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Introduction

This work � is devoted to two�dimensional di�erential games with the non�xed

time of termination� In such games� the �rst player tries to bring the state vector

to a given target set� the second player tries to avoid the state vector from the

meeting the target set�

According to the R�Isaacs terminology� the problem of �nding the set of all

states such that the �rst player guarantees the achievement of the target set is

called the game of kind� In Chapter �� an algorithm for solving games of kind

with linear dynamics of the general form is given� The similar algorithm for one

particular nonlinear system is described in Chapter �� The main feature of these

algorithms is that they are not based on the treatment of auxiliary problems

where the time is considered to be the payo� function	 the algorithms are based

on the analysis of families of semipermeable curves� The number of such families

is determined by the number of convexity�concavity cones of the Hamiltonian of a

control system� The solution becomes more complicated when the number of such

families increases� The complexity of problems of kind also depends on the form

of the target set� The main attention is paid to the case where the target set is a

single point in the plane�

An algorithm for �nding level sets of value functions of linear minimum�time

game problems is considered in Chapter 
� The basis of the algorithm is a

backward procedure for �nding fronts consisting of points where the value function

is constant� Besides the front� the boundary of a level set of the value function is

formed by barrier lines where the value function is discontinuous�

These algorithms were developed at the Institute of Mathematics and

Mechanics of the Ural Department of the Russian Academy of Sciences in the late

���s� early �s� They are related to the approach typical for the Ekaterinburg

scienti�c school on di�erential games� The paper outlines only short schemes and

basic ideas of the algorithms� The main points of interest are concrete examples�

�The research decscribed in this publication was made possible in part by Grant N� NME���

from the International Science Foundation






Basic notations

B � solvability set in the game of kind�

P � geometric restriction on the control parameter of the �rst player�

Q � geometric restriction on the control parameter of the second player�

m � target point in the game of kind�

H � Hamiltonian of a con�ict�controlled system�

�����i � � to � zero of the function H��� x� belonging to the set 	����i�

�����i � � to � zero of the function H��� x� belonging to the set 	����i�


����i � family of the semipermeable curves of the �rst type�


����i � family of the semipermeable curves of the second type�

p�n��i � semipermeable curve belonging to the family 
�n��i�

g���� g��� � piecewise smooth semipermeable curves of the �rst and the second

types used in the process of construction of the set B�

mr � source point in the nonlinear game of kind�

M � target set in the minimum�time game problem�

	� � usable part of the target set�

� � step of backward procedure for the minimum�time game problem�

W �i��M� � level set of the value function corresponding to the time i� and

to the target set M in the minimum�time game problem�

Fi � front of the set W �i��M��





Chapter �

Linear two�dimensional di�erential games of

kind

�� Statement of the problem

We consider the following system of the second order�

�x � Ax � u� v �����

x � R�� u � P� v � Q�

Here x is the state vector	 A is a constant 
 � 
 matrix	 u and v are control

variables of the �rst and the second players bounded by geometric constraints P

and Q� respectively� The sets P and Q are convex closed nondegenerated into

points polygons� The �rst player strives to control system ����� so that the state

vector arrives at a given point m � R�� the second player tries to prevent this�

It is required to �nd the set B of all initial states x� � R� such that a feedback

strategy of the �rst player guarantees the transfer of system ����� from x� to m in

some �nite time under any actions of the second player�

In accordance with the terminology of R�Isaacs ���	 problems of �nding the

set B are called games of kind� When studying the possibility for system �����

to be brought to m	 we are only interested in reaching of m within a �nite

time interval but the duration of the process is not crucial� The estimate of the

duration can depend on the initial point x� and can go to in�nity when varying

x� in the set B� So	 problems we consider are di�erential games with unbounded

time of termination�

Let us de�ne the set B more carefully� Let U be the set of all strategies U of the

�rst player� Namely	 this is the set of all functions de�ned on R��R� with values

in P� Here	 R� is the set of nonnegative reals� Let � be an arbitrary partition of

R� formed by points � � t� � t� � ��� �ti �� as i���� d��� its diameter	 and

v��� measurable function of time with values in Q� For �xed ��U� v���� we denote

by y�� ��� x�� U� v���� the Euler spline �
	 �� of system ����� emanating from the

point x�� We denote by B the set of all x� � R� for each of which there exist a

strategy U � U 	 a time �� and a mapping �� ���� from R� into R� such that for

�



any � 	 �	 any partition � with the diameter d��� � ����� and any function v���

with values in Q we can �nd a time t � ��� �� at which y�t��� x�� U� v���� lies in the

�neighborhood of the point m�

By the alternative theorem �
	 ��	 for any point x� � R� n B� the second

player can prevent system ����� from attaining m within any prescribed �nite

time interval�

In order to simplify the algorithm of �nding B� we exclude from considerations

the case of �onetype objects� where there exists a polyhedron D such that P �

�Q�D� In this case	 game ����� can be reduced �
	 �� to the following control

problem

�x � Ax � w� w � D�

�� Smooth semipermeable curves

Our algorithm for �nding the set B is based on the construction of special lines

�semipermeable curves ���� in the phase plane� Let us de�ne smooth semipermeable

curves�

We consider a smooth curve p in the plane �Fig� ����� Let � and � mark

positive and negative sides of the curve� Denote by 
 �x� the normal vector to p

at a point x directed to the positive side of p� The curve p is called semipermeable

if for any point x of this curve the following condition is ful�lled

max
u�P

min
v�Q

h
�x�� Ax � u� vi � �� ���
�

Let us make the sense of the semipermeability property more precise� Let

u� � P be a control of the �rst player which gives the maximum to the lefthand

side of ���
�� Then

h
�x�� Ax � u� � vi � �

for any control v � Q of the second player� This means that for u � u�

the vvectogram of system ����� lies in the positive halfspace determined by

the vector 
�x� �Fig� ����� In other words	 the control u� of the �rst player

prevents trajectories of system ����� from penetrating from the positive side into

the negative side of the curve p�
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Fig� ���� The property of semipermeability�

Let now v� � Q be a control of the second player giving the minimum in ���
��

Then

h
�x�� Ax � u� v�i � �

for any u � P � This means that for v � v� the uvectogram of system ����� belongs

to the negative halfspace determined by 
�x�� So	 the control v� of the second

player prevents trajectories of system ����� from penetrating from the negative

side to the positive side of the curve p�

The solution methods for games of kind described in the book of R�Isaacs

are based on constructing semipermeable curves� This methods are applicable

to cases where two smooth semipermeable curves emanated from the target set

and faced each to other by positive sides either have an intersection point or

have in�nite length� It can be often shown in this case that B coincides with the

set contained between these two curves� However	 in most interesting cases the

smooth semipermeable curves emanating from the target set may not have points

in common and one of them or both have �nite length�

In ����� methods for constructing the set B based on a sewing the

semipermeable curves are proposed� With these methods	 the linear secondorder

di�erential game of kind considered in this chapter can be completely solved� A

short sketch of these methods and arising from them algorithm for constructing

B will be given in the next section� Other methods for �nding B based on sewing

semipermeable curves were studied in ����
��

�



�� Families of semipermeable curves of �rst and

second types

We consider the function

��
� � max
u�P

min
v�Q

h
� u� vi � max
u�P

h
� ui �min
v�Q

h
� vi� 
 � R��

Due to our assumptions about P and Q� the phase plane can be divided into

even number of running in succession convex cones K�� ����K�s� with the apex in

the origin	 the nonempty interior	 and an opening less than � such that� �� the

function � is concave for any odd j � �� 
s and is convex for any even j � �� 
s�


� the restriction of � onto each Kj is not a linear function�

We denote by E an arbitrary consisting of 
s links closed polygonal line in the

plane such that if Ej is its link numbered j	 then Kj � 	���Ej� Let us agree that

the cone Kj�� follows counterclockwise the cone Kj 	 j � �� 
s� � �Fig� ��
�� For

any vectors 
�� 
� with the ends belonging to E and not collinear one to other	 the

notation 
� � 
� means that the direction of the vector 
� after the counterclockwise

rotation by not exceeding � angle coincides with that of the vector 
��

E�

K�

K�

E�

E�

K�

E�

K�

E�

K�

E� K�
�

Fig� ��
� Partition into the cones Kj �
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We introduce the function

H�
� x� � max
u�P

min
v�Q

h
�Ax � u� vi � h
�Axi � ��
�� 
 � R��

It is evident that the function H��� x� inherits the convexityconcavity properties

of the function � in each of the cones Kj�

The semipermeable curves will be formed using zeros of the function H��� x��

We say that 
� � E is a � to � zero of the function H��� x� if H�
�� x� � � and

H�
� x� � � �H�
� x� 	 ��

for any 
 � 
� �
 	 
�� that lies su�ciently close to 
��

We de�ne � to � zeros of the function H��� x� in the similar way�

We denote by �	�
��	 �	�
��	���	 �	�
�s the pairwise unions E� 	 E�	 E� 	 E�	���	

E�s��	E�s� respectively� Let �	�
��	 �	�
��	���	 �	�
�s be the pairwise unions E�	E�	

E� 	E�	���	 E�s 	E�� Due to above mentioned convexityconcavity properties	 the

function H��� x� may have at most one � to � zero belonging to �	�
�i� i � �� s� and

at most one � to � zero belonging to �	�
�i� i � �� s�We denote by S	�
�i �S	�
�i�� i �

�� s� the set of all x � R� for each of which there exists a � to � � � to �� zero of the

function H��� x� belonging to �	�
�i ��	�
�i�� Let 
	�
�i�x� � �	�
�i � 
	�
�i�x� � �	�
�i� �

be a vector which is a � to � � � to �� zero� Function 
	n
�i���� n � �� 
� i � �� s�

is locally Lipschitz on S	n
�i�

Let �� and �� be matrices of the rotation by ��
 counterclockwise and

clockwise	 respectively�

We consider the di�erential equations

dz

d�
���


	�
�i�z�� z � S	�
�i� �����

dz

d�
� ��


	�
�i�z�� z � S	�
�i� �����

We denote by z	�
�i��� z�� a solution of di�erential equation ����� satisfying the initial

condition z	�
�i��� z�� � z� and maximally extended in both positive and negative

directions with respect to �� Similarly	 let z	�
�i��� z�� be a solution of ����� satisfying

the initial condition z	�
�i��� z�� � z�� It follows from the form of equations �����	

����� that all phase trajectories of these equations are semipermeable curves�

Corresponding to solutions phase trajectories form a family  	�
�i � 	�
�i� �lling

the region S	�
�i �S	�
�i�� Curves of the �rst family obtained with the use of � to �

�



zeros of H��� x� will be called the semipermeable curves of the �rst type� Curves

of the second family obtained with the use of � to � zeros will be called the

semipermeable curves of the second type�

The number of families of semipermeable curves of the �rst and the second

types depends on the number of convexityconcavity regions of the function ��

If P or Q is a segment	 one can divide the plane into four running in succession

convex cones Kj so that the function � is concave in K��K� and is convex in

K��K�� Therefore	 s � 
� and we have two families of semipermeable curves of

the �rst type and two families of semipermeable curves of the second type�

�� Short scheme of algorithm for constructing

solvability set B� Computed examples for games of kind

There may occur that the set B consists of the single point m� This means that for

any initial point x� 
� m the second player can prevent system ����� from reaching

the point m in any �nite time� Necessary and su�cient conditions of the equality

B � f m g are given in ��������

The algorithm ����� for computing the set B is based on assembling some

piecewise smooth curves g	�
� g	�
 from smooth semipermeable curves and on the

analysis of mutual locations and intersections of g	�
� g	�
� The curve g	�
 is designed

using arcs belonging to the families  	�
�i� i � �� s� and the curve g	�
 is composed

of arcs belonging to the families  	�
�i� i � �� s�

In this paper we restrict ourselves by the explanation of the idea of the

algorithm in the case where the set P is a segment and the setQ is a convex polygon

in the plane� In this case	 the curves of four families  	�
���  	�
���  	�
���  	�
��

can be involved into the construction of a solution� We will also suppose that

the matrix A has complex eigenvalues and the phase trajectories of the equation

�x�t� � Ax�t� go around the origin in the counterclockwise direction with t

increasing�

We denote by p	n
�i�a� b� a part of a semipermeable curve of the family  	n
�i

that connects the points a� b �� increases when we go from a to b�� We denote

by p	n
�i�a� a part of a semipermeable curve of the family  	n
�i emanating from a

point a and extended up to the boundary of the set S	n
�i�

Let bi � � when i � 
 and bi � 
 when i � ��
��



The procedure of sewing semipermeable curves will refer to the notion of sprout

points� A point b is called the sprout point of a curve p	n
�i�a� if it is the �rst point

�when moving from the end of this curve� such that �

�� there exists a zero 
� of the function H��� b� belonging to the set �	n
�
bi�


� the composed curve p	n
�i�a� b� 	 p	n
�bi�b� has the semipermeability property�
Condition 
� can also be formulated in terms of zeros of H��� x�� Namely� a� the

angle between the vectors 
	n
�i�b� and 
� is less than �� b� for any vector 
 �

E� 
	n
�i�b� � 
 � 
�� the inequality ����nH�
� b� � � holds� c� for any 
 � E which

is su�ciently closed to 
� and such that l 	 
�� we have ����nH�
� b� 	 ��

At the �rst step of the algorithm we check the validity of the relation B 
� fm g�

Except for some subtle cases which rarely appear in practice	 it is su�cient ����

to verify that the function H���m� has only one � to � zero	 only one � to �

zero	 and the angle between these zeros taken counterclockwise from the �rst zero

to the second one is less than �� to recognize that B 
� f m g� We suppose that

this condition is ful�lled and vectors 
	�
�i � �m� and 
	�
�i ��m� are	 respectively	

� to � and � to � zeros mentioned in the condition�

In the description of the procedure for constructing g	�
� g	�
 we will use the

term �branch� for indication of appearing auxiliary curves� This term seems to

be meaningful because these auxiliary curves may ramify from each other like

branches� We denote by g
	n

k the kth branch of g	n
� We begin with the branch

g
	�

� �

�
p	�
�i��m�� i� 
� i�

p	�
�i��m� q
	�

� � 	 p	�
�bi��q	�
� �� i� � i��

Here q	�
� is a sprout point of the curve p	�
�i��m��

Then we construct the branches g
	�

� � g

	�

� � g

	�

� � ��� of the curves g	�
� g	�


alternating the indices � and 
� Each curve in this sequence is a semipermeable

curve p	n
�i�q	n
k � �with an appropriate index i� emanating from the sprout point q	n
k

of the previous curve� It is assumed that q	�
� � m� Before starting a new branch of

the curve g	n
� we change the second index of the family of semipermeable curves�

If	 for example	 we have used the family  	n
�i for constructing g
	n

k � then we are

to employ the family  	n
�bi when constructing g	n
k��� To construct the next branch

g	n
k � we are to �nd its starting point q	n
k � If the sprout point for the next branch

does not exist	 then the construction of g	n
 is �nished� The process of developing

the curve g	n
 can be represented by the sequence g	n
� �m� q
	n

� �� g	n
� �q	n
� � q

	n

� �� ����

where g	n
k �a� b� denotes the arc of the curve g	n
k drawn from the point a up to the

point b�

��



In the case considered �the matrix A has complex eigenvalues�	 the curves

g	�
� g	�
 can be twisting and untwisting spirals� In the course of the construction

we analyse mutual locations of g	�
� g	�
�

When constructing the curve g
	�

k � we verify the intersection with the part of the

curve g	�
 available by this stage� This type of intersection will be further called

�intersection� The typical form of the set B in the case of �intersection is shown

in Fig� ���� The part of the curve g	�
 disposed beyond the intersection point does

not give any contribution to the boundary of the set B�

When constructing the curve g	�
k � we verify the intersection with the part of

the curve g	�
 obtained by this stage� This type of intersection will be called

�intersection� The form of the set B in the case of �intersection is shown in

Fig� ���� The part of the curve g	�
 which is constructed but does not give any

contribution to the boundary of B is drawn with a thin line�

If the curve g	�
 is a twisting spiral and has a common point with the curve g	�
�

we say that these curves have �intersection� The structure of the algorithm in this

case looks like that of one in the case of �intersection� The set ! bounded by the

curves g	�
�m���� g	�
�m��� does not belong to B� The form of the set B in the case

of �intersection is determined by the behavior of the curve g	�
 beyond the point

of �intersection� Namely	 if g	�
 has a limit cycle	 then clB � cl�!	�
 n !� where

!	�
 is the set bounded by this limit cycle � if there is no limit cycle of g 	�
 � we

have clB � cl�R�n!�� An example of �intersection is given in Fig� ���� The curve

g	�
 is an untwisting spiral which has not any limit cycle� The set B is the whole

plane excluding the open set bounded by the curves g	�
�m���� g	�
�m���� The part

of the curve g	�
 �the untwisting spiral� lying beyond the point of �intersection is

shown with a thin line�

It should be noted that we verify the intersections not for the whole above

considered curves but for certain fragments of the curves which are speci�ed by

the algorithm�

If in the course of constructions we obtain an intersection of the curves g	�


and g	�
	 then this intersection is related to one of three following types� �� �	 or

�intersection� If the curves do not intersect each other	 then the following cases

may occur�

The curves g	�
� g	�
 are untwisting spirals� The set B is bounded by the curves

g	�
 and g	�
� B is in�nite but does not coincide with the whole plane �Fig� �����

The curve g	�
 is an untwisting spiral� If it has a limit cycle	 we denote by !	�


the open set bounded by this cycle� If there is not any limit cycle	 we put

�
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!	�
 � R�� The curve g	�
 is either a twisting spiral winding down onto its own limit

cycle or a �nite curve whose construction is �nished because the corresponding

sprout point does not exist� If g	�
 has a limit cycle	 we denote by !	�
 the closed

set bounded by this limit cycle� If there is not any limit cycle	 we put !	�
 � �� In

all these cases	 B � !	�
 n!	�
�

The set B may be not closed� some fragments of the boundary may not belong

to B� For example	 if B is bounded by a limit cycle of the curve g	�
	 the limit cycle

itself does not belong to B�

The above mentioned examples were computed with the use of the program

described in ����

In the papers ��	 ��	 the existence of a strategy of the �rst player which

guarantees the attainment of the point m within a �nite time interval was proved

in the case where the set P is an arbitrary segment� The proof is based on the

dividing the set B into elementary cells �curvilinear polygons� "�� ����"d� The cell

"� adjoins to the point m� Each type of cells is associated with the control of

the �rst player which has a constant value in the interior of a cell and has some

switching structure on the cell#s boundary� Such a control ensures transfer from

the current cell to a cell with a lesser index and	 �nally	 from "� to m�

If	 for constant values of u� v� phase trajectories of system ����� are circles	 the

set B can be constructed with a pair of compasses� Let us explain this using the

following example� Consider the control system

�x� � x� � u� � v�
�x� � �x� � u� � v��

�����

u �

�
u�
u�

�
� P� v �

�
v�
v�

�
� Q�

The sets P�Q are shown in Fig� ���� The set P is the vertical segment of the

length 
� which is symmetric with respect to the origin�

We have u� � �� which means that the control variable of the �rst player takes

scalar values� the relevant constraint can be written as j u� j� �� We assume that

� is su�ciently large� We denote by h�� h� the vertices of P� and by ��� �� the

normal vectors� The set Q is the quadrangle with the vertices r�� r�� r�� r�� We

denote by ��� ��� ��� �� the inward normals to Q�
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Fig� ���� The sets P� Q for game ������

We consider the partition of the plane into the cones K�� ����K� �Fig� ����� Let

E be corresponding to this partition closed polygonal line consisting of four links

E�� ���� E�� The function ��
� � max
u�P

min
v�Q

h
� u�vi is concave in the cone K� because

the normals ��� �� do not belong to K� �so	 for any 
 � K�� the same element

of P gives maximum to the expression max
u�P

hl� ui� but the normal �� to the set Q

belongs to K�� For similar reasons	 the function � is concave in the cone K�� The

function � is convex in K�	 since any normal of Q does not belong to K� �so	 the

same element of Q gives minimum to the expression min
v�Q

h
� vi � but the normal ��

to the set P belongs to K�� The cone K� containes the normals ��	 �� to the sets

P and Q and these normals have the same direction� The function � is convex in

K� because the length of the segment P is greater than the length of the parallel

segment �r�� r���
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We denote �	�
�� � E�	E�� �	�
�� � E�	E�� �	�
�� � E�	E�� �	�
�� � E�	E��

We put eJ � cl��P �Q� n ��Q � h�� 	 �Q� h�����

The set eJ is drawn in Fig� ���� Each vertex of the polygonal line bounding the
set eJ has the form u� v� and

ea � h� � r�� eb � h� � r�� ec � h� � r�� ed � h� � r�� ee � h� � r��

Let eS	n
�i be the set of all y � R� for each of which there exist a � to � zero of

the function max
u�P

min
v�Q

h
� u� v� yi in �	n
�i if n � � and	 on the contrary	 a � to �

zero in �	n
�i if n � 
� It is easy to see that the sets eS	n
�i have the form shown in

Fig� ���� in the example considered� We obtain

S	n
�i � fx � R� � �Ax � y� y � eS	n
�ig� n � �� 
� i � �� 
�

We put

J � fx � R� � �Ax � y� y � eJg�
��



In this example	

A �

�
� �
�� �

�
�

So	 the sets S	n
�i� J can be obtained via rotation of the sets eS	n
�i� eJ by ��


clockwise�
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Fig� ���� Construction of the set eJ�

For any point x which does not belong to J� there exist one � to � zero and

one � to � zero of H��� x�� For any point from the interior of J� there exist two

zeros of each type�

Semipermeable curves of families  	n
�i are composed of arcs of circles whose

centers are points a� b� c� d� e� Figure ���� shows	 for example	 the semipermeable

curve p	�
�� belonging to the family  	�
��� This curve is composed of the arcs w�w�	

w�w�	 w�w�	 w�w� whose centers are the points d� e� a� b� respectively� Figure

���
 shows the semipermeable curve p	�
�� belonging to the family  	�
��� The arcs

f�f� and f�f� have centers at b and c� respectively�
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Fig� ����� The form of the sets eS	n
�i�

Let us explain how does the construction of the set B go	 when the target point

m � S	�
��TS	�
�� �Fig� ������

The semipermeable curve p	�
���m� of the family  	�
�� is an arc of a circle with

the center at e� We draw the arc p	�
���m� up to the boundary of the set S	�
���

The end point of this curve is denoted by �� We seek a sprout point on the curve

obtained� Starting with the end point �� we search through points of p	�
���m���

and �nd the �rst point q	�
� such that conditions ��	
� �see page ��� are ful�lled�

It should be noted that conditions ��	 
a�	 
c� hold for all points of p	�
���q	�
� � ���

while condition 
b� is valid for the point q	�
� only� We draw the curve p	�
���q	�
� �

of the family  	�
�� from the point q
	�

� �it is composed of arcs with the centers

��
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Fig� ���
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of the family  	�
���

at b and c�� We continue this curve up to the boundary of the set S	�
��� The curve

g	�
� is formed by two smooth pieces

g
	�

� � p	�
���m� q

	�

� � 	 p	�
���q

	�

� ��

Then we construct the �rst branch of g	�
� The curve p	�
���m� is composed of arcs

with centers at c and d�When constructing this curve	 we test �intersection with

the curve g
	�

� � The �intersection does exist� The construction is �nished� The set

B is bounded by the curves g
	�

� �m���� g

	�

� �m����

In Fig� ����	 positive and negative sides of curves are indicated with marks� A

feedback control transferring the system to the point m can be designed using the

following scheme� being originated from any point x� � B� any motion of system

����� with u� � � meets the curve p	�
���m� q
	�

� �� switching the control for u� � ��

prevents the motion from penetrating into the negative side of this curve� if the

motion comes down to the positive side of the curve p	�
���m� q
	�

� �� then after some

time we put u� � � again	 and so on� the sliding mode along the curve p	�
���m� q
	�

� �

ensures the movement towards the point m�

The set B for some other target point m � S	�
��TS	�
�� is shown in Fig� �����

In this specially selected case	 B depends discontinuously on m � very small
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The case of tangency of g	�
 and g	�
�
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displacements of m cause violent changes of B� In such a situation it is important

which of formalizations is used� With the assumed by the authors formalization

that corresponds to �
	 ��	 the set B contains the set C lying beyond the tangent

point �� The set C may not belong to B for other formalizations� It should be

noted that in examples shown in Fig� ���� and in Fig� ���� the set B is not closed�

the arc �q	�
� in Fig� ���� and the similar arc in Fig� ���� do not belong to B�

The sets �	n
�i in the example examined were introduced via the polygonal line

E with the links E�� E�� E�� E�� Another variant of setting the sets �	n
�i is their

de�nition via two parallel horizontal straight lines which we denote for convenience

by E�� E�� The line E� lies below the origin	 the line E� lies above the origin� Since

P is the vertical segment	 the function � is concave on E� and E�� Speci�cation of

�	n
�i � �	�
�� � E�� �	�
�� � E�� �	�
�� � E�� �	�
�� � E�� Such a de�nition may be

more convenient in some cases and it will be used in Chapter 
� It should be taken

into account that by this de�nition horizontal vectors do not belong to �	n
�i�

The computational algorithm for �nding the set B does not use any explicit

geometric description of the sets eS	n
�i	 S	n
�i	 eJ 	 J� These sets are useful if we
construct the set B �by hand�� The program for �nding the set B in the case of an

arbitrary matrix A with complex eigenvalues and arbitrary convex polygons P� Q

is given in ���� This program computes associated with the pointm semipermeable

curves using zeros of function H� analyses mutual dispositions of these curves	 and

gives the boundary of B� Several variants of the set B for various matrices A and

polygons P 	 Q are demonstrated in Figs� ����������

A complete description of solution to games of kind in the case of scalar control

of the �rst player �the set P is a segment� and arbitrary matricesA is given in ��	 ���

If the matrix A has real eigenvalues	 the solution is	 as a rule	 more simple

because the number of branches of the curves g	�
� g	�
 is less than that in

case of complex eigenvalues� On the other hand	 the solution may be more

complicated because in some cases there may be insu�cient to construct only

curves associated with the pointm for �nding the set B� Sometimes	 it is necessary

to use semipermeable curves of the �rst and the second types associated with one

or more additional �source� points� An example of the set B in the case of real

eigenvalues of the matrix A is shown in Fig� ����� The point m� is a source point�







Examples of solving games of kind in the case

of nonscalar control variable of the �rst player
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We considered the case where the target set is a single point� If the target

set is an arbitrary convex compact M in the plane	 the game of kind can also be

solved using semipermeable curves of the �rst and the second types� The simplest

structure of solutions in this case is the following� one or more components of

the set B growing from the set M can be constructed independently and these

components do not intersect each other� Such a simple variant is demonstrated

in Fig� ��
�� The set B computed consists of two pieces B�	 B�� Signi�cant

complications occur when the above mentioned pieces intersect each other�


�



Chapter �

Nonlinear game of kind

The idea of the algorithm for �nding the set B for two�dimensional linear

di�erential games of kind can be extended to di�erential games of kind with

nonlinear in phase variable dynamics� In this chapter we describe how to modify

the algorithm for the following nonlinear system

�x� � x� � v�
�x� � �k sin	x� � a
 � u� � c

	���


v� � ��� �
��� j u� j� ��

The target set is a point m in the plane� The constants c� �� k satisfy the relation

c � � � k� k � �� This condition does not simplify the problem essentially� it

only reduces the number of variants of the possible structure of the set B� A more

detailed description of the algorithm is given in ��� ����

�� Description of families of semipermeable curves

By analogy with Chapter �� we consider the function

�		
 � max
u�P

min
v�Q

h	� u� vi� 	 � R��

where P is the segment with the vertices 	�� �
� 	����
 and Q is the segment

with the vertices 	��� c
� 	��� c
� As P is the vertical segment� the plane is divided

by the x��axis into two half�planes f	� � �g� f	� � �g so that the function � is

concave in each of these half�planes� Instead of the polygonal line E introduced

in section � of Chapter �� we consider the horizontal straight lines E� � 	� � �


	
 is an arbitrary positive number
 and E� � 	� � 
� We put

������ � E�� ������ � E�� ������ � E�� ������ � E��

The function H introduced in Chapter � has now the form

H	l� x
 � h	�

�
x�

�k sin	x� � a


�
i� �		
�

��



It inherits the concavity�convexity properties of the function � with respect to

variable 	� So� for any x �xed� the function H may have at most one � to � zero

and one � to � zero in each set ��n��i� n � �� �� i � �� ��

Just as in section � of Chapter �� we introduce sets eS�n��i that are sets of all

y � R� for each of which there exist a � to � zero 	if n � �
 and a � to �

zero 	if n � �
 of the function max
u�P

min
v�Q

hl� u � v � yi in the set ��n��i� The setseS�n��i� n � �� �� i � �� �� are open and have the form shown in Fig� ����

eS�����
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������� c�

R
y

	�����

eJ

�
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	�����

�S�����
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�
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	�����

eS�����

eJ
�

y

	�����

eS�����

eJ

Fig� ���� Sets eS�n��i�

We consider the mapping �� 	x�� x�
 � 	�x�� k sin	x� � a

� The preimage of

the set eS����i 	 eS����i
 under the mapping � is a set S����i 	S����i
 consisting of points

x such that there exists a unique zero 	����i	x
 		����i	x
 
 of � to � 	 � to �
 type

of the function H	�� x
 belonging to the set �����i 	 �����i 
�

��



Since c � �� k� the preimage of the set fy � y� � ��� cg under the mapping

� is the empty set� So� S����� 	S�����
 is the half�plane below the line x� � ���

	above the line x� � ���
�

If j � � c j �k � �� then S�n��i� n �� i� is the collection of sets which are

translations of the set X�n��i 	Fig� ���
 by ��r� r � ��	��	�� ���� along the x��axis�

By b� d� e in Fig� ���� we denoted the values

�a� arcsin
�� c

k
� �� �a� arcsin

�� c

k
� �a� arcsin

�� c

k
� ��

respectively� If j �� c j �k � �� then the sets S������ S����� have the forms shown in

Fig� ����

X�����

��� �

�b����� �d����� X�����

��� �

�b���
�� �e���

��

�e����� �d�����

X�����

�b�����

�e�����

�e�����

�d�����

X�����

��� �

�b����� �d�����

Fig� ���� Auxiliary sets X�n��i�

If j � � c j �k � �� then the preimage of the set fy � y� � � � cg under

the transformation � is the empty set� In this case� the set S����� 	 S����� 
 is the

half�plane above the line x� � ��� 	 below the line x� � ��� 
�

��



S�����

x� � ���

S�����

x� � ���

Fig� ���� Sets S������ S������

The function 	�n��i	�
 satis�es the Lipschitz condition in any closed bounded

subset of S�n��i for any n � �� �� i � �� �� Similar to the case of linear system� we

consider the following di�erential equations

dz

d
� ��	

����i	z
� z � S����i� 	���


dz

d
� ��	

����i	z
� z � S����i� 	���


Belonging to S����i 	S����i
 phase trajectories of maximally extended solutions of

equation 	���
 	 	���
 
 generate the family �����i 	�����i
 of semipermeable curves�

We put

F � fx � R� � k sin	x� � a
 � �� cg� G � fx � R� � k sin	x� � a
 � �� cg�

If j � � c j �k � �� then the set F 	G
 is the collection of vertical strips

Fr 	Gr
� r � ��	��	�� ���� which are repeated periodically with the period ���

These strips are bounded by the following vertical straight lines

Mr � fx � R� � x� � �a� arcsin
�� c

k
� ��rg�

Nr � fx � R� � x� � �a� arcsin
�� c

k
� � � ��rg�

If 	��c
�k � ��� then F � 
� G � R�� If 	��c
�k � �� then F � R�� G � 
�

We concentrate ourselves on the most complicated case j �� c j �k � ��

��



Semipermeable curves p�n��i of the family ��n��i can be interpreted as phase

trajectories of system 	���
� Namely� curves p����� are phase trajectories

corresponding to u� � ��� v� � ��� Curves p����� are phase trajectories with

u� � ��� v� � ��� Curves p����� are phase trajectories with u� � �� v� � �� in the

set G and v� � �� in the set F� Curves p����� are phase trajectories with u� � ��

v� � �� in the set G and v� � �� in the set F�

The above mentioned semipermeable curves are drawn schematically in

Fig� ���� Arrows show the reverse time directions for motions of system	���
 or�

which is the same� directions of motion for increasing  in equations 	���
� 	���
�

����
�F G F

����
�

����
� G F G

�
���
�

D
���
r

hr

D
���
r

D
���
r

D
���
r

mr

Fig� ���� Families of semipermeable curves�

Curves p����� and p����� have a smooth conjunction at all points of the segments

D���
r � fx � x� � ���g

T
clGr� r � ��	��	�� ���� with the exception of the points

mr � 	�a� arcsin
�� c

k
� � � ��r� ���
 � D���

r

�
Nr�

which are saddle points of system 	���
 for u� � �� v� � ��� Curves p����� and

��



p����� have a smooth conjunction at all points of the segments D ���
r �

fx � x� � ���g
T
clGr� with the exception of the points

hr � 	�a� arcsin
�� c

k
� � � ��r� ���
 � D���

r

�
Nr�

which are saddle points of system 	���
 for u � � �� v � � �� �

The sets S�n��i are open� Nevertheless� we need the notion of semipermeable

curves emanating from some points of the boundary of S�n��i� It is clear from

Fig� ��� that for each boundary point of S�n��i at most one curve of the family

��n��i may outcome from and at most one curve of this family may arrive at such

a point� So� the notation p�n��i	x�
 for x� � �S�n��i has the evident meaning�

For each pointmr� the curves p
�����	mr
 and p�����	mr
 are tangent at this point

to an invariant straight line associated with the positive eigenvalue of the matrix

of the system obtained via linearizing system 	���
 with respect to the equilibrium

point mr� under u� � �� v� � ��� The state vector of system 	���
 approaches

asymptotically to mr along these curves as t � �� It should be noted that the

curve p�n��bn	mr�
 is obtained from the curve p�n��bn	mr�
� r� � r�� by the horizontal

displacement by the value ��	r� � r�
�

�� Algorithm for �nding the solvability set B�

Examples of solving the game of kind

Like the idea of Chapter � where the dynamics of the control system is linear�

the idea of the algorithm for �nding the set B consists in constructing by turns

semipermeable curves of the �rst and the second types� The main distinction

from the case of complex eigenvalues of the matrix A is the following� for �nding

the set B� besides m we may need one or several additional points called further

source points� Such points arise because equilibrium states of a certain type may

exist in the nonlinear case� The set B is determined by all semipermeable curves

emanating from the point m and from source points� For the problem in question�

the points mr will be used as source points�

In the course of the construction of the set B� curves p����� are sewn together

with curves p������ and curves p����� are sewn together with curves p������ The

assembling of curves with the observance of properties �
� �
 which determine

the sprout point 	see section � of Chapter �
 is realizable for curves p ������p �����

��



only at points of the segments D���
r � and for curves p������ p ����� only at points

of the segments D ���
r � As it follows from properties of the curves 	see Fig� ���
�

curves of the �rst type are smoothly sewn everywhere on D ���
r excluding the

points mr � and curves of the second type are smoothly sewn everywhere

D ���
r excluding the points h r � The resulting line obtained after sewing the

curves with the same �rst indices has the semipermeability property�

Like in Chapter �� a special condition ������ excludes the case B � fmg�

In particular� B � fmg if the point m lies in the horizontal strip between the

lines x�� ���� x� � ����

Suppose B �� fmg and describe the algorithm for constructing the set B�

Assume for de�niteness that m lies below the horizontal strip speci�ed� That

is� m � S�����TS������

At the �rst step we construct the branch

g
���
� �

�
p�����	m
� p�����	m
 is in�nite

p�����	m� q
���
� 
 � p�����	q���� 
� p�����	m
 is �nite�

Here� q���� is the sprout point of the curve p�����	m
� The point q���� coincides with

the endpoint of the curve p�����	m
 and belongs to the segment D���
r �

The branches of the curves g���� g��� are constructed by turns � g
���
� � g

���
� � g

���
� � ��� �

The branches g
���
� � g

���
� are associated with the pointm� g

���
� � p�����	m� q

���
� 
� g

���
� �

p�����	q���� 
� Here� q���� is the sprout point of the curve p�����	m
� The point q
���
�

coincides with the endpoint of the curve p�����	m
 if it belongs to D ���
r � If do

no� we decide that the sprout point on the curve p�����	m
 does not exist and put

g���� � 
�

Let us de�ne now the curves associated with the points mr� We will only use

those points which lie on the left from the endpoint of the curve g
���
�� We enumerate

such points from the right to the left and denote them m��m�� ���� For the curves of

the �rst type with j � �� we put

g
���
j �

�
p�����	m j��

�


� j is even number


� j is odd number�

For the curves of the second type with j � �� we let

g���j �

�������
p�����	m j

�


� j is even number

p�����	q
���
j 
� j is odd number and sprout point q

���
j exists


� j is odd number and sprout point q
���
j does not exist�

So� the curves of the �rst type emanating from the points mr belong to the family

������� and they do not have sprout points� The curves of the second type emanating

��



from mr may have sprout points� In the latter case� the curves of the family ������

are continued by the curves of the family �������

When constructing the current branch g���j � j � �� we test intersections with

one or two already constructed curves of the second type� If the intersection occurs

	
�intersection
� then the construction of g
���
j beyond the point of intersection is

ceased� When constructing the current branch g
���
j � j � �� we test intersections

with one of the already constructed curves of the �rst type� Namely� for even

indices j� we check the intersection with g ���
� � for odd indices j� we analyse the

intersection with g
���
j�� � If the intersection occurs 	��intersection
� then the

construction of g
���
j is �nished�

In the most simple cases� the set B is determined only by curves emanating

from the point m� All these cases are listed below�

a
 If in the course of the construction of g
���
� or g

���
� an 
�intersection with g

���
�

occurs� then the set B is bounded by the curves drawn from the pointm up to the

point of 
�intersection 	Fig� ���
�

b
 If the curve g
���
� is in�nite and does not have points in common with the

curve g
���
� � then the set B is bounded by the curves g���� g��� emanating from the

point m 	Figs� �������
� In this case� the set B is in�nite but does not coincide

with the whole plane�

In Figs� �������� three variants of the set B are shown� For all variants�

g���� g��� are smooth in�nite curves� The pictures di�er one from other because

they correspond to di�erent segments Q�

Note that Fig� ��� is similar to Fig� ��� of Chapter �� and Figs� ������� are

similar to Fig� ����

It may happen that the curve g���� does not have any sprout point 	Fig� ���


or it has a sprout point but the curve g���� is �nite 	Fig� ����
� Besides� the above

mentioned curves do not have any 
�intersection with the curve g
���
� � For linear

systems with complex eigenvalues of the matrix A� such a con�guration would

determine the set B� 	The set B would be either bounded by a limit cycle of the

curve g��� or would coincide with the whole plane if g ��� does not have limit

cycles�
 The solution of the nonlinear problem considered is more complicated�

to obtain the set B� one should use semipermeable curves of the �rst and the second

types emanating from the pointsmr� This is what the algorithm does�

In the example shown in Fig� ���� the following is done� We trace the curve

g���� from the point m� and obtain ��intersection with g���� � As g���� � 
� g���� � 
�

and g���� � 
� we issue the curve g���� from the point m�� Then we trace g���� from

��



m�� This curve is in�nite� The set B is bounded by the curves g���� 	m
� g���� 	m� ��
�

g���� 	m�� ��
� g���� 	m�
� The curve g���� was constructed but it does not give any

contribution to the boundary of B�

Let us explain the constructions shown in Fig� ����� After construction of

the curves g���� and g���� � we compute the curve g���� emanating from m�� It has

��intersection with the curve g���� � Then we trace the curve g���� � It has 
�intersection

with g
���
� � Then we construct the curve g

���
� from the point m� and the curve g

���
�

from the point m�� The curve g
���
� has 
�intersection with g���� � The boundary of B

is formed by the curves

g���� 	m
� g���� 	m� q
���
� 
� g���� 	m�� 
��
� g���� 	q���� � 
��
� g���� 	m�� 
��
� g���� 	m�� 
��
�

and also by the curves g
���
����	m����
������
� g

���
����	m����
������
� � � �� �� ����

that are translations of the curves g���� 	m�� 
��
� g
���
� 	m�� 
��
 in the x��backward

direction by the value ����

Figures �������� present results obtained with the use of the computer

program implementing the above described algorithm� Some of the other possible

variants of the structure of the set B are shown in Figs� ����� ����� In the �rst

case 	Fig� ����
� the only source point m� takes e�ect on the boundary of the set

B� In the second case 	Fig� ����
� the number of such source points is in�nite 	as

well as in the example shown in Fig� ����
� In ��� ���� all of the possible variants

of the structure of the set B are given 	�� variants
 for the case where the point

m lies below the line x� � ���� These papers describe also some variants of the

structure of the set B when the point m lies above the line x� � ���� Two of these

variants are shown in Figs� ����� �����

The set B of initial states for the successful termination of the game may be not

closed� A limit point  x belongs to B if and only if one of the following conditions

is satis�ed� a
  x is not an 
 or �� intersection point of boundary curves� and the

state vector does not meet the singular points mr � hr when moving in direct

time from  x along a boundary curve passing through  x� b
  x is an 
�intersection

point� and for each boundary curve passing through  x the state vector does not

meet the singular points m r� hr when moving in direct time from  x along this

boundary curve� c
  x is an ��intersection point� and the state vector does not meet

the singular point mr when moving in direct time from  x along the boundary

curve of the �rst type�

In examples shown in Figs� ��������� ����� the set B is not closed� For instance�

in Fig� ����� the curve 
��m�
��m�
��m����
��m���� does not belong to B�

��



Examples of the set B in the nonlinear game

��� Behaviour of the set B when resources of the second player decrease�

Source points are absent�
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��� The form of the set B in cases of one and in�nite number of source points�
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�� Controls of �rst and second players

Since we are not interested in �nding time optimal controls� there are many

strategies of the �rst player which provide the reaching of the target point m�

One of such strategies can be designed using the extremal aiming procedure��� ��

applied to the closure of a bundle Y �x�	 consisting of trajectories of ��
�	 starting

from the point x� at t� �  and arriving at m by a time � which can depend on

x�� The bundle Y �x�	 has the u�stability property
 The notions of u�stability and

of extremal strategies that we use here are given in ��� ��


Construction of the bundle with the necessary properties uses �see for details

���� ���	 a partition of the closure of B into �cells� �� de�ned via an increasing

sequence of sets�

A� � A� � ��� � A� � ���� A� � clB� � � �� �� ����

The construction of such a sequence fA�g is explained in Figs
 �
��� �
��
 In

some cases� the sets with neighbor indices may coincide
 The sequence fA�g in

Fig
 �
�� corresponds to the set B given in Fig
 �
��
 In this example� we have

A� � clB� In Fig
 �
��� the sets A�� A� � A�� A� � A� of an in�nite sequence

fA�g corresponding to the set B depicted in Fig
 �
� are shown
 In general case�

the boundary of A� is composed from semipermeable curves of the �rst and the

second types and from some auxiliary vertical lines
 If clB does not contain the

points mi� i � �� �� ���� then A� � clB for some � � �� Otherwise� the sequence

fA�g is in�nite and converges to clB as ����

The cells �� are de�ned in the following way� �� � clA�� �� � cl�A� n

A���	� � � �
 If A� � A���� then �� � �� The intersection of two di�erent cells

may consist of some of their boundary curves only
 In Fig
 �
�� and Fig
 �
���

partitions into cells corresponding to sets B from Fig
 �
�� and Fig
 �
�� are

given
 We put u� � � for the cells with even numbers and u� � �� for the cells

with odd numbers
 Such a control ensures the right�hand side of system ��
�	 to

be not equal to zero in the interior of cells for any control v� of the second player


The idea of construction of the bundle Y �x�	 with the above mentioned

properties looks as follows
 We �nd the smallest �� such that x� 	 ���
and

consider the cells �� with � � ��� The �rst player uses the constant control

u� � � �u� � ��	 in the cells with even �odd	 indices
 There are some peculiarities

of the control choice near the cells boundaries
 Namely� if a motion of system

��
�	 for u� � � �u�� ��	 meets a part of the boundary of ���
which does not

��
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belong to �s for some s � ��� then we switch the control u� for the control with

the opposite sign and keep it until the motion meets some auxiliary �tracking�

line which lies close to the above mentioned boundary curve� After meeting this

auxiliary curve� we put u� � � �u� � ��	 again� and so on� Thus� the sliding

mode near the cell
s boundary may occur� Such a rule of the control choice provides

transition of trajectories from �� to �s for some s � �� For trajectories starting

from the point x�� the sequence of passable cells is not strictly determined � it

depends on the actual control v���		 but the values of indices of passable cells

increase necessarily� In some cases� to realize the motion of the state vector of

����	 towards m� one should use some discrimination of the second player the

control of the �rst player must depend not only on the actual state position but

also on the control v��t	 which is anticipated for some small time interval� The

bundle Y �x�	� x� � B� is de�ned as the set of all trajectories of ����	 obtained

using the above control rule of the �rst player and by union over all controls v���	

of the second player�

The way to design a strategy of the second player preventing the trajectories

from meeting the point m whenever the initial states belong to the set R� n B is

given in ���� ����

The considered example with the nonlinear dynamics demonstrates the

possibility of �nding solvability sets for games of kind using some preliminary

analysis of the behavior of semipermeable curves of the �rst and second types�

��



Chapter �

Minimum�time game problem

The previous chapters were devoted to the construction of solvability sets for games

of kind� The following properties characterize points of solvability sets for games

of kind� the �rst player guarantees the attainment of the target set within a

�nite time interval� but the minimum guaranteed time of attainment can not be

speci�ed�

In this chapter� we consider two�dimensional minimum�time di�erential game�

The payo� function in such a game is the time of reaching a given target

set M� The �rst player seeks to minimize the time of reaching M� the

aim of the second player is opposite� The solution to such a problem will

be obtained via construction of sets W ���M	� � � 
� Each of them is the set of

all initial states x� such that the �rst player guarantees the transition of the state

vector to M by the time �� The set W ���M	 is the level set �the Lebesque set	 of

the value function of the minimum�time game problem� This set is also called the

set of the positional absorption by the time � or t�section of the maximal u�stable

bridge ��� � corresponding to t � �� The set W ���M	 converges to the solvability

set of the corresponding game of kind as � ���

To �nd the sets W ���M	� we will use backward procedures� The general

ideas of backward procedures for di�erential games were considered in papers of

R�Bellmann� R�Isaacs� W�Fleming� L�S�Pontrjagin� and B�N�Pshenichny�

The most advanced results ������� related to algorithmic implementations of

backward constructions were obtained for linear di�erential games with �xed time

of termination� The main peculiarities of these problems are the following� �	 the

convexity of target sets implies the convexity of t�sections of maximal stable

bridges� �	 if the target set is cylindrical with respect to all coordinates with

exception for some k coordinates� then one can reduce the problem to an equivalent

k�dimensional game� The latter enables to apply numerical methods to some

important practical problems ����
��

The above mentioned features are not inherent to di�erential games with

non�xed time of termination� as a rule� t�sections of maximal stable bridges are

not convex� and� what is more worth� it is impossible to reduce the dimension

of the problem using the standard change of variables� Numerical methods for

��



solving nonconvex problems with �xed time of termination and for non�xed time

games are developed in papers of V�N�Ushakov and his collaborators ������ The

algorithm for constructing the setW ���M	 described below is based on the ideas of

the algorithm proposed in ���� �
� for linear games with �xed time of termination

and uses operations on polygonal lines which are similar to parts of boundaries of

convex sets�

The sets W ���M	 can be used for �nding optimal strategies of the �rst and

second players in minimum�time di�erential games ��� �� But the problem of

�nding optimal strategies is rather an independent task� and we do not consider

it in this paper�

The backward procedures we apply do not have immediate connections with the

analysis of singular surfaces ��� of di�erential games� The construction of singular

manifolds for solving di�erential games is a special �eld of research ��� �����

�� The statement of the problem

We consider a two�dimensional linear di�erential game with the dynamics

�x � Ax � u� v ���	

and with the geometric bounds on controls� u � P� v � Q� where P and Q are

convex closed polygons in the plane�

A time � � 
 and a convex closed polygon M � R� are given� It is required to

�nd the set W ���M	 of all initial points x� � R� from which a feedback control of

the �rst player provides the reaching of M by the time ��

We de�ne now the set W ���M	 more precisely ��� �� Let U be the set of all

positional strategies U of the �rst player� Namely� this is the set of all functions

de�ned on �
� �� �R� and taking the values in P� Let � be an arbitrary partition

of the segment �
� �� formed by the points 
 � t� � t� � ��� � tn � �� d��	 its

diameter� v��	 measurable function of time with values in Q� and y�� ��� x�� U� v��		

the Euler spline emanating from the point x�� We denote by W ���M	 the set of

all points x� � R� for each of which there exist a strategy U � U and a mapping

� � 	��	 from R� to R� such that for any � � 
� any � with the diameter

d��	 � 	��	� and any function v��	 with values in Q there exists a time t � �
� ��

at which y�t��� x�� U� v��		 belongs to the ��neighborhood of the set M�

��



In the next section we give a short sketch of the algorithm for the approximate

construction of the set W ���M	� The more detailed description of the algorithm

is done in ���� ���

�� The main idea of the algorithm

The set W ���M	 is formed via a step�by�step backward procedure generating

a sequence of embedded sets

W ���M	 �W ����M	 �W ���M	 � ��� �W �i��M	 � ��� �W ���M	� ���	

Here � is the step of the backward procedure� Each set W �i��M	 consists

of all initial points such that the �rst player brings system ���	 into the set

W ��i � �	��M	 within the time duration �� We put W �
�M	 �M�

Before doing the �rst step of the backward procedure� we �nd a usable part ��

on the boundary of M� In accordance to ���� the usable part is a curve or several

curves of the boundary of M attainable for trajectories of system ���	 from points

lying in the exterior of M close to the boundary of M� The usable part is de�ned

by the following formula

�� � clfx � 
M � min
u�P

max
v�Q

h��Ax � u� vi � 
� 	� � Kxg�

Here Kx is the cone of outward normals to the set M at x� Since the target set is

convex� each curve of the usable part is locally convex in the following sense� the

normal to the curve at a point x runs in only direction when x moves along the

curve�

Let us introduce the term �front�� We put F�� ��� The front Fi is the set of

all points on the boundary of the set W �i��M	 for which the minimum

guaranteeing time of reaching Fi�� �therefore� the time of reaching the set

W ��i � �	��M		 is equal to �� For other points on the boundary of W �i��M	

the optimal time of attainment of W ��i � �	��M	 is less than �� Thus� the

line 
W �i��M	 n Fi possesses the properties of barriers ���� The front Fi is

designed using the previous front Fi��� Straight lines connecting endpoints of Fi

with the corresponding endpoints of Fi�� give the extension of the barrier lines�

The boundary of the set W �i��M	 is formed by the front Fi� the above mentioned

extentions of the barrier lines� and the line 
W ��i � �	��M	 n Fi�� �Fig� ��	�

��



Suppose the usable part of M consists of one curve only� Due to the linearity

of system ���	� the fronts F�� F�� F�� ��� inherit the property of the local convexity

of ��� and this property is kept until the next front Fi does not meet the already

constructed set W ��i� �	��M	� If such a meeting happens� we say that the front

collides with the set W ��i � �	��M	� The situation of �collision� means that the

current front meets the barrier part of the boundary of W ��i � �	��M	 or the

part 
M n�� of the boundary of M� In many examples� the case of collision either

does not occur or it happens for su�ciently large values i�� The property of the

local convexity of fronts enable us to employ� with some small modi�cations�

M �� Fi�� Fi

W �i��M	

Fig� ��� Construction of the set W �i��M	�
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procedures for the construction of cross�sections of maximal stable bridges which

were developed for linear di�erential games with convex target sets and �xed time

of termination� An example of constructing sequence ���	 in the case where

the collision does not happen is shown in Fig� ��� The lines ab� cd are barriers�

Further computations are shown in Fig� � where the collision occurs�

Let the front Fi meets the set W ��i � �	��M	� To construct the next front

Fi��� we should take into account that Fi and the boundary of W ��i � �	��M	

have the nonconvex conjunction� The next front Fi�� may be not locally convex�

The barrier lines of the setW �i��M	 are stored in the corresponding computer

program as ordered collections of points� Until the case of collision does not

happen� updating these collections can be done very easy� The program is not

applicable to very complicated cases of collision whose processing requires the

exhaustion of signi�cantly large number of variants�

If the usable part of M consists of several fragments of the boundary of M�

then the construction can be carried out independently for each fragment until

an intersection of the sets sprouting from these pieces does not occur�

So� the algorithm consists of the following operations�

�	 Finding the usable part on the boundary of the target set�

�	 Constructing the next front using the previous front�

	 Testing the intersections of the current front with the barrier part of the already

constructed set� If the intersection is detected� further computations are carried

out taking into account the arising nonconvex conjunction�

Let us describe now an algorithm for the construction of fronts� We assume

for simplicity that the sets P and Q are segments in the plane� Suppose a

current front F i is already constructed� Let us construct F i���

First� consider the case where the situation of collision does not occur� The

front Fi is a polygonal line belonging to the boundary ofW �i��M	 and possessing

the local�convexity property which means that normals to the links of the line

are rotated in the clockwise direction when we go along this line in the

clockwise direction� Let us enumerate vertices of F i and denote them z� �

z� � ���� zr �see Fig� ��	� We associate the outward normals �j�� and �j to the

links �zj��� zj� and �z j� zj��� with the vertex z j � j � �� r � �� The vertex z� is
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associated with normal �� and a vector � � speci�ed by the following conditions�

�	 min
u�P

max
v�Q

h��� Az� � u� vi � 
�

�	 	� � �� � � � �� min
u�P

max
v�Q

h��Az� � u� vi � 
�

The vertex zr is associated with the normal �r�� and a vector �r such that

�	 min
u�P

max
v�Q

h�r� Azr � u� vi � 
�

�	 	� � �r � � � �r�� min
u�P

max
v�Q

h��Azr � u� vi � 
�

If min
u�P

max
v�Q

h��� Az� � u � vi � 
� then we put �� � ��� Similarly� if

min
u�P

max
v�Q

h�r��� Azr � u� vi � 
� we set �r � �r���

Let q�� q� be endpoints of the segment Q� We divide the polygonal line Fi into

parts F
�k�
i so that for any normal �j to the line F

�k�
i the same endpoint of the

segment Q gives maximum over v � Q to the scalar product h�j� vi�

Assume for de�niteness that there are two parts F ���
i � �z�� ���� z�� and F

���
i �

�z�� ���� zr� in all� and we have

argmax
v�Q

h�j� vi � q�� j � 
� � � ��

for the �rst of them and

argmax
v�Q

h�j� vi � q�� j � �� r�

for the second�

Such a partition means that one of the normals to the segment Q lies between

the vectors ����� ��� We denote this normal by �q�

For each vertex zj � j � �� � � �� of F
���
i � we consider the following trajectories

z� 	 � zj �  �Azj � u� v	 ��	

with v � q� and u � u� or u � u� where u�� u
� are speci�ed by the following

conditions

u� � argmin
u�P

h�j��� ui� u� � argmin
u�P

h�j� ui� ���	

When constructing trajectories ��	 corresponding to the point z�� we replace the

index j by � and the vector �j by �q in ��	� ���	�

If u� � u�� we obtain a single trajectory� If u� 
� u�� we have two trajectories� If

the vector �j�� is orthogonal to the segment P� then the vector �j is not orthogonal

to P and u� is determined uniquely� We set u� to be that of two endpoints of P

��



which does not coincide with u�� We do similarly if the vector �j is orthogonal to

P� We continue the trajectories up to the time  � ��

For the points z���� ���� zr of F
���
i � the trajectories are constructed in a similar

way with the replacement v � q� by v � q�� When constructing the trajectories

corresponding to the point z�� we replace the index j by � and the vector �j�� by

�q in ��	� ���	 �

So� if the front Fi is divided into two parts F
���
i and F

���
i we deal with

two families of regular extremal trajectories� Trajectories of each family can be

interpreted as characteristics of the appropriate Bellmann�Isaacs equation�

Being connected consecutively� the corresponding to time  ��endpoints of the

extremal trajectories emanating from the vertices of F
���
i form a spline �� �� ���� �s��

The endpoints of the trajectories emanating from the vertices of F ���
i form a spline

��s��� ���� �m�� The method we used for constructing the trajectories ensures the

type of the intersection of these splines ��the swallow�tail�	 which is shown in

Fig� ��� Two trajectories emanating from the point z� and arriving at the points

�s� �s�� are depicted in Fig� �� with dash lines� If we imagine that trajectories

are constructed for all points of Fi� then the part ���s is formed by the endpoints

of the trajectories �with v � q�	 emanating from the points of the line z�z� which

adjoins to z� from above� and the part ���s�� is formed by the endpoints of the

trajectories �with v � q�	 emanating from the points of the line z�z� which adjoins

to the point z� from below� It is clear that the trajectories which form the part

���s�� intersect the trajectories which form the part ���s� The lines ���s� ���s��

are eliminated� The resulting spline ���� ���� ��� ���� �m� is the next front Fi��� Each

of the lines ���s� ���s�� may consist of several �not a single	 segments� If so� we

eliminate the splines ���� ���� �s� and ���� ���� �s����

If the polygonal line Fi is divided into three or more parts F
�k�
i � then

some complicated types of intersections of the polygonal lines composed from

endpoints of the extremal trajectories may occur� The algorithm eliminates the

lines corresponding to the intersection of characteristics� If the extremal vector

v � Q is the same for all normals �j to Fi� then we do not divide Fi into the

parts F
�k�
i � and we consider the extremal trajectories corresponding to this value v�

The curve formed by the endpoints of the trajectories is the next front F i���

��
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Consider now the case of collision� Let the current front meets the barrier

part of the boundary of the set W ��i � �	��M	� The part of Fi belonging to

W ��i � �	��M	 is eliminated� When constructing the front Fi��� we should take

into account the nonconvex conjunction of Fi with 
W ��i��	��M	� We enumerate

the vertices of Fi and denote them by z�� ���� zr� We add the small segment z�z�

�Fig� ��	 of the boundary of 
W ��i � �	��M	 to the front Fi� The point z� is

the point of nonconvex conjunction� Consider a small neighborhood of the point

z�� When constructing trajectories started from the point z�� we deal with the

following �inverse problem ��

Assume that the aim of the second player governing the control variable v is

to bring the state vector of system ���	 to the shaded set shown in Fig� ���

The aim of the �rst player� who uses the control variable u� is to avoid the state

vector from meeting the shaded set� We associate both the normal e�� to �z�z��

and the normal e�� to �z�z�� with the point z�� and consider extremal trajectories

constructed according to the above described method with the only di�erence that

the sets P and Q change their places in the description�
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Fig� ��� Treatment of the case of the nonconvex conjuncture�
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If the extremal control of the �rst player is the same for both vectors e�� ande�� �let� for example� u � p�	 � then we consider trajectories ��	 emanating

from z� and corresponding to u � p� and v � v� or v � v � which are

determined from the conditions

v� � argmin
v�Q

he��� vi� v� � argmin
v�Q

he��� vi� ���	

If v� � v�� then we obtain a single trajectory� If v� 
� v�� we have two trajectories�

Suppose now that extremal controls of the �rst player are di�erent for the vectorse��� e��� i�e�
argmax

u�P
h e��� ui � p�� argmax

u�P
h e��� ui � p��

This means that one of two normals to P �we denote it by �p	 lies between the

vectors e��� e��� First� we trace the trajectories from the point z� with u � p� and

letting v � v� and v � v� where v�� v� are found from ���	 with �p in place of e���
then� we consider trajectories with u � p� and both v � v� and v � v� where v��

v� are chosen from ���	 with �p in place of e���
From the other vertices of Fi� we trace the trajectories in the �normal� way� As

the result� we obtain a collection of several curves� Now� we eliminate the parts

of these curves corresponding to intersections of characteristics� The resulting

polygonal line ���� ��� ���� �m� shown in Fig� �� corresponds to the case where v� 
� v�

and extremal values of u are di�erent for the vectors �� and ��� The vertices �� and

�� are the points of the nonconvexity� We take this into account when processing

these points at the next stage of the algorithm�

If P and Q are polygons� then the number of families of regular extremal

trajectories appearing in the process of constructions increases� In the case of the

local convexity �local concavity	� the number of trajectories tracing from each

vertex of the current front is determined by the number of outward normals to

edges of P �Q	 lying between the normals associated with this vertex�

�� Examples of solving minimum�time game problems

�� The canonical example of the minimum�time problem in the theory of optimal

control has the following form�

�x� � x�
�x� � u� j u j� ��

��



We add the disturbance v to the �rst equation and consider the following

di�erential game�
�x� � x� � v

�x� � u�
���	

j u j� �� j v j� ��

The �rst player minimizes the time of reaching M� the aim of the second player is

opposite�

If M is a small regular polygon with the center at the origin� then the sequence

���	 becomes stationary starting with some index i� The solvability set for the

corresponding game of kind reduces to the origin when the set M reduces to the

origin� Similar situation occurs if the target set is a su�ciently small regular

polygon with the center at  x such that j  x�j� �� If M is a regular polygon with

the center at  x such that j  x� j� �� then the solvability set of the game of kind is

the whole plane� the construction of W �i��M	 is meaningful for any index i�

Let M be a regular octagon inscribed into the circle with the radius 
�� and

with the center at the point �
� �	� We set � � 
�
�� The sets W ��M	 �W � 	

brie!y	 for the time instants  � k � ��� k � 
� �
� are shown in Fig� ��� The

sets W � 	 for  � k � �
�� k � �� �
� are given in Fig� ��� The �rst situation of

collision happens at  � ���� The set W ����	 is contoured in Fig� ��� The front

W ��	 is also shown� We denote by a� b the endpoints of the usable part �� of M�

The curves ac and bd formed by the endpoints of the fronts are barriers� The

value function is discontinuous on these curves and also on the line


M n ��� The line cf formed by the corners of the fronts is the set where the

value function is not di�erentiable�

The di�erential game we consider was investigated in ��� �
� under

assumptions of incomplete information about the state vector� The minimum�time

game problem with dynamics ���	 was also studied in ����� It follows from

these papers that the optimal synthesis of feedback controls is determined by the

singular line ghbacp �Fig� ��	 dividing the plane into two parts� We have u� � ���

v� � � above this line and u� � �� v� � �� below it� The joining to M fragments

ac� bh of the singular line are barriers� The rest of the line is formed by the

equivocal curves e�� e�� e�� e�� e	���� � The second equivocal curve e� is designed

using the �rst curve e�� the third curve e� is obtained using e�� and so on� The

�rst equivocal line e� is described by a di�erential equation� For other equivocal

��



Canonical example of minimum�time game problem � Control of a mass

point moving along a line� the case of a noninertial disturbance

|
-30

-

-

-5

5
W ����	

b
a

d

c f

x�

x�

Fig� ��� Solution at  � �
�

| |
-100 50

-

-

-10

10

x�

x�

Fig� ��� Solution at  � �
�

��



lines� there are not any explicit equation� some qualitative properties can only be

formulated� So� the value function does not have global analytical description�

Computations depicted in Fig� �� are carried out up to the time  � �
� The

line cf is an initial part of the equivocal curve e� depicted in Fig� ��� The line

bd of the barrier bh shown in Fig� �� ceases to grow when the endpoints of some

front come together� The development of such a situation is seen in Fig� ��� In

Fig� ��� the constructions are carried out up to  � �
 but the points f and d do

not yet reach their limit locations �see Fig� ���	

Thus� in this game with the simple dynamics� the most complicated singular

lines �equivocal lines	 appear� This fact makes di�cult the employment of the

method of characteristics ���� When we apply the above described algorithm to

this example� the only di�culty is the presence of the situation of collision but

this does not lead to the loss of the local convexity of fronts�

g

e�

e� h
d

b
a

c

fe�

e�

e	
p

x�

x�

Fig� ��� Singular line in the problem of control of a mass point�
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�� In ����� the complete analysis of the minimum�time di�erential game with

the following dynamics

�x� � ���x� � u� p� � v

�x� � ���x� � ku� p� � lv�
���	

j u j� �� j v j� ��

and the target set M consisting of a single point is done� Here� ������
� k�
�

l � 
� � � 
� � � 
� p�� p� are arbitrary numbers� Depending on parameters of

the problem� classi�cations of types of solutions are carried out� singular lines are

found� and optimal strategies of the players are designed�

In this paper� we give computational results for problem ���	� We assume

M to be a regular octagon inscribed into a circle of some small radius and with

the center at the origin�

In the case depicted in Fig� ��
� the optimal synthesis is determined by the

equivocal line �formed by the corners of fronts	� The equivocal line divides the

domain of the value function �the region bounded by the barrier lines	 into two

parts� The optimal controls take the values u� � �� v� � � above the equivocal

line and the values u� � ��� v� � �� below it�

The solution for other values of parameters is presented in Fig� ���� In

contrast to the previous case� both barrier lines go up and should intersect each

other after a su�ciently large number of steps of the backward procedure�

The simplest case is shown in Fig� ���� The barriers go down and intersect

each other� Singular lines do not appear inside the domain of the value function�

The optimal controls in the interior of the domain of the value function take the

values u� � ��� v� � ���

For the values of the parameters corresponding to Fig� ��� the attainment

of the origin can be guaranteed for any initial state� The computations in Fig�

�� are carried up to  � ���� The curves ac� bd are barriers� cf is the line with

the equivocal property�

Remark� In ����� there are misprints in formulas ����	� ����	� ����	� and in the

formula for h�u� v	 � the signs of the terms which contain the control variable v

should be replaced by the opposite ones�

��
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�� In Figs� �������� results of computing the sets W �i��M	 for a system

with a matrix A which has real eigenvalues of the opposite sign are presented�

The set M is a regular octagon inscribed into the circle with the radius 
�� and

the center at ������
	� The matrix A and the segment P are the same for all

Figs� �������� the pictures di�er one from other because they correspond to

di�erent segments Q�
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�� Consider the following oscillating system

�x� � x� � u� � v�
�x� � �x� � u� � v��

���	

u �

�
u�
u�

�
� P� v �

�
v�
v�

�
� Q�

Figs� ������� demonstrate the development of the set W ��M	 when 

increases� The target set M is a regular octagon with the center at the origin� The

sets P� Q are drawn in Fig� ���� The step of the backward procedure is � � 
�
��

The calculations are carried out up to  � � in Fig� �� and up to  � ���� in

Fig� ���� At  � ����� the front collides with the set M� For  � ����� the front

is divided into two parts� Each of these parts loses the property of local convexity

at some instant of time� In Fig� ���� �lling �the lune� that �nishes by the time

 � ���� is shown� The fronts in the lower part of the picture are computed up to

 � �����

Changes of the solution caused by the reduction of resources of the second

player in di�erential game ���	 are demonstrated in Fig� ��
� The left barrier

line terminates at some instant of time� then the front begins to go around this

barrier line� one of the endpoints of the front slides along the outward side of the

barrier� As the result� the lune appearing in the previous example does not arise�

The calculations are carried out up to  � ����

	� Fig� ��� corresponds to an example with the oscillating dynamics given

in Fig� ��� of Chapter �� The target set is a regular octagon inscribed into a

circle of some small radius and with the center at the origin� The process of

�lling the solvability set B of the game of kind by level sets of the value function

of the corresponding minimum�time game is demonstrated� The calculations are

carried out up to  � ��� Fronts are nonsmooth for relatively small interval of the

parameter �


� For all examples we have considered� the usable part of M consists of a

single arc� Fig� ��� demonstrates an example where the usable part consists of

two parts �
���
� � �

���
� � The dynamics of the control system is de�ned by equations

���	� The set M is a regular ���gon inscribed into the unit circle with the center

at the origin� The step of the backward procedure is � � 
�
�� The problem

is symmetric with respect to the origin� So� the set W ��M	 is formed by two

symmetric parts� The calculations are carried out up to  � ��

��



Construction of the sets W ��M	 for an oscillating system
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Conclusions

In this paper� two�person di�erential games in the plane are considered� The

controls of the players are restricted via geometric bounds�

In the �rst chapter� an algorithm for constructing solvability sets of a linear

control system is described that is an agorithm for �nding the set of all initial

states from which the �rst player provides the state vector to be brought to a

given target set under any actions of the second player �game of kind�� The

algorithm is based not on the embedding the game of kind within corresponding

game of degree� but on operations of constructing and sewing semipermeable

curves� The number of families of semipermeable curves is determined by the

number of convexity�concavity cones of the Hamiltonian of the control system�

The ideas of the �rst chapter can be extended to control systems with nonlinear

dynamics� This is demonstrated in the second chapter� where the game of kind

for the nonlinear pendulum is considered� In the third chapter� an algorithm for

�nding level sets of the value function for linear minimum�time game problems

�games of degree� is described�

A number of numerical examples which demonstrate speci�c features of

solutions are presented� De�nite number of examples shows the connection

between games of kind and games of degree�
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