f(h) > a for h€ M.
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This theorem was used in 1956 by R. Bellman, I. Glicksberg and O. Gross
in a two-point problem of time-optimal control. The same approach was
used in 1963 by H. A. Antosiewicz [10] on a problem with variable right
endpoint. R. Gabasov and the author showed the possibility of using a
theorem on separability of closed convex sets for other control problems
[11], [12], and they discovered a clear connection between control problems
and the theory of linear inequalities [13]. We will indicate still more prob-
lems to which this theorem can be applied.

Let pi(2) be quasi-convex functions of z.

ProsLEM (a). Minimization of a quasi-convex function of the final state
of system (1). Given the duration of the process, 7 = T — {,, determine a
function () such that

pl(x)ll=lo =0, pz(x(uo; T’ to)) = Inelll} pz(x(u, T: io)) . 80:
where U = {u: ps(u) = 0}.

ProsLEM (b). Transfer of an object from a given set p1(2)|i=, < 0 in
minimum time 7 = T° — ¢, to the set ps(z)|smre < 0, withu € U.

ProBLEM (c¢). Time-optimal control for systems with delayed argu-
ment. Suppose we are given (2) and we know that z(7) = ¢(r) for
to — h =7 < ty, x(t) = xo, where ¢(7) is given a piecewise continuous
function, and z, is a known vector. We wish to determine a control (i),
u il £ 1, where the condition

z(t) =0, t=T,

is guaranteed in the minimal possible time 7'.

In these problems, the theorem on separability of closed convex sets is
used to derive sufficient conditions for existence of solutions. Thus, for
example, Problem (a) is handled as follows. Let § be a positive number.
Let T(w) = {w: po(w) < 8}, and define the set of admissibility

A(z) = {z:x = Su+ ¢, u € U, p1i(2)|t=y, < 0}.

The sets T'(w), A(w) are convex. If T'(w), A(w) are closed, then for § < &°
the conditions are such that the above theorem is applicable. The analytic
f(il‘m of the condition of separability also leads to sufficient conditions (see
§i{) for existence of an admissible control, in which the functional being
Minimized takes on a given finite value.
A complete investigation of Problem (c) has been done by 8. V. Chura-
ova,
3.2. Existence theorem for a supporting plane to a convex surface.
THEOREM 2. Let v = y(w) be a bounded function, convex in the region
A, A © W. Then at each point (w, v(w)) we can construct a supporting plane.
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As an example of the application of this theorem, we consider the follow-
ing problem for (1).
Given the numbers &, T, 7' > &, A1, A2, and points a; , a2 in X, find a
control u(t), w € U, which minimizes the functional ¢(z, u), convex on the
set of elements (z, u), where the inequalities

| z(t) —a]l < A, | 2(T) — a2l £ 4

must be satisfied.
In this case the set

Q(Z) = {z:z= (x,y),x= Su+c,u€ U,y=¢(a:,u)]

need not be convex, but the surface §(z) = min,—sutc,ucv ¢(z, w) is convex.
An analogous situation occurs in control problems with certain restrictions
on the function %(¢). The latter problems are dealt with in [14].

3.3. The L-problem in an abstract normed linear space. Given a normed
linear space X of functions a(7), &4 < 7 = t;, functions h;(7) from X,
2 =1, .-+, n,andnumbers ¢; , L, L > 0, find a linear functional f over X
such that

fhi) =¢:, |fll =L

Conditions for solvability of this problem were obtained by M. G. Krein
[7]. N. N. Krasovskii [15] was the first to use the L-problem for solving a
problem of time-optimal control with fixed end conditions The class of
controls was determined by the condition || < L, where the norm
for u(t) is given by one of the standard relations:

(5) | || = essmax; | u;(r)], h<7=th,
n 1/2
() il = ess max (S0
ty Up
&) %] = max; (j; | u;(#)|” dr) b0 p = L

We let the symbol [Q]; denote the jth row of the matrix @. The coordinate
form of (3) leads to the equalities

2(T) — ¢ = f ([F(T, 2O, u(r)) dr,

which can be treated as the values z:(T) — ¢; of a linear functional gener-
ated by the function u(7), {y £ v = T, with bounded norm, | w || < L, on
the elements [F(T, 7)C(7)];. This is also a typical formulation of the
L-problem.
TT L kissesencob dho euthare f 11811181 ctindied limit passages from
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the solution of time-optimal problems under restrictions (6),(7)asp— o,
[C*]:i — 0,7 > 2, to the solutions of the analogous problems subject to the
restrictions (5).

Subsequently the scope of problems which could be solved with the
help of the L-problem was extended. The basic approach was construction
of special spaces in which the norms corresponded to the type of restrictions
given. Thus discrete systems with cyclic restrictions on the controlling
functions were investigated in [19]. One such problem can be stated as
follows.

Given an integer «, # > 0, determine N from the condition Nx < K
< (N + 1)m, where K is the duration of the process. Let z(n + 1)
= Az(n) + Bu(n), 2(0) = z,, where n is discrete time, and A, B are
constant matrices. For controls from the class

(s+1) r—1
oz lui(2)] = 1,
we wish to determine the minimal K such that z(K) = 0.

The investigation of I. A. Litovchenko [20], who considers, from a fune-
tional analysis viewpoint, optimal processes with stepwise restrictions on
controlling influences, is closely related to the cited work of R. Gabasov.
The latter problems allow an interesting physical interpretation.

The idea of the solution of time-optimal problems with the help of the
L-problem is generalized to more complicated problems in [21]. Many other
problems can be reduced to the L-problem if certain transformations are
made of relation (3). R. Gabasov and the author applied such reductions to
problems with bounded phase coordinates, to systems connected by con-
.trols, and to systems with inertial regulators. The same approach was used
in [22] in minimizing mean square error of a system.

i=sw

. 3/;) Problgm of irnbeddal?ility of convex bodies. This type isrepresented

Y the following problem: Given a normed linear space X of functions h(7),
b = r £ b, functions hir) from X, ¢ = 1, --- | n, and numbers L, A,
L> _0, A > 0, find a linear functional fover X and an element ¢ in n-di-
mensional space such that

f(he) = e, ifll = L.

thThe bresent situation arises, for example, when a point z moving along
k;oe trajectory of (1) is to be transferred from a given convex region to the
undary of another, also convex, region containing the first [12].

3.6. Reduction of a
Such problem,
I g :
o et x(:s) = Su + ¢(s), where s is a parameter, s ¢ 6, ue U, Uisa
Med linear space. ||l u || < L. L is a positive constant, S is a linear trans-

el 2z a,

variational problem to a game. We consider one
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formation from U to W, z(s), ¢(s) for fixed s are elements of the finite-
dimensional space W.

Consider the problem of minimizing the function f(xz(-)), z(-)
= {z(s), s € 6}. Letting z(-) = ¢(-) — y, we restrict consideration to the
case where f(c(-) — y) is quasi-convex in y. If '

'{Jréigf(ct) —w) = fe(:) —e) =d

and max {(g,e) — L[| S*g ||} = A(e) = 0, then the point 7 = ¢ does not
llolf=1
belong [12] to the interior of the region A(y) = {y:y = —Su, ||u || £ L}.
Therefore the minimum &’ for f(¢(-) — ¥) is attained on the boundary of
the region A(y).
Let {¢°, 4°} be a saddle point [23] of the following game:

min max {(fle(-) —y) + (g, 9) — L | S*l}

8
@) = maxmin (f(e() = ) + (0,9) — LIS} =a

, Then (¢, 4*) — L||8%"| = max, {(g,%") — L||8% |} = 0. Therefore
fle(+) —¢°) < f(e(+) — y) + max, {(g,y) — L | S*g |}
If ming—su, juy s f(c(+) — y) = f(c(-) — §), clearly § = 3, &’ = &".

Thus the problem of minimizing the quasi-convex function
Ff=fc(:) —y),y+Su=0,|ui <L, reduces to the game (8). A more
detailed description of control problems which reduce to games will be
given in §6.

4. Problem of controllability of linear systems. An important problem
in the theory of optimal processes and its applications is the problem of
finding a control u(ze, 21, t) which guarantees passage of a system from
the initial state x, to a given state z; . From the functional analysis point
of view this two-point problem for systems (1), (2) can be interpreted as
a problem of finding some linear functional (operator). The latter approach
makes it possible to obtain effective conditions which guarantee existence
of a control u(zo, 21, t).

We give some definitions (ef. [24]). Let Z be the space of states of 2
dynamic system, U the set of control functions, z = 2(zo, u, t) the state of
the system at time ¢ associated with the initial condition zo, 20 € Z;
2o = 2 |4=y, and the control u, u € U. Let X denote a subspace of Z, and
z = z(2, u, t) denote the projection of the state z on X. Let 6 be the zero
element in Z.
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DEerFINITION 5. The state 2o is called controlled in the class U (controlled
state) if there exist a control' u = w,, w € U, and a number T
to < T < + o, such that 2(zy, %, T) = 6. ,

DeriniTION 6. The state zo is called controlled in the class U with respect
to a given set X (with respect to a conirolled state) if there exist a control
u=U,,% € U,andanumber T, £, £ T < + 0, such that z(2,u, T) = 6,
(8. is the projection of 6 on X).

DerINITION 7. If each state 2o, 20 € Z, of a dynamic system is con-
trolled, then we say that the system is completely controlled. By a rela-
tively controlled system. we mean a dynamic system each state 2o of which is
relatively controlled.

Consider (1) where f(t) = 0, x(t) = z,. Assume that in Definitions 6
and 7 the subspace X is n-dimensional. Clearly the concept of “relatively
controlled state” is equivalent to the known [24] term “controlled state.”
The properties of completely controlled systems can be obtained from the
following considerations.

Let L be a positive constant. For (1) we find &’ = min || 2(T)||, || « || < L.
From the definition of norm and the minimax theorem [23] we have: -

llulis lulisz o gl o quisz gl
Thus
(9) 60 = max {(gy Cl) - L ” 'S*g ”}7 = F(T) tﬂ)x()'

llolf=1

The assertion follows.

LEMMA. 1. In order =|J:’or system (1) to be completely controlled, it is necessary
and suﬁicmt that || 8% || > O for arbitrary g € X*, lgli==o0.

N, ecesszt%. Sugpose system (1) is completely controlled, but there exists
a; vector g, g || = o, s/uch that || S*¢°|| = 0. Consider the set (o)
= {20: (¢, ) > 0}. If 2’ € w(o), then

max {(g, F(T, t)zo) — L || 8% |} 2 (¢°, F(T, t)av'),

IR

L > 0.

0
Tlgxs 8" > 0 for all L > 0, which contradicts the hypothesis.
ufficiency. Consider (9). For each , the function & is continuous in

and, for sufficiently lar i
» f ge L, negative. Therefore for some I, = I, hy
Quantity §° is equal to zero. e
The assertion is proved.

Thus system (1) is completely controlled only if || S¥g || 5« 0,9 € X *

" Below we let U = {u: || u | SEL,L<+ =}
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il g{ 5 0. In the case of stationary systems,

—(%—2-:=A$+Cu, $=($1,"‘,xn),
dat
this condition turns into the requirement of linear independence of the
vectors C, AC, ---, A"'C, where C is the vector obtained by R. V.

Gamkrelidze [25]. If C is a matrix, then, as was shown by J. P. Lasalle [26],
we must require that

(10) rank {C, AC, --- , A"7C} = n.

Effective conditions for controllability of nonstationary systems can be
obtained from Lemma, 1.

Now consider the equation with delay (2). The space of states for (2) is
the set of vector-valued functions '

(11) fz(r),t — h = 7 < i}.
The initial state zo of system (2) is determined by the conditions
(12) 2y = {xo(T), Zo('r) = ¢(T), th— h =7 < to, x(io) 5 .’Io}.

The space of vectors z is a subspace of Z. The state z = 2(z0, u, t) of system
(2) in the space Z at time ¢ is determined by the segment of the trajectory
(11) from the space X.

Below we assume that motions of system (2) take place (¢ = £) in the
space of continuous functions; A, B, C are constant matrices, ¥ is the set
of piecewise continuous functions, and ¢, = 0. :

According to Definitions 5-7, the state (12) of system (2) is controlled if
there exists a control w, v € U, such that z({) = 0, T — h <t < T for
T < 4.

The state (12) of system (2) is controlled with respect to X if there exists
a control u, 4 € U, such that z(7T) = 0for T < + .

1t follows from (4), (9) that system (2) is controlled with respect to X
if and only if || $:¥g || = O forg € X* || g || # 0 (analogue of Lemma 1).

BEffective necessary and sufficient conditions for relative controllability
are available for this situation and can be stated as the following theorem.

TuEOREM 3. In order for system (2) to be relatively controlled, it s necessary
that the rank of the mairix

(13) {PY, P, Psy oo, Phal,

where P! = C, P52, = AP, Pi7 = BP#,1=1,---, 2 k=1,
n — 1, be equal to n.
TaroREM 4. In order for system (2) to be relatively controlled, it is neces-
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sary and sufficient that the rank of the matriz
(14) {Qlly Q12, Q22) Tty Q'nn})

where @ = C, Q™ = BQi . +A4Q1=1, ... yek=0,1,--- n—1
Q' = 0forl =0andl > k, be equal to n.

In the case of differential equations without delay, sequences (13) and
(14) coincide, and the conditions of Theorems 3, 4 reduce to condition
(10).

The results relating to controllability described above often make it
possible to study completely the problem of controllability of system (2).
Consider, for example, the equation

(15) fi’_f = Bzt — h) + Cu(t).

)

The following assertion is true.

THEOREM 5.. In order for system (15) to be completely controlled it is neces-
sary and sufficient that it be relatively controlled.

Systen} (2) is completely controlled if the matrix C is nonsingular. The
problem is solved analogously for the equation

2™ ; (@2™2(t) + ba™ (¢ — h)) = cu(s),

which is always completely controlled.

5: Examples of reduction of control problems to functional problems.
Basm relations in optimal systems. Problems of functional analysis arise
In constructing admissible controls satisfying some boundary conditions
(Wlthout'the requirement of optimality with respect to a definite criterion).
We c.onmder several of them, with the goal of obtaining necessary and
§uﬁ301§nt .conditions for existence of solutions. We shall first show that
lgvestlgatlon of existence and uniqueness reduces to the study of finite-
dimensional extremal problems dual to those of [27].

Sugh‘e)sproblem of mznzmmng the norm of the final state of tragectories of (1).
b pose we are given points a1 , a2, a1 € X, a; € X. For given o, T' > 4,
1 > 0, we wish to find a control w'(8), | 4’| < 1, such that ’ ,

” x(tﬂ) - ay ” = Ay ’ “ :I:(uo, T, to) — Qg ” = minlil x(u, T’ tﬂ) — Qs “ - A20~

lleft=

“ e ChOOSB a numb A 41 i3l i .0 or existence ()l
er Az a;nd ﬁ d Cco dltl ns f I € i i ] 1ssi
i ' an a.dmISSIble

(16) I2(@) ~all a1, |(T) - @l < 4.
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This is a functional analysis problem. Conditions for its solvability can be
obtained by using the theorem on separability of convex closed sets (see
§3). We give them in the form of a theorem.

TuEorREM 6. In order for problem (16) fo have a solution, it is necessary
and sufficient that the following inequality be satisfied: )

ﬁa\;xl Alg, ) = I?rl”a_xl {(g, F(T, t)ar + c2 — n)
(17) —M[FH (T, gl — A llgll =11 8%} S0,

S f F(T, D)f(x) dr.

The finding of optimal controls appears as the following step in the ap-
proach which uses methods of functional analysis.

In the present case we proceed as follows. The function A(g, As) is strictly
monotone (decreasing) in A, ; therefore,

(18) A = max {(g, F(T,to)ar + 2 — aa) — A || F*(T,to)g || — || 8¥g 1}

Thus to determine A" we must solve the problem (18). If ¢° is a vector
furnishing the solution (18), then, as follows from (17), the optimal con-
trol u° satisfies the condition
(19) (8%, »") = min (8*, u).

llz|l=1

Thus Theorem 6 contains necessary and sufficient conditions for existence
of a solution to control problem (16), the maximum principle (19) and
relation (18), making it possible to find the vector ¢° (initial condition o
for the equation conjugate to (1) for u = 0 equal to {—F*(7)g"}). The
analogous conclusion can be drawn in the following problems.

Problem of minimizing the mean square error of system (1). Suppose we
want to minimize

w = [ (ga ) + jgﬁ,-ufz(r))dr, w20, 8,20, JullsL,

subject to (16), where «;, 38; are given.
As above, we begin by considering the problem

(20) J(u) =8, |l2(t) —all £ A, |[2(T) — al = 4,

where conditions for solvability can be obtained by using the approach of
the first theorems of §3.
TarorEM 7. In order for problem (20) to have a solution, it is necessary
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and sufficient that®
max {(g, F(T,bo)as + s — a2) — f5 — A || F*(T, to)g ||

7>0.]lll=1

— Mgl + ;.‘3?21 (8%, uw) + fI(w)]} = 0.

For the problem of optimal control we have the following result:

J(u) = max {(9, F(T, )as + & — @) — A || F¥(T, to)g ||

where the function %’ is determined from the condition

(21) in (876", u) + J(w) = (87", ') + J (o).

It is clear that we can pass from (17) and (20) to problems of time-
optimal control subject to conditions (16) and (20), respectively. Here the
optimal time of the process is the smallest number satisfying the inequality
in the conditions for solvability.

We go on to a discussion of problems related to the L-problem. The latter
has been used for a long time in the study of time-optimal control, in the
following formulation:’

Given points z(%), 2; = 0, transfer the trajectory (1) from the point
(%) to 21 = 0 in the least possible time, subject to [w] = 1L

Suppoge the norm of u(¢) is given by (5). First consider the problem of
transferring from the point z(#) to the point z; = 0. Its analytic form is

: " 2
@) —aw - [ P dr =t = [ P0G b
As is known [7], problem (22) has a solution if and only if

(23) A(T) ) min A(g, T) =

0.8)=—

T r
. X —1 *
Jmin [ 3 (e @@z 1
S\flppos_e system .( 1) is completely controlled. For homogeneous systems
<‘5 unction A(T) is gontinuous and strictly increasing [15] in 7', and there-
re the least 7 = 7° is found from the condition

th
fo
T° = max {T: A(g, T) = 1}

I N
n other cases (inhomogeneous system, z; = 0) the solution 7' = T° gives

t .
he smallest root of the equation A(7) = 1. The optimal control satisfies

2J(u) is computed from (3).
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the condition
(24) [ () F )P ) dr = —1,

where ¢’ is the solution of problem (23) for T = T°.
Now consider the following problem. Given numbers T, A, , ¢ > A,
find an equation for u, ||« || < 1, such that

(25) lz(t) | =4, [a(T) | 2o

The solution is carried out according to the scheme of §3.4.
THEOREM 8. In order for problem (25) to have a solution, it is necessary
and sufficient that the following inequality be satisfied:

(26) in follgll— AN F*(T,t)g |l — 118 || — (9, &)} =O.

Problem (25) is related to the following problem of optimal processes.

Problem of maximizing the norm of the final state of the trajectories of (1).
Suppose we are given the numbers A and || z(¢) || < A. We wish to choose
the control 4°, || «’ || < 1, such that

” x(uo) T: to) ” e ma.X'|| :c(u, T; to) " = 0_0.
llzjl=1

From (26) we have
‘70 = max {(g’ 02) + A “ F*(T7 to)g ” + ” ’S*g ”}'

lloil =1
From the solution ¢° of this problem we determine the optimal control,
since
(27) (8%, ) ="rrhasxl(8*g°, ).

We emphasize once more that Theorems 6, 7, 8, and (23) contain the
maximum principle (see (19), (21), (24), (27)), existence theorems for
admissible controls satisfying certain boundary conditions, existence
theorems for optimal controls, and conditions (18), (23), etc., for de-
termining the quantity ¢°. These theorems also make it possible to find
conditions under which the solutions of optimal control problems are
continuous in the initial data and the parameters.

Remark 1. Up to now we have been concerned with controls constrained
by conditions (5), (6), (7). Nonsymmetric restrictions on controls u;(r) of

the form
1 3 2 38 2
dj( ' = ui(r) < d;%, d,-< ) d® const.,

can be investigated by introducing a nonsymmetric norm.
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Remark 2. The results obtained allow a natural passage to a discrete
model. However, in connection with the fact that the corresponding func-
tions A(T) (in time-optimal problems) change their values by jumps, inan
investigation of existence problems uniqueness of controls gives rise to
peculiarities, which were noted and studied by R. Gabasov [28].

6. Some statistical problems of optimal control. Now we discuss a sto-
chastic model of a controlled process, considering the effect of random
factors of various kinds with known probabilistic characteristics.

Suppose the random vector # of phase coordinates at a fixed moment of
time ¢ = T has the form

(28) Z=Z(u, T, to) = Su + ¢, i, c€X.
Here S is a linear operator, ¢ is a random vector—the value of some operator
S: given on the space of initial conditions, external perturbations and

characteristics of another process y. For example, if % satisfies (1), then
T
¢ = F(T, to)z(te) + ft F(T, 7)f(r) dr.
[

Let f(z) be a positive function of z, and Mf(Z) be the mathematical
expectation of f(%).

DzriniTiOoN 8. We say that the vector ¢, e € X, is the average [29]
value (average) of the random vector & and the number d is the measure of
dispersion (dispersion) if the following relation is satisfied:

Mf(¢ — e) = min Mf(§ — 2) = d.
We restrict consideration to the case where f(Z) = || z|. Let ®s(s),

s € X, be the distribution function of 3.

Problem A. Find a control «’, [ %" =< 1, achieving a minimum for the
functional

Mzl = [ |2 deco

On the basis of the results of §3.5, in the general case we have

(29) min M || z] = & = max min (M He—zll + (g 2) — 8%}

llulj=1
The optimal control is found from the condition

(8%, u") = min (8%, u),
el s1

where ¢° -is an element of the saddle point {g°, 2"} of the game (29).
Thus the problem of minimizing the mathematical expectation of the
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norm of the finite state (28) reduces to the solution of the game (29).
It can be shown that for the minimal value of the functional we have the
estimate

d <8 =d+ Ade),

where ¢ is the average of the vector &, A(e) = max;,; <1 {(g,¢) — || S¥g |1},
d is dispersion. Here for completely controlled systems (¢°, 2°) > 0,
(¢, ¢) > 0. Thus, if the object is one-dimensional (more precisely, if we
are minimizing the mathematical expectation of the absolute value of one
coordinate), then the optimal control is completely determined by the
average e.

In certain cases Problem A is considerably simplified. Suppose, for
example,

1/2
1@ = ([, 2.2 a9 s
then
(8" = & + A'e), = M.

Thus in the latter case the optimal control is completely characterized
by the vector M¢:

(8*¢" ") = min (8*¢°,u),
lzl]=1
(¢, Me) — || 8¢ || = max { (g, M&)— || 8% |}.
[loll=1

We now describe another problem encountered in applications, whose
mathematical formulation leads to equations different from (28).

Suppose the action of control on an object may be discontinued at time
ty with probability p; , at time ¢, with probability p., etc. We are given a
time ¢t = T, a point 2 = z;, and wish to minimize the mathematical
expectation M|| Z — = ||.

One of the possible ways to solve this problem is the following. In (1),
assume the matrix C(¢) equals a(t)E({), where E(t) is a matrix and a(t)
is a random process of the following special form: in the intervals (¢ , i)
the funetion «(t) can take on only two values 0 or 1 with probabilities
which are related in an obvious fashion to the quantities p; . For such 8
stochastic model we can use the results of §3.5 (see [29])..)

Now suppose that in the phase space X we are given the point z; and
a neighborhood of it: || # — #: || =< e. A cross-section of the random process
Z at a fixed moment gives a collection of random vectors Z(7') for whieh
the quantity x(u) = Probability {||z — o || £ ¢ = P{llz — 21 || £ ¢
is defined.
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Problem B. Find a control «’, || 4° | < 1, such that

x(u') = max x(u).
llujll=1

In the example of minimizing the mathematical expectation of the norm
of the final state given above, we illustrated the way to reduce an infinite-
dimensional variational problem to a game with two players whose strat-
egies are finite-dimensional vectors. This method can also be applied
(with certain restrictions) to Problem B. Here it turns out to be possible
to obtain estimates for the maximally admissible probability without
computing controls; the optimal control in the given statistical problem
coincides with the optimal control in the deterministic problem:

o(T) = Su+a,  min|lSut | = |8+,

where 2’ is an element of the saddle point of a certain finite-dimensional
game. Problem B is clearly related to the determination of the minimal
radius e (for fixed 8), where

Pillz — =)l = ¢ = 8,
whose solution we will not deal with.

) .7.. Continuous dependence of solutions of optimal control problems on
initial data and parameters. The discussion of these problems is based on
the wm:k of N. N. Krasovskii [16], [30] and the author [31]. Interesting
properties of optimal controls, as functions of initial states z, and the param-
et-er.y, arise in problems subject to the restrictions (5).

First we treat the problem of time-optimal control. The specific nature
Of the problem, whose solution—controls u—is a set of discontinuous func-
tions, leads us to the following.

DFFINITI.ON 9. The optimal solution 7°(zo, ), u’(2 , u, t) is said to be
.ct?ntmuous In the initial data 2, and the parameter p at the point (z", p)
11 for each € > 0 there exists a § > 0 such that the inequalities ’

| T(%0, 1) — T(mo, 1) | < ¢,
:\‘I(’,as (EJ l ujo(xoo’ MO! t) i uio(xo y My t) | g 0) < €,

al'eC sati:sﬁed, since only | 25" — @ || + | 4 — x| < 8.
itioxlltmuous dependence of the solutions 7°(z, , 1), u'(Zo, u, ) on the
sv.qta flata, and the parameter was first proved for linear homogeneous
vStems [31]. The proof was based on the property of menotonicity [15]in 7'

Of % 5
fl‘qti}f; f}lncnon A(T) (see (23)). The function A may lose this property if
“HSIer oceurs not to the origin but into some fixed point 2; = a of the

o> 0,

in
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space X. However in this case also we may obtain effective conditions
guaranteeing continuous dependence of solutions on the initial data and
the parameter. If the system is stationary, then one of these conditions
(necessary and sufficient) is that the origin belong to the region
V=1{vev=Aa+ Cu,|jul = 1}.

Assume that the control system has the form

d.-—%:
@

where  is a parameter, p; < p < ps.

(30) A(t,w)z + C()u + f, ), lull =1,

Suppose the minimal possible passage time of the trajectory (30) from
the point (zo, 1) to the point (0, u) is T°(zo, u).

THEOREM 9. The optimal solution T°(xo , u), u’(%o, u, t) for system (30)
18 continuous in the initial data o and the parameter p if and only if for each
positive number v, we can construct a neighborhood A(z) of the point (0, p),
for points of which there exists a conirol u., || uz || < 1, transferring points
x nto the pont € = 0 tn time t < ».

In [17] the author established, for an optimal high-speed problem, exist-
ence of an optimal Lyapunov function (optimal time T°(xo, 1)) which has
continuous partial derivatives of any order in z; and the parameter u
This fact made it possible to prove [31] that the function T' = T°(x0, u),
subject to the restrictions (5), has continuous partial derivatives of any
order in the coordinates zi, || zo || 0, and the parameter 4t any point
which is not a control switching point.

Continuous dependence of solutions on initial data and a parameter
was studied, and the appropriate sufficient conditions were also established
for nonlinear systems [31].

We note that the regular properties of solutions of problems of time
optimal control, with respect to initial data in the entire space X of states
of the system and the parameter g, are inherent in problems with ‘“smooth”
restrictions, for example, of type (6).

Consequently for such problems of optimal high-speed the heuristi
principle of R. Bellman can be considered strictly justified.

In considering optimal control problems with criteria other than high
speed, in many cases (minimization concerning the final state, conver
control funetion), due to the fact that the functionals allow an explici
representation (see, for example, (18)), properties of functionals, such &
continuous dependence and differentiability in initial data and parameters
are easily proved. In more complicated problems, conditions guaranteeint
continuous dependence of solutions of optimal control problems on initi?
data and parameters can be obtained on the basis of necessary and suffr
cient conditions for existence of solutions, examples of which are given in §5
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8. Problem of numerical solution. As was shown in §5, the methods of
functional analysis applied to optimal control problems lead to additional
conditions (compared to Euler equations or the maximum principle), which,
as a rule, facilitate the problem of determining the initial condition for the
adjoint system. Essentially this is the gradient method with large steps [32].

Thus, suppose we minimize the quantity || z(T) || = (2(T), =(T))**
on the trajectories of (1), where C(t) = b(t), b(t) is the vector for the
control u(t) satisfying the condition | u(t) | < 1. We first show that the
problem of finding the gradient reduces to integration of the original
system for some specially chosen control.

It follows from (9) that -

|l

G0 min | 2(D] = 8" = max {6, = [ 160, T, 00 ar}.

We note once again that the vector g° solving problem (31) is related
as follows to the initial condition ¥ of the equation ¢y = —F*(T)¢’ con-
jugate to the homogeneous one for (1).

We let M(g) denote the expression under the max in (31). Let ¢ be

some vector, | ¢' | = 1, and let %' be the control for which
T T
f (¢', F(T, 7)bu' (7)) dr = min (g, F(T, r)bu(r)) dr.
to Ju|=1 Yeo |

We determine the point ' = Su' + c. It can be shown that

L= MY, M) = (g 2D

i T?lus the problem of determining the gradient at each step reduces to
finding 2* and consequently to integrating (1) for 4 = u'. This operation
takes considerable time in solving problem (31), and therefore gradient
metl}od‘s with small step have little application here. Since it is possible to
o'btam‘mfomxation on the position of the maximum for A(g) in the direc-
:1{911 of the gradient, we can use the method of steepest ascent. We shall
1scuss the latter for problem (31).

Suppose the vector ¢' satisfi 3% 1
g satisfies the condition (g, ¢) > 0. S
as (1(‘s01‘ibed aboves (g ) We find » 5

(S*¢", ') = min (S*g', u),
Jujs1

= Su' + c.

lh{j ; Is :1lgéve11 nlumber characterizing the accuracy of computing &,
(('_. ,Or e — (g, 1) = & > ewe proceed as follows:
. ssume that the process is at the kth step. Let ¢ =

find y* o+ A L 9" and
4 W, & such that (S7g", ) = minj. < (8%, w), 2% =

Su* + c. We
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introduce the element g*(a) = (1 — a)¢® 4+ az* and construct the func-
tion u*(a) = Ng"(a))/|| ¢*(a) |l. Let §* = 2*/|| " || and minj. <1 (8%7",%)
= (8%, u*), & = Sa* + ¢. Compute

i
do

so that then we approximate p(a) by another function. We have
W0) = (¢4, w1 = (&, )/ ),
dﬂ.k d[l.k _ <_k (gk7 zk)xk n (xk’ xk)gk)
a=1 ! '

e —_— x
dov Jawep do (xk, xk)Blz

i
=0 ’ da

P‘k(o)) “k(l)’

)
a=1

= “ xk "2 = (xk; gk)7

Assume that 8(a) is the approximating function. We compute o* from
the condition (o) = maxegag1 B(a). If || 21 || — (g™, ") = & < ¢
then the process stops. We note that these operations are sufficient for
computing second derivatives for u(a) at the points & = 1, @ = 0.

The rate of convergence of the proposed algorithm essentially depends
on the method of introducing the parameter «, and on the coordinate
system (\, ).

Successive approximation methods for other problems are described in
[14], [33].

As was shown in §5, §6, with the approach described the variational (in-
finite-dimensional) problem reduces to operations with convex (concave),
convex-concave functions of a finite number of variables. Here one also
sees the clear connection of the theory of optimal processes with nonlinear
convex programming [34], [35]. Problems (18), (23) and others from §5, §6
involve convex programming, and numerical algorithms of the latter can

be used to construct optimal controls.

9. Application of functional analysis to problems of pursuit. We consider
only problems of programmed pursuit and discuss the possibility of con-
structing strategies of a pursuing point [36}-[38].

Suppose that two points, z and y, are moving in n-dimensional phase
space, y being pursued by z. The controls %, v, represented by points, are
subject to the conditions

lull =1, Hol = m, I, m const. > 0.
The equations of motion have the form

&= A()z + C(tu + F1(1),
g = Bty + D)o + £(t),  y(t) = po,

where A(t), C(t), D(t), E(t) are known matrices and FH), () are

etven funetions.

x<t0) = Zo,

(32)
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Problem A. Find controls u’ = u’(ty, t), »° = v°(to, t) such that

max min 7, = %) =1°

im0 0) = T, 0) = T,
where T'(%, v) is the time required for the point z with control % to reach
an e-neighborhood of the point y, using the control .

Problem B. Given the instants of time f,, ¢ = T, choose u' = u'(ty, t)
o' = v'(f, t) such that ’
. . L 1

“f’llllgﬁ ”1'31-1;11” x(u, T: to) y(”: Tr to) ” h “ x(u ’ T: tD) . y(vl’ T: to) "
‘ Equ?,tions (32) are linear, and therefore, under the condition that motion
is considered from the instant ¢ = ¢, we have the representation

z2=8u+ Qv+ ¢

for the vector 2z = z — y at the moment ¢ = 7. Here § = S(T, ty)
Q = Q(T, &) are linear operators and ¢ = ¢(7, t) is a vector (cf. (,‘3))?

It follows from Theorem 4 that the point z reaches an e-neighborhood
of the point y, using the control », only when

(33) N, T, to) = mgﬁt{(g, c+ Q) —elgll — 8%} = 0.

'I.:h(? least T = T(v): satisfying (33) is equal to the minimal time of
pulauolt of the point y with control v: T(v) = minyyy <i Te(u, v). Therefore
for 7° we have ,

T° = max T(v) = T(2°).
[l sm
The control vi, ] substituted into (33), determines u’: (S*, u°)
= min,, ° i i wi
o l%p 1 jl é’:)S' g9, w), where ¢’ is the solution of problem (33) with
We introduce the functions

A(T, &) = max (v, T, ;)

lism

(34) = max {(g,¢) — el gl — 1] 8| +m || Q% i},

ligh=1

£

AT, ) < (AG W) for AT,6) > 0,
0 for A(T,4) < 0.

Let- X = H
The )\(”1, T, ), |l v || < m, be continuous from the right in 7.
Sl sma.iis(tT of )the numbers 6 satisfying the condition A*(g, t,)
oy T2t AT, to) is denoted by 7°, and the vect Vi
fm])l = T° is denoted by g ek S S
EFINITION 10. The functions #f(ta. 8) %t o\ #. < o < M one.
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structed using the relations

(S*¢, u') = “rrﬁigl 8%, w), (@Y%) = max (Q*, v),

o sm

are called 8-optimal controls.
It is easier to find 6-optimal controls in the sense defined than to de-

termine the functions %’(%, t), v"(to, t). Therefore it is of interest to find
the relationship between the numbers T7°, T° and the controls °, u’, ¢*, v'.
From the definition of the numbers 7°, T° it follows that T° = T°.
Let A(T?, t) = 0.
TuroreM 10. If A%, T, to) > 0,80 < T < T, then

(o, 8) = 0°(bs,8), t<s=T.

To ) To, ’ue(to ’ S) . uo(to ’ 8)7

If T = 6" is the smallest number for which N(¥°, T, ;) < 0, 6' < T°, and
there does not existv, || v || £ m, with the propertiesN(v, T, t5) > 0,80 < T < 8,
then T° = 6, " (to, ) = ©'(to, 8), 0" (to, 8) = "(fo, s), to < 5 < 6.

The strategy u = (s, s) for the point z guarantees transfer into an
e-neighborhood of the point y for any choice of control » in the time
1T —t.

If the situation is such that the point « knows the position of the point
y at time ¢ and the equation of motion (32), and according to these data a
strategy is to be constructed which guarantees reaching an e-neighborhood
of y in the least possible time, then on the basis of the above we conclude
that for A(T®, t,) = 0, and the conditions of Theorem 10, optimal pursuit
can be achieved with #-optimal controls. _

Note that if the conditions of Theorem 10 are not satisfied, then it makes
sense to release the point y from the #-optimal control, since then
T(W') < T(°).

We proceed to Problem B. For given #(s), o < s < T, the minimal
distance 8(v, T, t;) which the point  can approach at time s = T is

8(v, T, o) = max{(g, ¢ + Q) — || S™g |}

ligh=1

and

max 8(v, T, k) = max {(g,¢) — 1| 8% || +m | Q% |}.
v €m lioll <3
Thus the #-optimal controls constructed according to the relations (33),
(34) coincide with the controls u(ly, t), v'(t, t) for Problem B.
We let u(t, s) denote the optimal control for Problem B with initial time
i, computed at time s.
If the point z knows the technical capabilities of y (the system of equa-
tions of motion) and the position of ¥ at each moment, s, then the strategy
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u = u(l, ¢) guarantees optimal pursuit in the sense of minimal motion

away from ¥.
Other optimal pursuit problems are the subject of a special exposition.

10. On possible generalizations. It was already mentioned in the intro-
duction that the methods of investigation described are applicable to a
wide range of problems. Above, in the presentation of the basic ideas. we
chose the simplest systems. Now we describe several possible Way; to
generalize the results obtained.

(i) In studying optimal processes for ordinary differential equations we
first introduced (3). But this relation is a general property of linear systems
(partial differential, integrodifferential, integral and other equations), and
one can usually arrive at it with the help of Green’s functions or (’)ther
analogous means. Therefore the methods of functional analysis described
are also applicable here.

(ii) Also for simplicity of presentation, the class of functions was de-
fined by t:he condition || u || = 1. This restriction can be removed choosing
as a restriction on the controls any bounded convex closed set in ’the space
of Y?ctor-functions u(t). (Such problems were stated in §3.)

. (iii) vRestrictions on the controls can also be weakened in another direc-
tion. Namely, instead of (1), consider the equation

d
(35) = Az + ¢y, 0),

dt uweU,

where ¢(u, t) i 2 i i i i
o :ét » £) is a vector-function continuous in u, ¢, and U is a bounded
ad:rf;‘ }s.bplc?ssible to extend the given results to (35) because the set of
. I\lbsli tlity for 1t is convex and closed. The latter fact was proved in
O(‘Ii ) )";‘ H. Ha,lkxp [39], L. W. Neustadt [40].
1v) The reasoning by which the results described for linear systems

are extended to nonlinear systems,

(36) dx
% - f(x) u, t),

iS Tes 3 T - \T T =
I{_ ;fsrntted in work by 1\ N. Krasovskii [30] and the author 31).
e th:nztely » generalizations in this direction are less effective, since
determina? Vantagoes of the methods of functional analysis (related to the
i“"(’Stigatel(:;:laoljft gt.) disappears in this case, although it is possible to
v sy itativ i .
(3 ('i), (301, (31]. e problems in the theory of optimal processes for
(3) Ge ks . .
Su})j(;('t(??;:le?allzatlons mvolving passage to the infinite-dimensional case
& (6) (or (7),p > 1), as is known, are not difficult, since the
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theorems of functional analysis presented in §3 remain valid in this case
[5}-7]. But the effectiveness of the solutions is decreased, since the infinite-
dimensional (variational) problem again reduces to the finite-dimensional.
However, in certain cases the methods of functional analysis from the
above point of view may also be of interest in the infinite-dimensional

case [41].

It is natural that the considerations presented above relate to deter-
ministic and stochastic systems as well as to systems with adaptation.
In the latter case the necessary computations increase extraordinarily.
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AN EXTENSION OF AN INFORMATION-THEORETIC DERIVATION
OF CERTAIN LIMIT RELATIONS FOR A MARKOV CHAIN*

S. KULLBACKY

In [1] a limit relation for the transition probabilities of a stationary
Markov chain with a countable number of states was derived by the use
of certain properties of information measures. In this paper we shall use
essentially the same techniques to derive a limit relation for a Markov
chain with a countable number of states but with constant transition prob-
abilities only. We shall assume that the reader is familiar with [1] and shall
therefore omit certain details.

Consider a Markov chain with constant transition probabilities

Pu Pu
P21 Pa

(1) P= 1,
[pﬂ Sl
where
(2) ;p;,-=1, 1=12 -, p;>0,
with the absolute distributions
(3) w ™Y = Zl‘i(mpﬁ; I=12 , ;Mw =1,

and with the m-step transition probabilities

(m+ m. m, .
(4) ik s Z pjhp’(‘k) i ; p:" )phk ) Js k= 1, 2) MET 9
5 (m) _
( ) ;p.ﬂc o= 1> ] = 1127

We now prove the following theorem.
THEOREM. For a Markov chain with o countable number of stales and
constant transition probabilities, limm., (par’ /™) = 1.

.C.O l_lsider the discrimination information between the systems of prob-
abilities (see [1])

(6 (m) . ¢ (m) .
) P,, . {pil s D D(m); {I-‘tl(m), Mz(”‘), .o .}’
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