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Introduction

“Homicidal chauffeur” game was suggested and described by Rufus
Philip Isaacs in the report [13] for the RAND Corporation in 1951.
A detailed description of the problem was given in his book “Differential
games” published in 1965. In this problem, a “car” whose radius of turn is
bounded from below and the magnitude of the linear velocity is constant
pursues a non-inertia “pedestrian” whose velocity does not exceed some
given value. The names “car,” “pedestrian,” and “homicidal chauffeur”
turned out to be very suitable, even if real objects that R. Isaacs meant
[7, p. 543] were a guided torpedo and an evading from him small ship.

The attractiveness of the game is connected not only with its clear ap-
plied interpretation but also with the possibility of transition to reference
coordinates, which enables to deal with two-dimensional state vector. In
the reference coordinates, we obtain a differential game in the plane. Due to
this, the analysis of the geometry of optimal trajectories and singular lines
that disperse, join, or refract optimal paths becomes more transparent.

The investigation started by R. Isaacs was continued by John Valentine
Breakwell and Antony Willits Merz. They improved Isaacs’ method for
solving differential games and revealed new types of singular lines for
problems in the plane. A systematic description of the solution structure
for the homicidal chauffeur game depending on the parameters of the
problem is presented in the PhD thesis by A. Merz supervised by J. Break-
well at Stanford University. The work performed by A. Merz seems to be
fantastic, and his thesis, to our opinion, is the best research among those
devoted to concrete model game problems.

Our report is an appreciation of the invaluable contribution made by
the three outstanding scientists: R. Isaacs, J. Breakwell, and A. Merz to
the differential game theory. Thanks to the help of Ellen Sara Isaacs, John
Alexander Breakwell, and Antony Willits Merz we have an opportunity to
present formerly unpublished photographs (Figs. 1–7).

The significance of the homicidal chauffeur game is also that it stimu-
lated the appearance of other problems with the same dynamic equations
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Figure 1: Left picture: Rufus Isaacs (about 1932-1936). Right picture: Rose
and Rufus Isaacs with the daughter Ellen in Hartford, Connecticut before Isaacs
went to Notre Dame University in about 1945.

Figure 2: Rose and Rufus Isaacs with their daughters Fran and Ellen on the
shore of Lake Michigan in about 1947 at the time when Isaacs was at Notre Dame
University.
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Figure 3: Rose and Rufus Isaacs embarking on a cruise in their 40s or 50s.

Figure 4: Rufus Isaacs at his retirement party, 1979.
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Figure 5: John Breakwell at a Stanford graduation.

Figure 6: John Breakwell (April 1987).
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Figure 7: Antony Merz (March 2008).

as in the classic statement, but with different objectives of the players. The
most famous among them is the surveillance-evasion problem considered
in papers by John Breakwell, Joseph Lewin, and Geert Jan Olsder.

Very interesting variant of the homicidal chauffeur game is investi-
gated in the papers by Pierre Cardaliaguet, Marc Quincampoix, and
Patrick Saint-Pierre. The objectives of the players are usual ones, whereas
the constraint on the control of the evader depends on the distance be-
tween him and pursuer.

We also consider a statement where the pursuer is reinforced: he be-
comes more agile.

The description of the above mentioned problems in the paper is ac-
companied by the presentation of numerical results for the computation
of level sets of the value function being performed using an algorithm
developed by the authors. The algorithm is based on the approach for
solving differential games worked out in the scientific school of Nikolai
Nikolaevich Krasovskii (Ekaterinburg).

In the last section of the report, some works using the homicidal chauf-
feur game as a test example for computational methods are mentioned.
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Also, the two-target homicidal chauffeur game is noted as a very interest-
ing problem for the numerical investigation.

This edition is a translation of the Russian publication [30].
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1. Classic statement by R. Isaacs

Denote the players by the letters P and E. The dynamics read

P : ẋp = w sin θ E : ẋe = v1

ẏp = w cos θ ẏe = v2

θ̇ = wu/R, |u| ≤ 1 v = (v1, v2)
′, |v| ≤ ρ.

(1)

Here w is the magnitude of linear velocity, R is the minimum radius of turn.
By normalizing the time and geometric coordinates, one can achieve that
w = 1, R = 1. As a result, in the dimensionless coordinates, the dynamics
have the form

P : ẋp = sin θ E : ẋe = v1

ẏp = cos θ ẏe = v2

θ̇ = u, |u| ≤ 1 v = (v1, v2)
′, |v| ≤ ν.

(2)

Choosing the origin of the reference system at the position of player P and
directing y-axis along P ’s velocity vector, one arrives [14] at the following
system

ẋ = −yu + vx

ẏ = xu − 1 + vy

|u| ≤ 1, v = (vx, vy)′, |v| ≤ ν.
(3)

The objective of player P having control u at his disposal is, as soon
as possible, to bring the state vector to the target set M being a circle
of radius r with the center at the origin. The second player which steers
using control v strives to prevent this. The controls are constructed based
on a feedback law.

One can see that the description of the problem contains two indepen-
dent parameters ν and r.

R. Isaacs investigated the problem for some parameters values using his
method for solving differential games. The basis of the method is the back-
ward computation of characteristics for an appropriate partial differential
equation. First, some primary region is filled out with regular characteris-
tics, then secondary region is filled out, and so on. The final characteristics
in the plane of state variables coincide with optimal trajectories.

As it was noted, the homicidal chauffeur game was first described by
R. Isaacs in his report of 1951. The title page of this report is given in
Fig. 8.
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Figure 9A shows a drawing from the book [14] by R. Isaacs. The so-
lution is symmetric with respect to the vertical axis. The upper part of
the vertical axis is a singular line. Forward time optimal trajectories meet
this line at some angle and then go along it towards the target set M .
According to the terminology by R. Isaacs, the line is called universal.
The part of the vertical axis adjoining the target set from below is also a
universal singular line. Optimal trajectories go down along it. The rest of
the vertical axis below this universal part is dispersal: two optimal paths
emanate from every point of it. On the barrier line B, the value function
is discontinuous. The side of the barrier line where the value of the game

Figure 8: Title page of the first report [13] by R. Isaacs for the RAND Corpo-
ration.
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A B

Figure 9: Pictures by R. Isaacs from [14] explaining the solution to the homicidal
chauffeur game.

is smaller will be called positive. The opposite side is negative.

The equivocal singular line emanates tangentially from the terminal
point of the barrier (Fig. 9B). It separates two regular regions. Optimal
trajectories that come to the equivocal curve split into two paths: the first
one goes along the curve, and the second one leaves it and comes to the
regular region on the right (optimal trajectories in this region are shown
in Fig. 9A).

The equivocal curve is described through a differential equation which
can not be integrated explicitly. Therefore, any explicit description of the
value function in the region between the equivocal and barrier lines is
absent. The most difficult for the investigation is the “rear” part (Fig. 9B,
shaded region) denoted by R. Isaacs with a question mark. He could not
obtain a solution for this region.

Figure 10 shows level sets W (τ) = {(x, y) : V (x, y) ≤ τ} of the value
function V (x, y) for ν = 0.3, r = 0.3. The numerical results presented in
Fig. 10 and in subsequent figures are obtained using the algorithm [29]
by the authors of the paper. The lines on the boundary of the sets W (τ),
τ > 0, consisting of points (x, y) where the equality V (x, y) = τ holds,
will be called fronts (isochrones). Backward construction of the fronts,
beginning from the boundary of the target set, constitutes the basis of the
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algorithm. A special computer program for the visualization of graphs of
the value function in time-optimal differential games has been developed
by Vladimir Lazarevich Averbukh and Oleg Aleksandrovich Pykhteev [2].

The computation for Fig. 10 is done with the time step ∆ = 0.01 till the
time τf = 10.3. The output step for fronts is δ = 0.1. Figure 11 presents
the graph of the value function. The value function is discontinuous on
the barrier lines and on a part of the boundary of the target set. In the
case considered, the value function is smooth in the above mentioned rear
region.

In the classical homicidal chauffeur setting, the target set is a circle
centered at the origin. If the center of the target circle is shifted from the
y-axis, the symmetry of the solution with respect to y-axis is destroyed.
The arising front structure to the negative side of barrier lines can be
very complicated. One of such examples is presented in Fig. 12. The
target circle of radius 0.075 is centred at the point with the coordinates
mx = 1, my = 1.5. The computation time step ∆ = 0.01. The maximal
value of the game for computed fronts is 9.5, and it is attained at a point in
the second quadrant. The fronts are depicted with the time step δ = 0.08.
Figure 13 presents the graph of the value function.
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Figure 10: Level sets of the value function for the classical problem; game
parameters ν = 0.3 and r = 0.3; backward computation is done till the time
τf = 10.3 with the time step ∆ = 0.01, output step for fronts δ = 0.1.

Figure 11: Graph of the value function; ν = 0.3, r = 0.3.
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Figure 12: Nontrivial structure of fronts for shifted target circle; ν = 0.3,
τf = 9.5, ∆ = 0.01, δ = 0.08. Target set is a circle of radius r = 0.075 centered
at point (1, 1.5).
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Figure 13: Graph of the value function for shifted target circle; ν = 0.3,
r = 0.075.
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2. Investigations by J. Breakwell and A. Merz

J. Breakwell and A. Merz continued investigation of the homicidal
chauffeur game in the setting by R. Isaacs. Their results are partly and
very briefly described in the papers [6,23]. A complete solution is obtained
by A. Merz in his PhD thesis [22]. The title page of the thesis is shown in
Fig. 14.

A. Merz divided two-dimensional parameter space into 20 subregions.
He investigated the qualitative structure of optimal paths and the type
of singular lines for every subregion. All types of singular curves (dis-

Figure 14: Title page of the PhD thesis by A. Merz.
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persal, universal, equivocal, and switch lines) described by R. Isaacs for
differential games in the plane appear in the homicidal chauffeur game for
certain values of parameters. In the thesis, A. Merz suggested to distinct
some subtypes of singular lines and consider them separately. Namely,
he introduced the notion of focal singular lines which are universal ones,
but with tangential approach of optimal paths. The value function is
non-differentiable on the focal lines.

Figure 15 presents a picture and a table from the thesis by A. Merz that
demonstrate the partition of two-dimensional parameter space into subre-
gions with certain system of singular lines (A. Merz used symbols γ, β for

.

Figure 15: Decomposition of two-dimensional parameter space into subregions.



17

the notation of parameters. He called singular lines as exceptional lines).

The thesis contains many pictures explaining the type of singular lines
and the structure of optimal paths. By studying them, one can easily
detect tendencies in the behavior of the solution depending on the change
of the parameters.

In Figure 16, the structure of optimal paths in that part of the plane that
adjoins the negative side of the barrier is shown for the parameters corre-
sponding to subregion IIe. This is the rear part denoted by R. Isaacs with
a question mark. For subregion IIe, very complicated situation takes place.

Symbol PDL denotes the dispersal line controlled by player P . Two op-
timal trajectories emanate from every point of this line. Player P controls
the choice of the side to which trajectories come down. Singular curve SE

Figure 16: Structure of optimal paths in the rear part for subregion IIe.
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Figure 17: Level sets of the value function for parameters from subregion IId;
ν = 0.7, r = 0.3; τf = 35.94, ∆ = 0.006, δ = 0.12.

(the switch envelope) is specified as follows. Optimal trajectories approach
it tangentially. Then one trajectory goes along this curve, and the other
(equivalent) one leaves it at some angle. Therefore, line SE is similar to an
equivocal singular line. The thesis contains arguments according to which
the switch envelope should be better considered as an individual type of
singular line.

Symbol FL denotes the focal line.

The dotted curves mark boundaries of level sets (in other words,
isochrones or fronts) of the value function. The value function is not dif-
ferentiable on the line composed of the curves PDL, SE, FL, and SE.

The authors of this report undertook many efforts to compute the value
function for parameters from subregion IIe. But it was not succeeded,
because corner points that must be present on fronts to the negative side
of the barrier were absent. One of possible explanations to this failure may
be the following: the effect is so subtle that it can not be detected even for
very fine discretizations. The computation of level sets of the value function
for the subregions where the solution structure changes very rapidly with
varying parameters can be considered as a challenge for differential game
numerical methods being presently developed by different scientific teams.

Figure 17 demonstrates computation results for the case where fronts
have corner points in the rear region. However, the values of parameters
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Figure 18: Structure of optimal trajectories in subregion IVc.

correspond not to subregion IIe but to subregion IId. For the latter case,
singular curve SE remains, whereas focal line FL disappears.

For some subregions of parameters, barrier lines on which the value
function is discontinuous disappear. Figure 18 presents a picture from the
thesis by A. Merz that corresponds to subregion IVc (A. Merz as well as
R. Isaacs used the symbol ϕ for the notation of the control of player P . In
this report, the corresponding notation is u). For this subregion, barrier
lines are absent. A. Merz described a very interesting transformation of
the barrier line into two close to each other dispersal curves of players P
and E. In this case, there exist both optimal paths that go up and those
that go down along the boundary of the target set. The investigation of
such a phenomenon is of great theoretical interest.

Numerically constructed level sets of the value function for the magni-
tudes of parameters ν, r from subregion IVc are shown in Fig. 19. When
examining Fig. 19, it might seem that some barrier line exists. But this is
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not true. We have exactly the case like the one shown in Fig. 18.

Enlarged fragments of numerical constructions are given in Figs. 20, 21
(the scale of y-axis in Fig. 21 is increased with respect to that of x-axis).
The curve consisting of fronts’ corner points above the accumulation region
of fronts is the dispersal line of player E. The curve composed of corner
points below the accumulation region is the dispersal line of player P . The
value function is continuous in the accumulation region. To see where (in
the considered part of the plane) the point with a maximum value of the
game is located, additional fronts are shown. The point with the maximum
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Figure 19: Level sets of the value function; ν = 0.7, r = 1.2; τf = 24.22,
∆ = 0.005, δ = 0.1.
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Figure 20: Enlarged fragment of Fig. 19; τf = 24.22. Output step for fronts
close to the time τf is decreased up to δ = 0.005.
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Figure 21: Enlarged fragment of Fig. 19.
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Figure 22: Graph of the value function; ν = 0.7, r = 1.2. Level lines are plotted.
Salient curve corresponding to the line PDL from Fig. 18 is seen.

value has coordinates x = 1.1, y = 0.92. The value function at this point
is equal to 24.22.

The graph of the value function for the example considered is shown in
Fig 22. The level lines are plotted to make visible two curves consisting
of salient points. Taking into account the symmetry with respect to the
y-axis, the curves correspond to the dispersal singular lines EDL and PDL
in the plane x, y (see Fig. 18). Preserve the notation EDL and PDL for the
the salient curves from the graph of the value function. The perspective
and scale of Fig. 23 are chosen in such a way that the part of the graph
where the curve EDL arises is well seen. The origin of the curve is denoted
by the letter A. In Fig. 24, the part of the graph near the point B where
the curve EDL terminates (the value of the game increases when traveling
along EDL from the point A to the point B) and, simultaneously, the
curve PDL starts is shown. The salient curve which smoothly continues
the curve EDL (with the increase of the game value) is not anymore dis-
persal. As it is specified in Fig. 18, it represents an equivocal singular line.
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A

EDL

Figure 23: Fragment of the graph of the value function for the same parameters
as in Fig. 22. The salient curve corresponding to the line EDL from Fig. 18 starts
at the point A.

EDL

PDL

B

Figure 24: Fragment of the graph of the value function for the same parameters
as in Fig. 22. The salient curve corresponding to the line PDL from Fig. 18 starts
at the point B.
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3. Surveillance-evasion game

In the PhD thesis by J. Lewin [18] (performed as well under the supervi-
sion of J. Breakwell), in the joint paper by J. Breakwell and J. Lewin [19],
and also in the paper by J. Lewin and G. J. Olsder [20], both dynamics and
constraints on the controls of the players are the same as in Isaacs’ setting
but the objectives of the players differ from those in the classic statement.
Namely, player E tries to decrease the time of reaching the target set M by
the state vector, whereas player P strives to increase that time. In the first
and second works, the target set is the complement (with respect to the
plane) of an open circle centered at the origin. In the third publication, the
target set is the complement of an open cone with the apex at the origin.

The meaning related to the original context concerning two moving
vehicles is the following: player E tries, as soon as possible, to escape
from some detection zone attached to the geometric position of player P ,
whereas player P strives to keep his opponent in the detection zone as
long as possible. Such a problem was called the surveillance-evasion game.
To solve it, J. Breakwell, J. Lewin, and G. J. Olsder used Isaacs’ method.

One picture from the thesis by J. Lewin is shown in Fig. 25A, and one
picture from the paper by J. Lewin and G. J. Olsder is given in Fig. 25B.

In the surveillance-evasion game with the conic target set, examples of
transition from finite values of the game to infinite values are of interest
and can be easily constructed.

Figure 26 shows level sets of the value function for five values of parame-
ter α which specifies the semi-angle of the nonconvex conic detection zone.
Since the solution to the problem is symmetric with respect to y-axis,
only the right half-plane is shown for four of five figures. The pictures are
ordered from greater to smaller α.

In the first picture, the value function is finite in the set that adjoins the
target cone and is bounded by the curve a′b′cba. This set is filled out with
the fronts (isochrones). The value function is zero within the target set.
Outside the union of the target set and the set filled out with the fronts,
the value function is infinite.

In the third picture, a situation of the accumulation of fronts is pre-
sented. Here, the value function is infinite on the line fe and finite on the
arc ea. The value function has a finite discontinuity on the arc be. The
graph of the value function corresponding to the third picture is shown in
Fig. 27A.
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Figure 25: (A) Picture from the PhD thesis by J. Lewin. Detection zone is a
circle. (B) Picture from the paper by J. Lewin and G. J. Olsder. Detection zone
is a convex cone.
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Figure 26: Surveillance-evasion game. Change of the front structure depending
on the semi-angle α of the nonconvex detection cone; ν = 0.588, ∆ = 0.017,
δ = 0.17.

The second picture demonstrates a transition case from the first to the
third picture.

In the fifth picture, the fronts propagate slowly to the right and fill out
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B

A

Figure 27: Value function in the surveillance-evasion game. (A) ν = 0.588,
α = 130◦, (B) ν = 0.588, α = 121◦.

(outside the target set) the right half-plane as the backward time τ goes
to infinity. Figure 27B gives a graph of the value function for this case.

The fourth picture shows a transition case between the third and fifth
pictures.
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4. Acoustic version of the homicidal chauffeur game

Let us return to problems where player P minimizes and player E maxi-
mizes the time of reaching the target set M . In papers [8,9], P. Cardaliaguet,
M. Quincampoix, and P. Saint-Pierre have considered an “acoustic” vari-
ant of the homicidal chauffeur problem suggested by Pierre Bernhard [4].
It is supposed that the constraint ν on the control of player E depends on
the state (x, y). Namely,

ν(x, y) = ν∗ min
{

1,
√

x2 + y2/s
}

, s > 0.

Here, ν∗ and s are the parameters of the problem.

The applied aspect of the acoustic game: object E should not be very
loud if the distance between him and object P becomes less than a given
value s.

P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre investigated the
acoustic problem using their own method for numerical solving of differ-
ential games which goes back to the viability theory [1]. It was revealed
that one can choose the values of parameters in such a way that the set of
states where the value function is finite will contain a hole in which points
the value function is infinite. Especially easy such a case can be obtained
when the target set is a rectangle stretched along the horizontal axis.

Figures 28 and 29 demonstrate an example of the acoustic problem with
the hole. The level sets of the value function and the graph of the value
function are shown. The value of the game is infinite outside the set filled
out with the fronts. An exact theoretical description of the arising hole
and the computation (both analytical and numerical) of the value function
near the boundary of the hole seems to be very complicated problem.

Let us underline that the above mentioned hole is separated from the
target set. In Figure 30, level sets for the parameters ν∗ = 1.4, s = 2.5 are
presented. The graph of the value function is shown in Fig. 31. Also here,
a hole with infinite magnitudes of the value function arises. But this hole
touches the target set, which allows one to compute it easily through the
barrier lines emanated from some points on the boundary of the target set.
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Figure 28: Level sets of the value function in the acoustic problem; ν∗ = 1.5,
s = 0.9375; ∆ = 0.00625, δ = 0.0625.
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Figure 29: Graph of the value function in the acoustic problem; ν∗ = 1.5,
s = 0.9375.
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Figure 30: Level sets of the value function in the acoustic problem; ν∗ = 1.4,
s = 2.5; ∆ = 1/30, δ = 1/6.
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Figure 31: Graph of the value function in the acoustic problem; ν∗ = 1.4,
s = 2.5.
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5. Game with a more agile player P

The model of dynamics of player P in Isaacs’ setting is the simplest
one among those used in mathematical publications for the description of
the car motion (or the aircraft motion in the horizontal plane). In this
model, the trajectories are curves of bounded curvature. In the paper [21]
by Andrey Andreevich Markov published in 1889, four problems related to
the optimization over the curves with bounded curvature have been con-
sidered. The first problem (Fig. 32) can be interpreted as a time-optimal
control problem where a car has the dynamics of player P . Similar inter-
pretation can be given to the main theorem (Fig. 33) of the paper [11] by
Lester E. Dubins published in 1957. The name “car” is not used neither
by A. A. Markov, nor by L. Dubins. A. A. Markov mentioned problems
of railway construction. In modern works on theoretical robotics [17], an
object with the classical dynamics of player P is called “Dubins’ car.”

The next in complexity is the car model from the paper by
James A. Reeds and Lawrence A. Shepp [33]:

ẋp = w sin θ
ẏp = w cos θ

θ̇ = u, |u| ≤ 1, |w| ≤ 1.

The control u determines the angular velocity of motion. The control w is
responsible for the instantaneous change of the linear velocity magnitude.
In particular, the car can instantaneously reverse the direction of motion.
A non-inertia change of the linear velocity magnitude is a mathematical
idealization. But, citing [33, p. 373], “for slowly moving vehicles, such as
carts, this seems like a reasonable compromise to achieve tractability.”

It is natural to consider problems where the range for changing the con-
trol w is [a, 1]. Here, a ∈ [−1, 1] is the parameter of the problem. If a = 1,
Dubins’ car is obtained. For a = −1, one arrives at Reeds-Shepp’s car.

Let us replace in (2) the classic car by a more agile car. Using the
transformation to the reference coordinates, we obtain

ẋ = −yu + vx

ẏ = xu − w + vy

|u| ≤ 1, w ∈ [a, 1], v = (vx, vy)′, |v| ≤ ν.
(4)

Player P is responsible for the controls u and w, player E steers with
the control v.
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Figure 32: Fragment of the first page of the paper by A. Markov “Some exam-
ples of the solution of a special kind of problem on greatest and least quantities.”
“Problem 1: Find a minimum length curve between given points A and B pro-
vided that the following conditions are satisfied: 1) the curvature radius of the
curve should not be less than a given quantity ρ everywhere, 2) the tangent to
the curve at point A should have a given direction AC. Solution: Let M be a
point of our curve, and the straight line NMT be the corresponding tangent...”

Note that J. Breakwell and J. Lewin investigated the surveillance-evasion
game [18,19] with the circular detection zone in the assumption that, at
every time instant, player P either moves with the unit linear velocity or
remains immovable. Therefore, they actually considered dynamics like (4)
with a = 0.

The homicidal chauffeur game where player P controls the car which is
able to change his linear velocity magnitude instantaneously was consid-
ered by the authors of this paper in [31]. The dependence of the solution
on the parameter a specifying the left end of the constraint to the linear
velocity magnitude was investigated numerically.

In Figure 34, the level sets of the value function which correspond to
one and the same time τ = 3 but to different values of the parameter a
from −1 to 1 are presented. For all computations, the radius of the target
set is r = 0.3 and the constraint on the control of player E is ν = 0.3. In
case a = −1, player P controls Reeds-Shepp’s car, and the obtained level
set is symmetric with respect to both y-axis and x-axis. If a = 1, the level
set for the classical homicidal chauffeur game is obtained.
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Figure 33: Two fragments of the paper by L. Dubins.
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Figure 34: Homicidal chauffeur game with more agile pursuer. Dependence of
level sets of the value function on the parameter a for τ = 3; ν = 0.3, r = 0.3.
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Figure 35 shows the level sets of the value function for a = −0.1, ν =
0.3, r = 0.3. The computation is done backward in time till τf = 4.89.
Precisely this value of the game corresponds to the last outer front and to
the last inner front adjoining to the lower part of the boundary of the target
circle M . The front structure is well visible in Fig. 36 showing an enlarged
fragment of Fig. 35. One can see a nontrivial character of changing the
fronts near the lower border of the accumulation region. The value function
is discontinuous on the arc dhc. It is also discontinuous outside M on two
short barrier lines emanating tangentially from the boundary of M . The
right barrier is denoted by ce.
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6. Optimal strategies

When solving time-optimal differential games of the homicidal chauffeur
type (with discontinuous value function), the most difficult task is the
construction of optimal (or ε-optimal) strategies of the players. Let us
demonstrate such a construction using the last example of the previous
section.

We construct ε-optimal strategies using the extremal aiming procedure
[15,16]. The computed control remains unchanged during the next step
of the discrete control scheme. The step of the control procedure is a
modeling parameter. The strategy of player P (E) is defined using the
extremal shift to the nearest point (extremal repulsion from the nearest
point) of the corresponding front. If the trajectory comes to a prescribed
layer attached to the positive (negative) side of the discontinuity line of
the value function, then a control which pushes away from the discontinu-
ity line is utilized.

Let us choose two initial points a = (0.3,−0.4) and b = (0.29, 0.1).
The first point is located in the right half-plane below the front accumu-
lation region, the second one is close to the barrier line on its negative
side. The values of the game in the points a and b are V (a) = 4.225 and
V (b) = 1.918, respectively.

In Figure 37, the trajectories for ε-optimal strategies of the players are
shown. The time step of the control procedure is 0.01. We obtain that the
time of reaching the target set M is equal to 4.230 for the point a and
1.860 for the point b. Figure 37C demonstrates an enlarged fragment of
the trajectory emanating from the initial point b. One can see a sliding
mode along the negative side of the barrier.

Figure 38 presents trajectories for non-optimal behavior of player E and
optimal behavior of player P . The control of player E is computed using
a random number generator (random choice of vertices of the polygon
approximating the circle constraint of player E). The reaching time is
2.590 for the point a and 0.300 for the point b. One can see how the second
trajectory penetrates the barrier line. In this case, the value of the game
calculated along the trajectory drops jump-wise.

In Figure 39, the trajectories for non-optimal behavior of player P and
optimal behavior of player E are shown. The control u of player P acts in
optimal way, whereas the control w is non-optimal. For Figure 39A, w ≡ 1.
The time of reaching the target set is 7.36. For Figures 39B and C, w ≡ −1
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Figure 37: Homicidal chauffeur game with more agile pursuer. Simulation re-
sults for optimal motions. (A) Initial point a = (0.3,−0.4). (B) Initial point
b = (0.29, 0.1). (C) Enlarged fragment of the trajectory from the point b.
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Figure 38: Homicidal chauffeur game with more agile pursuer. Optimal behavior
of player P and random action of player E. (A) Initial point a = (0.3,−0.4). (B)
Initial point b = (0.29, 0.1).
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Figure 39: Homicidal chauffeur game with more agile pursuer. Optimal behavior
of player E and non-optimal control w of player P . Initial point a = (0.3,−0.4).
(A) w ≡ 1. (B) w = −0.1 until the trajectory comes to the vertical axis, after
that w = 1. (C) Enlarged fragment of the trajectory on the left.

until the trajectory comes to the vertical axis, after that w ≡ 1. Figure 39C
demonstrates an enlarged fragment of the trajectory from Fig. 39B. The
trajectory goes very close to the terminal set. The reaching time is 5.06.
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7. Homicidal chauffeur game as a test example

Presently, numerical methods and algorithms for solving antagonistic
differential games are intensively developed. Often, the homicidal chauffeur
game is used as a test or demonstration example. Some of these papers
are [3,25,26,27,29,32].

In the reference coordinates, the game is of the second order in the
phase variables. Therefore, one can apply both general algorithms and al-
gorithms taking into account the specifics of the plane. The non-triviality
of the dynamics is in that the control u enters the right hand side of the
two-dimensional control system as a factor by the state variables, and that
the constraint on the control v can depend on the phase state. Moreover,
the control of player P can be two-dimensional, as it is in the modification
discussed in Section 5, and the target set can be nonconvex like in the
problem from Section 3.

Along with the antagonistic statements of the homicidal chauffeur
problem, some close but non-antagonistic settings are known as being of
great interest for the numerical investigation. In this connection we note
the two-target homicidal chauffeur game [12] with players P and E, each
attempting to drive the state into his target set without being first driven
to the target set of his opponent. For the first time, two-target differential
games were introduced in [5]. The applied interpretation of such games
can be a dogfight between two aircrafts or ships [10,24,28].

Conclusion

Isaacs’ homicidal chauffeur game is important for applications and offers
a wide field for mathematical research. A complete solution is obtained by
A. Merz in his PhD thesis performed under the supervision of J. Breakwell.
The present paper is of a survey character. Both the classic statement
of the homicidal chauffeur game and some formulations of the problem
with modified objectives of the players or more complicated description of
dynamics are considered. Computation results on the construction of level
sets of the value function and graphs of the value function are given.
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D. Ševčovič (eds.), Algoritmy 2000, 15th Conference on Scientific

Computing. Vysoke Tatry – Podbanske, Slovakia, September 10–15,
2000. P. 207–216.

[3] Bardi M., Falcone M., Soravia P. Numerical methods for pursuit-
evasion games via viscosity solutions. In: M. Bardi, T. E. S. Raghavan,
T. Parthasarathy (eds.), Stochastic and Differential Games: Theory

and Numerical Methods, Annals of the Int. Soc. of Dynamic Games.
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