




Abstract

The problem of aircraft take-off control in the presence of wind disturbances is under
investigation. It is assumed that the wind disturbances are caused by a microburst arising
due to downward atmospheric flows. A feedback control based on differential game theory
methods is designed. The efficiency of the control is compared with results obtained using
robust control techniques.



1. Introduction

Many aircraft accidents are caused by windshears occurring due do such a meteorolog-
ical phenomenon as microburst. The microburst appears when a descending air flow hits
the earth surface. It is especially dangerous for aircrafts passing the microburst zone dur-
ing the landing or take-off, since quick changes of the wind velocity take place at relatively
low altitudes. In the last years, a lot of papers [1–19] related to the problems of aircraft
landing, abort landing, and take-off under various disturbances have been appeared.

In [1–7], aircraft motion in vertical plane is considered. Take-off, landing, and abort
landing problems are investigated. Thereby, the aircraft dynamics are described by equa-
tions of one and the same type for all these problems.

In papers [1–3,7], the wind velocity field is assumed to be known. In this case, open-
loop controls obtained by solving the corresponding optimization problems provide land-
ing, take-off, and abort landing trajectories of satisfactory quality for relatively severe
wind disturbances.

As a rule, the wind velocity field is not given in practical problems. Therefore, the
computation of feedback controls is quite actual. Feedback controls that use local infor-
mation about windshear are constructed in [4] on the basis of optimal solutions obtained
in [2]. In [5], a feedback control strategy found with the help of robust control theory
methods is investigated in connection with the take-off problem. The construction of
special Lyapunov functions is behind of these methods. The design of the Lyapunov
functions and their utilization require fitting of numerous parameters. The authors of
[5] choose parameter values very carefully and arrive at trajectories similar to the ones
obtained in [2] by solving open-loop control problems. The design of feedback strategy
in [6], where the problem of stabilization of the aircraft climb rate about some nominal
value is formulated, is also based on robust control theory.

Diverse variants of the approach based on differential game theory [20] are considered
in [8–19] in connection with the problem of aircraft landing. Thereby, the works [12–
19] consider a complete aircraft dynamics model which includes equations of lateral and
longitudinal (vertical) motion. It should be noted that the game approach does not require
any a priori information about the disturbance except for the bounds on the deviations
of the wind velocity components from their nominal values.
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The present paper is an attempt to obtain acceptable take-off trajectories with the
help of differential game theory. The model of aircraft motion employed here is the same
as in [1–7]. The use of this model is motivated by the intention to test the efficiency of
the game approach and to compare the obtained results with the results of [5].

The method of the construction of feedback game controls is the following. The original
non-linear equations are linearized about some nominal trajectory. An auxiliary linear
differential game with fixed terminal time and a convex payoff function is formulated.
For this differential game, the optimal guaranteeing control implemented by means of a
switch surface (see [10,21,22]) is designed using effective computer programs described in
[23]. The designed control is then applied to the original non-linear system. Below, the
adjective “minmax” will be used to refer to such a kind of control.

When simulating trajectories of the non-linear system, one can use different variants
of wind disturbances. In this paper, a microburst model from [5] is employed.

2. Non-linear model of aircraft motion

Let us give a short description of the non-linear model borrowed from papers [2,5].
The basic assumptions are the following. The aircraft is considered as a point mass object
that moves in vertical plane. The thrust is governed through a prescribed law. The wind
flow field is steady-state.

The disturbances are involved into the dynamics through the vertical and horizontal
components of the wind velocity vector. The aircraft is controlled via the change of the
attack angle.

2.1. Basic notation

V is the relative velocity, ft/sec;

γ the relative path inclination, rad;

x the horizontal distance, ft;

h the altitude, ft;

Wx the x-component of the wind velocity, ft/sec;

Wh the h-component of the wind velocity, ft/sec;

α the attack angle, rad;

δ the thrust inclination, rad;

g the acceleration of gravity, ft/sec2;

m the aircraft mass, lb sec2/ft;

T the thrust force, lb;

D the drag force, lb;

L the lift force, lb;

ρ the air density, lb sec2/ft4;

S the reference surface area, ft2.
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The non-linear model includes two dynamic equations

mV̇ = T cos(α + δ)−D −mg sin γ −mẆx cos γ −mẆh sin γ

mV γ̇ = T sin(α + δ) + L−mg cos γ + mẆx sin γ −mẆh cos γ
(1)

and two kinematic relations
ẋ = V cos γ + Wx

ḣ = V sin γ + Wh.
(2)

Since the wind flow field is steady-state, the time derivatives of the wind velocity
components can be represented as follows:

Ẇx =
∂Wx

∂x
(V cos γ + Wx) +

∂Wx

∂h
(V sin γ + Wh)

Ẇh =
∂Wh

∂x
(V cos γ + Wx) +

∂Wh

∂h
(V sin γ + Wh).

(3)

The thrust force is of the form:

T = A0 + A1 + A2V
2.

The coefficients A0, A1, and A2 depend on the altitude of the runway and on the ambient
temperature.

The drag and lift forces are given through the following formulas:

D =
1

2
CDρSV 2, CD = B0 + B1 + B2α

2

L =
1

2
CLρSV 2, CL =

{
C0 + C1α, α ≤ α∗∗

C0 + C1α + C2(α− α∗∗)
2, α ∈ [α∗∗, α∗].

The coefficients B0, B1, B2, C0, C1, and C2 depend on the flap setting and undercarriage
position; α∗ and α∗∗ are given constants.

The sole control parameter is the attack angle α. The objective of the control is to
avoid the collision of the aircraft subjected to wind disturbances with the earth surface.

For numerical values of the above mentioned parameters which correspond to
Boeing-727 see [2,5].
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2.2. Microburst model

The microburst model is given as follows (see [5]):

Wx =


−k, x ≤ a

−k + 2k(x− a)/(b− a), a ≤ x ≤ b

k, x ≥ b,

Wh =


0, x ≤ a

−k(h/h∗)(x− a)/(c− a), a ≤ x ≤ c

−k(h/h∗)(b− x)/(b− c), c ≤ x ≤ b

0, x ≥ b,

where c = (a + b)/2, and h∗ is a fixed constant. Parameter k defines the microburst
intensity. An example of the velocity field corresponding to this model is shown in Fig. 1.

x
( )

h
( )

Figure 1: Velocity field associated with the microburst phenomena.

System (1)–(2) uses not only the wind velocity components computed along the aircraft
path but also the analytically calculated derivatives of these components with respect to
the spatial variables.

3. The minmax control

3.1. General principles of the design

To construct the minmax control, the same method as for the landing problem de-
scribed in [13] is used. The aircraft motion with constant relative velocity V0 along a
straight line of slope γ0 to the axis x is considered as the nominal (desired) trajectory
of the aircraft. The nominal values Wx0 and Wh0 of the wind velocity components are
assumed to be known. The nominal value α0 of the attack angle is calculated using V0,
γ0, Wx0, and Wh0.
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Original non-linear system (1)–(2) is linearized about the nominal values. Thereby,
Ẇx and Ẇh are replaced as follows:

Ẇx = −kv(Wx − v1)

Ẇh = −kv(Wh − v2).
(4)

Equations (4) are being added instead of relations (3) to the linear system obtained.
The quantities Wx and Wh become state variables, whereas v1 and v2 are interpreted
as the disturbances (actions of the second player) restricted by the following geometric
constraints:

|v1| ≤ ν1, |v2| ≤ ν2.

If Wx and Wh are bounded at the initial time as follows

|Wx| ≤ ν1, |W2| ≤ ν2,

they remain within these bounds. Note that relations (4) take into account the inertial
behavior of the wind velocity (the coefficient kv is chosen according to our guess about
this inertia).

For the linear system obtained, an auxiliary differential game with fixed terminal time
tf , geometric constraints on the control parameter and the disturbance, and convex payoff
function depending on two coordinates of the state vector at the time instant tf is stated.
The first player who governs the control parameter minimizes the payoff function at the
time instant tf . The second player who is responsible for the disturbance has the opposite
objective.

Applying the above mentioned numerical methods to this auxiliary differential game,
one can find a switch surface and an optimal guaranteeing control of the first player based
on this surface. The designed minmax control is then employed to simulate trajectories
of the original non-linear system under various wind conditions including the microburst
based disturbances.

3.2. The auxiliary linear differential game

The linear system reads

ż1 = [(A1 + 2A2V0) cos(α + δ)/m− ρSV0(B0 + B1α0 + B2α
2
0)/m]z1 − cos γ0z2

+[−(A0 + A1V0 + A2V
2
0 ) sin(α0 + δ)− ρSV 2

0 (B1 + 2B2α0)/(2m)]u
+kv cos γ0(z3 − v1) + kv sin γ0(z4 − v2),

ż2 = [(A1 + 2A2V0) sin(α + δ)/(mV0) + (C0 + C1α0)ρS/m]z1 + g sin γ0/V0z2

+[(A0 + A1V0 + A2V
2
0 ) cos(α0 + δ)/(mV0) + C1ρSV0/(2m)]u

−kv sin γ0(z3 − v1)/V0 + kv cos γ0(z4 − v2)/V0,

ż3 = −kv(z3 − v1),

ż4 = −kv(z4 − v2).

(5)
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Here z1 = ∆V , z2 = ∆γ, z3 = ∆Wx, z4 = ∆Wh are the deviations of the relative velocity,
the path inclination, and the wind velocity components from their nominal values V0, γ0,
Wx0 = 0, and Wh0 = 0, respectively. The control parameter u = ∆α is the deviation of
the attack angle from its nominal value α0. Parameters v1 and v2 are interpreted as the
components of the disturbance.

The first and the second equations in (5) are obtained via linearization of non-linear
equations (1) about the nominal values. The right hand sides of equations (1) do not
depend on the aircraft altitude and the distance passed. The payoff function mentioned
above and planned to be introduced later will not depend on these quantities too. There-
fore, linearized kinematic equations (2) are not included into the system (5).

The numerical form of equations (5) reads

ż = Az + Bu + Cv, z ∈ R4, u ∈ R1, v ∈ R2 (6)

A =


−0.023751 −31.946111 0.198515 0.024323
0.000793 0.014141 −0.000088 0.000717

0 0 −0.2 0
0 0 0 −0.2


B = (−16.460542, 0.554554, 0, 0)T

C =

(
−0.188515 0.000088 0.2 0
−0.024323 −0.00071 0 0.2

)
z = (z1, z2, z3, z4), u = ∆α, v = (v1, v2)

T .

The constraint on the control u is

|u| ≤ µ, µ = 5.633◦. (7)

The restrictions on the disturbance are chosen as follows:

|v1| ≤ ν1, ν1 = 50 ft/sec

|v2| ≤ ν2, ν2 = 7 ft/sec.
(8)

To introduce the payoff function depending on z1 = ∆V and z2 = ∆γ, consider the
convex quadrangle M with the apexes (−30, 0), (−0.9, 0.02), (10, 0) (0.9,−0.02). Put

ϕ(z1, z2) = min{c > 0 : (z1, z2) ∈ c M}. (9)

Fix the time tf . The objective of the first player in the auxiliary differential game
(6)–(9) is to minimize the function ϕ at the time instant tf , the objective of the second
player is opposite. Since all equations are autonomous, no physical sense is attached to tf .

It is evident that there are many ways to introduce the auxiliary differential game.
For example, one can define some other payoff function using the same state variables,
or one can add the components ∆h and ∆ḣ to the state vector and consider a payoff
function that depends on these variables. The auxiliary differential game described above
was chosen among other variants according to the simulation results.

6



3.3. Optimal strategy of the first player in the linear differential game

It is shown in the papers [21,22] that the optimal strategy of the first player in a
linear differential game with fixed terminal time and a convex payoff function depending
on two components of the state vector is constructed by means of a switch surface in
the space of variables t, y1, y2 of an equivalent two-dimensional differential game. In our
case, the vector y = (y1, y2) is expressed through the state vector z of the system (6) as
y(t) = X(tf , t)z(t), where X(tf , t) is the matrix composed of the first and second rows
of the Cauchy matrix of the system ẋ = Ax. The optimal control assumes one of the
extremal values (µ or −µ) depending on to which side of the switch surface the state
vector lies. On the switch surface, any value from the interval [−µ, µ] is appropriate.

Since a discrete control scheme is used, one needs to compute time cross-sections of
the switch surface for a given collection of time instants only. The time cross-sections of
the switch surface are called switch lines. The algorithm for the computation of switch
lines is based on the processing of level sets of the value function.

Let Π(ti) be the switch line at ti, and the direction of the vector B(ti) = X(tf , ti)B
defines the positive side of the switch line, whereas the opposite direction defines the
negative side of it. If the point y(ti) = X(tf , ti)z(ti) lies to the positive side of Π(ti), then
u = −µ in the next step of the discrete control scheme. If y(ti) lies to the negative side
of Π(ti), then u = µ.

4. The usage of switch lines in the original non-linear system

In the auxiliary differential game, tf = 15 is chosen, and the collection of switch lines
Π(ti) for the time instants ti = i∆, ∆ = 0.1, i = 0, 150 is constructed. When simulating
trajectories of the non-linear system, the constructed switch lines are being used in the
following two ways.

Scheme 1. Let x(t) be the distance along the x-axis covered during the time t,
Vx0 = V0 cos γ0 the x-projection of the nominal relative velocity. Then t′ = x(t)/Vx0 is the
nominal time of travelling the distance x(t).

Fix t∗ ∈ (0, tf ) and consider the interval [t∗, tf ]. At the time t, the switch line Π(ti)
with

i = [t∗/∆] + mod([t′/∆], [(tf − t∗)/∆])

is taken. Here, [ ] denotes the integer part of a number, and mod(a, b) is the remainder of
division of a by b. Then the vectors y(t) = X(tf , ti)z(t) and B(ti) = X(tf , ti)B are being
computed. Here,

z(t) = (V (t)− V0, γ(t)− γ0, Wx(t)−Wx0, Wh(t)−Wh0)
T .

To find the control u, the location of y(t) with respect to the line Π(ti) is analyzed using
the vector B(ti).

This variant of using the switch lines can be interpreted as follows. The t-axis is
sampled by the instants tf − t∗, 2(tf − t∗), ..., and the values of the function ϕ defined on
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trajectories of the non-linear system are intended to be minimized at these time instants.
Thus, trajectories of the non-linear system are forced to track the nominal trajectory at
the given times but not continuously.

Scheme 2. A drawback of scheme 1 is possible destabilization of the system because
of the multiple repetition of the same time interval [t∗, tf ] in the control scheme. To
diminish this defect, another scheme of control that employs only one switch line of the
whole collection is proposed. Namely, some time instant ti∗ ∈ [0, tf ] is fixed. The control
u for the current state z(t) is being found from the analysis to which side of the line
Π(ti∗) with respect to the vector B(ti∗) the point y(t) = X(tf , ti∗)z(t) lies. Thus, it is
assumed at every time instant that the termination of the control process will happen in
time tf − ti∗. The simulation described below is done for tf − ti∗ = 3. The value of ti∗
is heuristically optimized through the analysis of simulation results. The idea of such a
control scheme has been obtained due to discussions with V.M. Kein and A.I. Krasov.

The peculiarity of minmax controls is possible rapid switching from one extremal value
to the other (e.g. in the case where the point y(t) is close to the switch surface). To reduce
the number of switches, the following rule for the computation of the control is used. Let
d be the distance from the point y(t) to the switch surface in the direction of the vector
B(ti). Put

uε =

{
u, d > ε
ud

ε
, d ≤ ε

Here, u is the value computed using control scheme 1 or 2, and ε is a fixed positive real.
When simulating trajectories of the original non-linear system, α = α0 +uε is substituted.

5. Simulation results

The initial data are the same as in [5], that is x = 0, h = 50 ft, V = 276.8 ft/sec, γ =
6.989◦. The microburst center is located at the beginning of the path, i.e. a = 3000 ft,
b = 4300 ft. The intensity k = 50.

For comparison, the robust control strategy from [5] was recovered and utilized with
the same as in [5] values of parameters.

Figure 2 shows the angle of attack (degrees) and the altitude (feet) versus time (sec-
onds). The unmarked curves correspond to control scheme 1, the curves marked with
diamonds represent results related to the robust control strategy. One can see that the
latter technique gives a smoother evolution of the attack angle.

Figure 3 presents results related to control scheme 2 (unmarked curves). As expected,
the usage of a single switch line reduces jumps in the attack angle so that the minmax
strategy becomes conquerable to the robust control (see the diamonded curves).

In Figure 4, simulation results for the case where the microburst center is shifted to
the right (i.e. a = 2300 ft, b = 6300 ft, and k = 40) are presented. The unmarked
curves correspond to control scheme 2, the curves marked with diamonds are related to
the robust control.
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Figure 2: Control scheme 1. The microburst location is: a = 300 ft, b = 4300 ft, the
intensity k = 50.

Figure 3: Control scheme 2. The microburst location is: a = 300 ft, b = 4300 ft, the
intensity k = 50.

Figure 4: Control scheme 2. The microburst location is: a = 2300 ft, b = 6300 ft, the
intensity k = 40.
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