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OPTIMAL PATHS FOR A CAR THAT GOES BOTH
FORWARDS AND BACKWARDS

J. A. REEDS AND L. A. SHEPP

The path taken by a car with a given minimum turning radius has a
lower bound on its radius of curvature at each point, but the path has
cusps if the car shifts into or out of reverse gear. What is the shortest
such path a car can travel between two points if its starting and ending
directions are specified? One need consider only paths with at most
2 cusps or reversals. We give a set of paths which is sufficient in the
sense that it always contains a shortest path and small in the sense
that there are at most 68, but usually many fewer paths in the set for
any pair of endpoints and directions. We give these paths by explicit
formula. Calculating the length of each of these paths and selecting
the (not necessarily unique) path with smallest length yields a simple
algorithm for a shortest path in each case. These optimal paths or
geodesies may be described as follows: If C is an arc of a circle
of the minimal turning radius and S is a line segment, then it is
sufficient to consider only certain paths of the form CCSCC where
arcs and segments fit smoothly, one or more of the arcs or segments
may vanish, and where reversals, or equivalently cusps, between arcs
or segments are allowed. This contrasts with the case when cusps are
not allowed, where Dubins (1957) has shown that paths of the form
CCC and CSC suffice.

1. Introduction. We want to find a shortest path in the plane with
specified initial and final points and directions and with the further
constraint that at each point the radius of curvature should be > 1.
This problem arose in a simple model for a robot cart which moves
under computer control. The cart can shift into reverse and so the
path is allowed to have cusps.

In an elegant paper, Lester Dubins (1957) solved the problem when
the car cannot reverse and cusps are not allowed. Even in this case it is
apparently impossible to give an explicit formula for the shortest path.
Instead Dubins gives a sufficient set of paths, i.e. a set which always
contains what he called a geodesic, or optimal path. His sufficient
set is so small that there are at most 6 contenders in the set for each
case of specified endpoint conditions, and it is a simple matter to find
the shortest of these 6, which gives an algorithm for the solution. He
showed that any geodesic can be described by one of 6 words:
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, /sr, r/r, rsr, rs/ where / , r, and s stand for "go left",
"go right", and "go straight", respectively. Here left and right mean
anticlockwise or clockwise around a circle of unit radius, i.e. a tightest
possible circle, and of course one always goes less than 2π around
any circle. More compactly, Dubins proved that a geodesic must be
a smooth curve that is piecewise circular (radius 1) or linear, with at
most 3 pieces, and always takes the form CCC or CSC where C
is an arc of a unit circle and S is a line segment. A word notation
like CCC or /sr thus stands for the corresponding class of paths.
We use subscripts on a word (as in /tsurυ) to specify the length of the
corresponding arcs or segments involved. Note that one or more of
these lengths may vanish. For example, to choose a path which returns
to the initial point but in the opposite direction, two competing paths
of Dubins type suggest themselves: 4π/2524τr/2 a n d /π/3r5π/3^π/3 ( s e e

Figs. A, B). It is easy to verify that both of these accomplish the job
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of reversing in place but the second is shorter and turns out to be
optimal by Dubins's theorem, as is the symmetrically reflected path,
rπ/3^5π/3rπ/3 ( s e e Fig- Q Note that in a crude dimensional sense, the
number of free parameters t, w, v exactly matches the number (3)
of conditions of endpoint and direction. For each of the words fs/,
/sr, rsr and rs/ it is not hard to show that there is at most one path
obeying the end conditions.

Although there may actually be two distinct paths of form f^uA) or
of form rt/urυ , Dubins shows [4, p. 513, Sublemma] that only one of
them, with u > π, can be a geodesic.

With this fact it is not hard to show that there is at most one geodesic
for each word, although there may be two different words which are
both optimal, as in the reverse-in-place example.

Dubins has given an effective algorithm for the forward problem,
but what if the car can reverse?

We remark that A. A. Markov in 1887 (Markov (1887), see also
[Krein-Nudelman, p. 17]) considered and solved various related ver-
sions of these problems in his work on laying railroad track connecting
already existing sections of track. Other papers of interest are Melzak
(1961) and Dubins (1961).

If cusps are allowed in the path then we must consider words built
from / + , / " , r + , r~ , s+ , and s~ , where / + means turning to the
left while going forwards, / " means turning to the left while going
backwards, etc. Note that a path of the form / + r ~ , for example, has
a cusp whereas / + r + or /~r~ has no cusp. (In car-driving terms,
the letters / , r, s refer to the steering wheel and the signs + and -
refer to the gear shift.)

It is easy to see that cusps can sometimes shorten Dubins's paths;
for example, in the reverse-in-place problem, the path ^2rπ/3^π/3 ( s e e

Fig. D) reverses in place and is shorter (in fact, it is optimal). Here
the superscript indicates the direction taken along the corresponding
arc or segment. We give a set of words in /±, r*, s± which give a
solution to the reverse problem analogous to that of Dubins for the
forward problem. These are more compactly given in C, S notation:

(l.i) c+c~c+, c+c~c-9

c+c+c-, c~s/2

together with the words obtained by reversing all the signs. Here C
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stands for either / or r so CC means either / r or rf. A C+/2 or
C~π ,2 means the corresponding / or r must be of length π/2, and
the combination CUCU in (1.1) means the two corresponding circular
segments have equal lengths. For more precision we will use the some-
what redundant convention that in Cf , 4 ± > rt° > o r ^ Λe sign of t
should match the direction, i.e. t > 0 when the car is going forward,
t < 0 when it is reversing a distance |ί| along a left-circle, right-circle,
or straight line. Note that in a family of paths such as CfC~C~C+
the number (4) of free parameters t9u,v,w is one more than the
number (3) of end conditions, and so there typically is a manifold of
solutions, t, u, v , w for given end conditions. Optimizing among
the paths of the family gives an extra equation such as v = u, or
v = π/2, so that in each case in (1.1) only 3 free parameters remain.
Of course any length not π/2 can vanish, so sub words are included
as well. We will show (in the remark below the proof of Lemma 3)
that there are paths—for example, in the class C+C~C+C~C+C~—
which are not of any of the above types and which are geodesies but in
all such cases there are equally short geodesies inside our class (1.1).
This phenomenon of geodesies that are not in the sufficient set does
not occur in the simpler forward problem. In a still more compact no-
tation that avoids ± , we may write the list of sufficient special paths
as

(1.2) C\C\C, CC\C, CSC, CCU\CUC, C\CuCu\C,

C\Cπ/2SC, C\Cπ/2SCπ/2\C, C\CC, CSCπ/2\C

where | means reverse direction. There are 48 different words in /± ,
5 ± , r* when C in (1.1) or (1.2) is replaced by C = / or C = r.
Some of these 48 words have 2 formulas for an actual path of its
word type. There are at most 68 formulas in any given case. Table 1
summarizes the 48 words and 68 formulas.

Dubin's proof is different from ours. He shows that there are
geodesies for any endpoint conditions, i.e. the infimum is achieved,
and then proves the lemma that any geodesic of length less than π/8
must be a CSC. It then follows easily that every geodesic must beia
finite word in C and S, and then using a series of special arguments
reduces all finite words to CCC or CSC.

We use advanced calculus to deduce our result from Dubin's the-
orem and then in §7, we use the same general method to outline a
separate proof of Dubin's theorem itself. In fact, we do not see how
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TABLE 1

This table lists the 48 words in our sufficient set, together with their
shorthand names as used in (1.1) and (1.2). The last column gives the
segment length formulas for the given word.

explicit

Γr+Γ
r+Γr+

l+r~Γ
Γr+Γ
r+Γr~

Γr~l+

Γr+Γ

ill?
l+rZulZur

+

r+ίZurZul
+

Γs-rZπnl*

r S /-π/2r+

r+lZπ(2sΊ~

r~s-rZ%l2l
+

Γs~r~

r~s~Γ

Γs'Γ
r+s+r+

r~s~r~

(1.1) form

C+C~C+

C~C+C~
C+C~C+

C+C~C~
C~C+C+

C+C~C~
C~C+C+

C-CC+

c~c~c+

c+c+c~
c+ctczuc~
c~czuctc+

C+CZuCZuC+

c-cictc-

Ks Ks _fl/2ιj ^

C C<κj2S C

C S Cπ/2C

c-s-czj2c
+

c+s+cϊ/2c-
c+s+c+

c+s+c+

c~s~c-
c+s+c+

c~s~c~
C+S+C+
CS'C-

(1.2) form

CICΊC
C\C\C
c\c\c
c\c\c
c\cc
c\cc
c\cc
c\cc

cc\c
cc\c
cc\c
cc\c

ccu\cuc
ccu\cuc
ccu\cuc
ccu\cuc
c\cucu\c
c\cucu\c
c\cucu\c
c\cucu\c
c\cκ/2sc
c\cπ/2sc
C\CK/2SC

c\c%/2sc

CSCyJ^C
csc^ic
CSC^IC

C\Cπ/2SC
C\CXI2SC
C\Cπ/2SC
C\C%I2SC

csc^c
cscπ/2\c

csc%l2\c
CSC
CSC
CSC
CSC

CSC
CSC
CSC
CSC

c\c^2sc«2\c
C 1 C π/2θC π/2 I C

Section 8 formula

(8.3), two roots
(8.3), two roots
(8.3), two roots
(8.3), two roots

(8.4), two roots
(8.4), two roots
(8.4), two roots
(8.4), two roots

(8.4), two roots
(8.4), two roots
(8.4), two roots
(8.4), two roots

(8.7), two roots
(8.7), two roots
(8.7), two roots
(8.7), two roots

(8.8)
(8.8)
(8.8)
(8.8)

(8.9)
(8.9)
(8.9)
(8.9)

(8.9)
(8.9)
(8.9)
(8.9)

(8.10)
(8.10)
(8.10)
(8.10)

(8.10)
(8.10)
(8.10)
(8.10)

(8.2)
(8.2)
(8.2)
(8.2)

(8.1)
(8.1)
(8.1)
(8.1)

(8.11), two roots
(8.11), two roots
(8.11), two roots
(8.11), two roots
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to formulate a result analogous to his short geodesic lemma for the
reverse problem, so his methods do not seem to work in a straightfor-
ward way. We show instead that any curve can be approximated by a
word in C ± and S± . Then we show that any word in C * , S± can
be reduced to one in at most 5 letters without increasing its length.
Finally we reduce to a word on the list by using ideas similar to the
last part of Dubin's proof.

Although we give a rigorous proof of our assertions, we used a com-
puter to empirically determine a sufficient list of words as follows:
Given a set W of words, we tested W for insufficiency by generating
the endpoint conditions randomly and first finding the best path in
W. If a shorter path can be found by concatenating two paths in W,
then W is insufficient. Using this method and pruning, we eventually
arrived at and convinced ourselves that we had a minimal sufficient
set.

Once we had guessed at W, we used the computer again to help do
the extensive algebra in the large number of cases involved to verify
that a rigorous proof could be given by the method outlined above.
Finally, we found that the proof could be simplified (§2), so that it
can easily be followed by an ordinary human without a computer to
check the details. But we think that we could never have found the
right set of words without using a computer.

In §7 we outline a proof of Dubin's theorem by our method.
In §8 we give a list of formulas to compute the lengths of each of

the 68 actual path-solutions for each of the 48 word types suitable for
algorithmic implementation.

2. Admissible paths. For us, the state of a car at a given instant t,
where t is arclength, is completely specified by its position (x(t),y(t))
in the plane. An admissible path or curve is a function γ(t) = (x(t),
y(t), φ{i)) for which we can find measurable functions e and η for
which

(2.1) x{t) = JΓ(O) + / e(τ) cos φ{τ) dτ,
Jo

y(t)=y(0)+ ε(τ)sinφ(τ)dτ, where
Jo

fη{τ)
Jo

dτ
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and where ε(τ) = ±1 and \η(τ)\ < 1 for each τ . In words, a car
can move only forwards or backwards in its own direction φ{τ) with
speed y/x1 +j>2(τ) = |ε(τ)| = 1 and cannot change its direction φ(τ)
faster than one radian per time unit so that its turning radius is at least
one or the curvature of its path is at most one (since the curvature is
the reciprocal of the turning radius).

Note that we must allow infinite acceleration at a cusp where ε(t)
changes sign instantly. The problem where the acceleration must sat-
isfy x+y <a < oc is more difficult and is not treated here. However,
for slowly moving vehicles, such as carts, this seems like a reasonable
compromise to achieve tractability. How does one characterize the
class of paths (xt, yt) which satisfy (2.1)? Any path with piecewise
constant circles of radius > 1 and/or line segments suffices, but one
can take {t :ε(ή = 1} to be an arbitrary measurable set. A somewhat
complicated condition on (xt,yt)9 0 < t < Γ, is: It is assumed that
t is length along the path, so that x} + y} = 1. Then it is necessary
and sufficient that for φ(t) = tan~ι(yt/xt) we have

(2.2) \φ(t + s) - φ(ή\ <s ΐorO<t<t + s<T.

This is an immediate consequence of the fact that a Lip 1 function φ
as in (2.2) is the integral of its derivative η as in (2.1). Finally, β(τ)
is automatically uniquely defined by (2.1) since x} + yf = 1.

The track of an admissible curve γ(t) = (x(t), y(t), φ(t)) is γ(t) =
(x(t), y(t)). By differentiating (2.1) we get

(2.3) *(ί) = e(

so both γ{t) and γ(t) are rectifiable. If g is admissible with g(to) = a
and g(t\) = b with to < t\ we call its restriction γ = g\[t 5 g to the
domain to < t < t\ an admissible path leading from a to b and define
its length L(γ) = t\ - to. Our problem in short: given an arbitrary a
and b in R3 find an admissible γ minimizing L(γ).

3. Summary of results. A word is a finite string in the letters C,
S, I and with some abuse of notation is also thought of as a path or
as a set of paths. Each path in C\CS, for example, starts somewhere,
goes along a circle of radius 1 for some distance > 0, then has a
cusp, then goes along the other circle tangent to the first circle at the




