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The first part of presentation is devoted to constructing the maximal stable bridges in
the three-dimensional (by the target set) linear differential game. In the second part, the
procedure elaborated is applied to building an adaptive control in problems where there is no
a priori geometric constraint for the second player’s control.
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Maximal stable bridge construction
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Differential game in the original space and
the equivalent game
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The target setM is a polyhedron in the space of three chosen 

coordinates of the phase vector

In the original game, the phase vector can have any dimension m ≥ 3, but the convex target
set depends only on three selected components of the phase vector. By the standard change of
variables, we pass to the equivalent differential game of the third order without phase variables
in the right-hand side of its dynamics. We assume that the constraints P , Q onto the controls
of the first and second players are segments.
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Approximating game
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For constructing the maximal stable bridge in the approximating game, we divide the time
axis into a grid {ti} with the step ∆ to the left from the termination instant θ, and, under this,
t0 = θ. On each time step, we “freeze” the dynamics of the equivalent system. As a result,
we obtain a collection of time sections (t-sections) Wi = W (ti) ⊂ R3 of the approximating
maximal stable bridge W .

The construction of the time sections is implemented in a backward procedure: in the first
step, on the basis of the target convex polyhedron, a convex polyhedron W1 is built; in the
second step, on the basis of the polyhedron W1, a convex polyhedron W2 is built, and so on.

The construction of each next section Wi+1 of the bridge includes operations with convex
polyhedrons, namely, constructing the algebraic sum (Minkowski sum) Fi of the polyhedron Wi

and the segment −∆Pi (this takes into account the action of the first player) and constructing
the geometric difference (Minkowski difference) of the polyhedron Fi and the segment ∆Qi

(this takes into account the action of the second player). The latter procedure is equivalent to
building the convex hull of the difference ρ(·, Fi)−ρ(·,∆Qi) of the support functions of the sets
Fi and ∆Qi.

For a continuous, positive homogeneous, and piecewise linear function γ : l → γ(l) with
convex cones of linearity, we use the following representation: on the unit sphere S, we introduce
a grid (graph) G(γ), which is defined by the intersection of the sphere with the linearity cones
of the function γ. At each node of G(γ), the value of the function γ is written.

When constructing the support function ρ(·,Wi+1) of the polyhedron Wi+1, we require that
all linearity cones of the function ρ(·,Wi) are three-edged and, respectively, the cells of the grid
G(ρ(·,Wi)) are triangular. For this, it is necessary to triangulate the initial grid, and further,
when constructing new grids, to apply (if necessary) additional triangulation of the grid.
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Taking into account action of the first player
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Processing the first player's action
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The gridG(ρ(·, Fi)) is the result of overlapping the gridsG(ρ(·,Wi)) andG(ρ(·, Pi)). Since Pi

is a segment in R3, the graph G(ρ(·, Pi)) is a circumference on the sphere S, i.e., the intersection
of the sphere and the plane passing through the origin and orthogonal to Pi. When overlapping
the grids, new nodes appear. So, when constructing the grid G(ρ(·, Fi)), we establish additional
links to provide the linearity cones of the function ρ(·, Fi) to be three-faced.
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Taking into account action of the second player
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Processing the second player's action
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We recompute values of the support function ρ(·, Fi) at the nodes of the grid G(ρ(·, Fi))
with taking into account action of the second player, and we obtain a function ηi(·).

To pass to the support function of the polyhedron Wi+1, it is necessary to exclude the nodes
of the graph G(ρ(·, Fi)), where the convexity of the function ηi(·) is violated.

To implement the convexification, a special iterative procedure was elaborated. Collect
“suspicious” links into a list. Initially, we put there that links of the grid G(ρ(·, Fi)), which
intersect with the graph G(ρ(·, Qi)), and links in incident to them. Further, a correction of
these links is implemented; this procedure corrects the violations of the local convexity. Under
this, the list of suspicious links can be added with other links. Vice versa, the links, where the
local convexity takes place, are excluded from the list. This process is ceased when the list of
suspicious links becomes empty.
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Groundwork

• Zarkh M.A., V.S. Patsko. Numerical solution of a third-order

directed game. Soviet J. Comput. Systems, 26 (4): 92–99, 

1988;

transl. from Izv. Akad. Nauk SSSR. Tekhn. Kibernet.,

no. 6: 162–169, 1987 (in Russian).

• Zarkh M.A., V.S. Patsko. Construction of maximal stable

bridges in a linear differential game.

In: Design of an Optimal Control in Game Systems,

46–61, Akad. Nauk SSSR, Ural. Nauchn. Tsentr, Sverdlovsk, 

1986 (in Russian).

To elaborate the algorithm for constructing the maximal stable bridge, we used ideas from
the cited papers.
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Algorithm of constructing the maximal stable bridge

Do, while (ti > 0)

{

Convex hull construction

Constructing the collection П (the link collection, where the function can be 

non-convex)

)(liη

Constructing the mesh )),(( iFG ⋅ρ

/* Preparation */

Forming the structure of a convex polyhedron on the basis of the vertices0WM =
Constructing the graph of the convex polyhedron on the basis of its structure)),(( 0WG ⋅ρ
Triangulation of the obtained graph (mesh                   ))),(( 0WG ⋅ρ

),(),()( iii QlFll ⋅∆−= ρρηComputing in the nodes of )),(( iFG ⋅ρ

Do, while the collection П is non-empty

{

if the function is convex in the first link from П, then

{ remove this link from П }

else

{ correct the function and the collection П }

}

)(⋅iη

)(⋅iη

/* Constructing t-sections Wi=W(ti) of the maximal stable bridge W */

}

Algorithm of Constructing the Maximal Stable Bridge

The scheme of the algorithm for constructing the stable bridge is presented. It is based on
the stepwise procedure for building the time sections. The iterative procedure of convexification
is the most expensive in computations of each next section.
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Model examples
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Model examples

0=k : the inertial point

1=k : the oscillator (the pendulum)

In the case k = 0, the dynamics shown in the slide describes the motion of an inertial point
along the direct line. In the case k = 1, a conflict-controlled oscillator is described. The first
player governs the control u, the second player governs the control v.
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Finding the value function in a two-dimensional game
(by means of a three-dimensional bridge)
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Model examples. Passing to the three-dimensional system
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In a two-dimensional game with fixed termination instant, the terminal payoff function γ is
taken as γ = max {|x1| , |x2|}. We are interested to get the value function.

To construct the epigraph of the value function, consider a game of the third order with
the target set M as the cut-off (at a level c∗) of the epigraph of the payoff function for the
two-dimensional game. Then, a t-section of the bridge of the three-dimensional game will be
the cut-off (at the level c∗) of the epigraph of the value function for the two-dimensional game
at the same instant t.
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Target set

t=θ

Here, the target set of the three-dimensional game is presented: side view. We see the
upside-down tetrahedral pyramid with vertex at the origin.
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Target set

t=θ

Here, the target set of the three-dimensional game is presented: bottom view.

12



Time sections of the bridge for several instants

t=θ-0.2

k=0 k=1

Here and further, the t-section of the bridges for different instants are presented for the
considered three-dimensional games: at the left, for the inertial point; at the right, for the
pendulum. These are views from “below”, i.e., from the side of negative values of the c-axis.
The axis y1 is horizontally leftward, the axis y2 is vertically upward.

For instants t that are near to θ, the structure of t-sections is very simple. It can be
established analytically.
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Time sections of the bridge for several instants

t=θ-0.4

k=0 k=1
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Time sections of the bridge for several instants

t=θ-0.6
k=0 k=1
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Time sections of the bridge for several instants

t=θ-0.8
k=0 k=1
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Time sections of the bridge for several instants

t=θ-1.0
k=0 k=1
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Time sections of the bridge for several instants

t=θ-1.2
k=0 k=1

Here and further, the structure of t-sections is complex.
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Time sections of the bridge for several instants

t=θ-1.4
k=0 k=1
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Time sections of the bridge for several instants

t=θ-1.6
k=0 k=1
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Time sections of the bridge for several instants

t=θ-1.8
k=0 k=1
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Time sections of the bridge for several instants

t=θ-2.0
k=0 k=1
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Adaptive control
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Adaptive control
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Adaptive Control

Ganebnyi S.A, Kumkov S.S. and V.S.Patsko. Control design in problems with an unknown

level of dynamical disturbance, Journal of Applied Mathematics and Mechanics, 2006, vol. 

70, issue 5, pp. 680–695;

transl. from Prikl. Math. Mekh., 2006, vol. 70, issue 5, pp. 753–770 (in Russian).

We consider a problem of constructing an adaptive control in linear systems with unknown
level of the dynamic disturbance. The aim of useful control is to guide n selected components
of the phase vector to a convex bounded target set at the fixed terminal instant θ. The useful
control obeys a geometric constraint. The dynamic disturbance (the second player’s control) is
assumed to be bounded, but the level of its constraint is unknown a priori.
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Principle of the adaptive control
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“strong” disturbance =>
extremal useful control; system comes outside

the target set, but the miss is minimized

Ganebnyi S.A, Kumkov S.S. and V.S.Patsko. Control design in problems with an unknown level of dynamical

disturbance, Journal of Applied Mathematics and Mechanics, 2006, vol. 70, issue 5, pp. 680-695; transl. from 

Prikl. Math. Mekh., 2006, vol. 70, issue 5, pp. 753-770 (in Russian).

Adaptive Control

weak disturbance =>
weak useful control, which steers the system near

the center of the target set

disturbance of “average level” =>

extremal useful control, which steers the 

system to the given target set, possibly, 

closely to its border

Here, the requirements to the adaptive control are presented.
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Family of stable bridges for constructing
adaptive control

Collection of stable bridges for constructing adaptive control

Stable bridges:

Parameters of the bridges:

y

An ordered family of the stable bridges is considered. Each bridge is defined by a triple:
the constraint for the first player’s control, the constraint for the second player’s control, and
the target set.

The main bridge Wmain corresponds to the triple P , Qmax, and M . Here, the sets P and
M are given by the problem formulation, and the set Qmax is chosen by us and can be treated
as a constraint for the disturbance, which is assumed to be “reasonable” in the problem under
consideration. We assume that each of the sets P , Qmax, and M contains the origin of its space.

For the case n = 2, the algorithms for constructing the adaptive control were worked out
earlier. The picture of the embedded system of bridges is presented just for such a case.

In this work, we consider the case of a three-dimensional target set. Therefore, the t-sections
of bridges are also three-dimensional. For constructing the bridges, we use the algorithm
described in the first part of the presentation.
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Simulation of the adaptive control

t-section of the stable bridges for the problem of adaptive control

t = 0

Now, let us present the simulation results for some dynamic system (we do not write it). To
construct the adaptive control, we use the principle of extremal aiming well-known in the theory
of differential games. The adaptive control is used for the first player; a random disturbance
plays the role of the second player’s control.

The following sequence of slides shows the behavior of the phase state of the system with
respect to the t-sections of the main bridge.

In the initial interval of time, the phase point is out of the main bridge (it is the red colored
point). Therefore, for constructing the adaptive control, t-sections of outer bridges are used.
The pink color shows the section, which is used for the extremal aiming in the procedure of the
adaptive control generating. At some instant, the phase point comes inside the main bridge
(when inside, the point is colored in orange). In such situations, only the t-sections of the main
bridge is shown, though the control is implemented by aiming to the t-section of some smaller
bridge. The t-section of that bridge is computed very simply, namely, with direct multiplication
of the corresponding t-section of the main bridge by an appropriate coefficient k < 1.

At the left low corner of each slide, the corresponding instant is presented. The neighbor
slides with the same instant differ from each other by the point of view. In passage from one
instant to the next, the point of view does not change.
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Simulation of the adaptive control

t = 0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 0

t-section of the stable bridges for the problem of adaptive control

29



Simulation of the adaptive control

t = 0.2

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 0.4

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 0.6

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 0.8

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.0

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.2

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.4

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.6

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.6

t-section of the stable bridges for the problem of adaptive control
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Simulation of the adaptive control

t = 1.6

t-section of the stable bridges for the problem of adaptive control
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