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A model problem of aircraft tracking is considered. Aircraft motion is described in the horizontal plane
x, y by a system of differential equations of the fourth order. Here, x, y are geometrical coordinates
of the aircraft position; ψ is the heading; V is the velocity value; the constant k is the maximal value
of the lateral acceleration; u, w are unknown controls, which obey geometric constraints.
In general, a relation, that determines the velocity dynamics, can be more complicated than the fourth
equation of the system. Such a relation can depend on many parameters and can not be known exactly.
Refusing a complicated description, we use the equation V̇ = w and interpret the parameters µ1, µ2
as constraints on possible values of the longitudinal acceleration V .
The system is often used for description of motion of an aircraft, a car, and other objects with similar
dynamics.
Current information about aircraft motion is represented in a form of measurements of its position in
the plane at discrete time instants. The geometric constraint on the measurement error is given. The
heading ψ and velocity V are not measured. An approach based on a construction of the informational
sets is applied for solving the problem of aircraft tracking.



 

APPROACH  WITH 
INFORMATIONAL  SETS 

 
As an informational set, we mean a totality of all 

phase states of the system consistent with 
measurements received up to the current instant. 

Theoretical questions joined with informational 
sets in different problems were investigated in works 
by N.N.Krasovskii, A.B.Kurzhanskii, A.I.Subbotin, 
F.L.Chernous’ko and their colleagues. 

But only a few works concern a construction of 
the informational sets in some certain problems. It is 
stipulated by the fact that in many specific cases the 
informational sets can have very complicated 
structure. 

In the problem considered, the informational sets 
are built in a four-dimensional space and are not 
convex. More than that, they can be disconnected. 
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INFORMATIONAL  SET  AND  THE 
 UNCERTAINTY  SET  OF  A  MEASUREMENT 
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Explain now the general scheme of construction of the informational sets. Let an informational
set I(t∗) be constructed for the instant t∗, and suppose that the next measurement comes at
some further instant t∗. Using the dynamics description, the forecast set G(t∗) is built. This
is an attainability set of the controlled system at the instant t∗ with the set I(t∗) as the initial
one. The uncertainty set H(t∗) is put in correspondence to the measurement obtained at
the instant t∗. This is a totality of all phase states consistent with the measurement and
the given constraints on the measurement error. The informational set I(t∗) is constructed
as the intersection of the sets G(t∗) and H(t∗). In the problem discussed, measurements
of an aircraft position in the horizontal plane are obtained, for example, from a radar. The
measurement error is stipulated by errors in the direction and distance, and the corresponding
set H#(t∗) of positions in the horizontal plane appears. The set H(t∗), being a set in the
four-dimensional phase space, is cylindrical in coordinates ψ, V and has the set H#(t∗) as a
projection in the plane x, y. Further, the sets H# are supposed to be convex.



 

PROCEDURE  OF  FORECAST 
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Note two special properties of the equation system: 1) the third and fourth
equations do not depend on the first and second ones, 2) the phase variables x, y
are not present in the right-hand side of the first and second equations.

It allows to construct the informational sets in the following way. A projection
I♦(t∗) of the informational set I(t∗) into the plane ψ, V is considered. A set Iψ,V (t∗)
is put in correspondence to each point of the set I♦(t∗). Each set Iψ,V (t∗) is a section
of the set I♦(t∗) by a plane {ψ = const, V = const} and is described by its projection
into the plane x, y. As the first operation when building the full forecast set, we
compute the forecast set G♦(t∗) taking the set I♦(t∗) as the initial set.

Several motions from the set I♦(t∗) come to each point ψ, V of the set G♦(t∗).
Along each motion the corresponding set Iψ,V (t∗) is transferred, and the transferred
sets are further united. In such a way, we obtain the set Gψ,V (t∗). Having imple-

mented this operation for all pairs ψ, V , we obtain the forecast set G(t∗), which is
represented in the same form as the set I(t∗).

The main difficulty is in the fact that the sets Gψ,V (t∗) are not convex. We
consciously make some roughening when substitute the set Gψ,V (t∗) by its convex
envelope Gψ,V (t∗).

So, instead of the true forecast set G(t∗), we obtain its upper estimate G(t∗)
represented by a nonconvex set G♦(t∗) = G♦(t∗) and a totality of convex sets
Gψ,V (t∗) = convGψ,V (t∗).



 

PROCEDURE  OF  INTERSECTION 
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The informational set I(t∗) is an intersection of the forecast set G(t∗) and the
uncertainty set H(t∗). The form of representation of the set G(t∗) and the cylindri-
cal property of the set H(t∗) in the coordinates ψ, V allows us to implement this
intersection in a rather simple way. Namely, we intersect each set Gψ,V (t∗) with the

set H#(t∗). These sets are convex and lie in the plane x, y. Nonempty results of
the intersection compose the informational set I(t∗).

Underline once more that under exact construction of the informational sets their
sections Iψ,V (t∗) are not convex. In our constructions, the sets Iψ,V (t∗) are convex
and give an upper approximations of the true sets Iψ,V (t∗). We apply the operation
of convexification from the initial time instant t0.



 

GRID  AND  POLYGONS 
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In practical building the informational sets, the set I♦(t) is given by a grid, and
the sets Iψ,V (t), corresponding to each node ψ, V of the grid, are convex polygons.



 

INFORMATIONAL  SET 
UNDER  VARIABLE  VELOCITY 
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Choose in the set I♦(t) all nodes with the same value of the velocity V and gather
a totality of corresponding sets Iψ,V (t). This totality represented for different values
of the coordinate ψ composes a three-dimensional set. If the grid in ψ is sufficiently
dense, then obtained informational set practically coincides with the section of the
set I(t) for chosen value of V . The slide shows three such sets for three different
values of V . Their “banana” form is typical for the problem under discussion.



 

MOTION  AND  STRUCTURE 
OF  THE  INFORMATIONAL  SET 
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Elaborated program for the informational set construction allows to implement calculations in
a real-time tempo. The simulation results are shown for the time interval 120 sec. Projections
of the informational set are shown in the plane x, y. The initial uncertainty in ψ was given
from 0 to 2π, and in V it was from 100 m/sec to 500 m/sec.
The large uncertainty in ψ had stipulated the ring form of the forecast set in the initial time
interval. The thing solid line marks the trajectory of the true motion. Measurements came
with the time step of 20 sec.
In intervals among the measurements appeared, the informational set grows; when the next
measurement comes, the set fast decreases.
The informational set at the instant 53 sec is shown in detail. Here, the whole projection is
marked in light gray, the layer corresponding to the velocity value of 277.8 m/sec is shadowed
in middle gray. Inside, one section of the informational set is marked in dark gray for the
value ψ = 1.173 rad. All these section gathered for all admissible ψ compose the layer (middle
gray) for the given V .



 

DYNAMICS  OF  MOTION 
(the case of constant velocity) 
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The case, when the velocity is known in advance and constant in time, is inter-
esting itself. Here, the motion dynamics is described by a system of three differen-
tial equations. Respectively, the informational set is built in the three-dimensional
space.



 

STRUCTURE  OF  THE  INFORMATIONAL  SET 
(the case of constant velocity) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sections with convexification 
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STRUCTURE  OF  THE  INFORMATIONAL  SET 
(the case of constant velocity) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sections without convexification 
  13 

nψ  

x  

y  

)(ψ itI
n

 

)( itI  

ψ  

In the case when the velocity is known in advance and constant in time, the
informational set is composed of the sections (layers) which correspond to each
node of the grid in ψ. Each section is a convex polygon because of the way of its
building (Slide 12). Without convexification, the sections could be non-convex as
presented in the Slide 13.



 

FORECAST  SET  AND  INTERSECTION 
(the case of constant velocity) 
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For some instant, the forecast set is shown in blue. The uncertainty set of the
measurement appeared colored in green. The uncertainty set is cylindrical in the
coordinate ψ. The area of the intersection and its result are shown in a large scale.
The obtained informational set is marked in red.



 

MOTION  AND  STRUCTURE 
OF  THE  INFORMATIONAL  SET 

(the case of constant velocity) 
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(b) (a) 

(a) 

A fragment of the informational set motion in the interval of 32 sec is shown in a
projection in the plane x, y. In this interval, there are two measurements with the
uncertainty sets in the form of a parallelogram (a) and a rectangle (b). The crosses
mark positions of the true point. In the informational set, the layers are shadowed
which located in ψ mostly close to its corresponding true values.

The three-dimensional structures are shown around the instant (a): before (the
forecast set) and after (the informational set itself) taking into account the measure-
ment at this instant. It is seen that the informational set is evidently improved in
the non-observable coordinate ψ: the layers corresponding to non-admissible values
of ψ are eliminated — they give empty intersections with the uncertainty set of the
measurement.



 

COMPARISON  OF  THE  FORECAST  SETS 
WITH  EXACT  ATTAINABILITY  SETS 
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Remind that the applied procedure of convexification leads to an error in the
construction of the informational set. To estimate this error, we compare the con-
structed forecast sets with exact attainability sets calculated under special condi-
tions. Suppose that the initial position of an aircraft and the initial heading are
exactly known, and the value of the velocity is also known and constant. For this
case, the exact formulae are known, which describe the frontier of the attainabil-
ity set in the projection in the plane x, y. The comparison is illustrated by the
attainability sets (contoured by the solid line) for four time instants. The instants
correspond to change of the heading in π/2, π, 3π/2, 2π. The forecast sets calcu-
lated by our algorithms are shadowed in gray. The arrows mark the initial heading
of the velocity vector, and the circles represent trajectories with the extreme controls
u = −1 and u = +1. Each figure has its own scale. It is seen that the outer frontiers
of the forecast sets and the attainability sets practically coincide, but their inner
frontiers are different. (For calculation of the exact attainability sets, the formulae
were used from the works by Yu.I. Berdyshev.)

Underline that the frontier of the exact attainability set can be calculated only
for a point-wise initial set. But usually, in problems with incomplete information, it
is necessary to build the forecast set having the initial set of a rather arbitrary form.
Moreover, the construction has to be implemented in a three-dimensional space if
the value of the velocity is known, and in a four-dimensional space if this value is
unknown. The approach elaborated for building the forecast set does not give the
exact result, but provides an upper approximation of the true sets and is rather
simple in numerical realization.


