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Abstract—In the paper, we consider an application of the
genetic approach to improve the performance of the trajectory
tracking procedure. Our aim is to reduce the horizontal position
estimation errors. The procedure is based on the well known
Interacting Multiple Model algorithm and has many parameters
to be adjusted, e.g., elements of the transition probability matrix.
A genetic tuning algorithm is elaborated and some numerical
experiments on simulated aircraft trajectories are made.

I. INTRODUCTION

The process of aircraft trajectory tracking [1] can be rep-
resented as follows. A track of some aircraft consists of a
sequence of measurements {zj}nj=1, where n is the total length
of the sequence. The measurement zj at an instant tj contains
the random error wj and is related to the vector x(tj) of the
true aircraft position. We consider only the simplest case of
the horizontal plane motion of aircraft (thus, the vectors x, z,
and w belong to R2) and the additive random error:

zj = x(tj) + wj . (1)

There are two types of the random errors: the usual random
errors and the outliers, which have another probabilistic distri-
bution with greater covariance characteristics and a systematic
component. The outliers are rare events with small probability.

Any real-life estimate x̂j of the aircraft position vector x(tj)
is a function of the history of measurements {zk : tk ≤ tj}
and a priori information such as properties of the aircraft
motion and the random errors. It is desirable to decrease
a “distance” between the true state x(tj) and the estimate x̂j .
Commonly, the “distance” is the “total” mean squared error
(MSE) E

{
‖x̂j − x(tj)‖2

}
, but, in some cases, it is useful to

control other metrics.
Aircraft trajectories are not equal in terms of the quality

of estimation. The MSE of the position estimates depends
on the MSE of the measurements: the higher the latter, the
higher the former. This is the reason to introduce [2] the
normalized position error (NPE) as the ratio between the MSE
of the position estimates and the MSE of the measurements.
Moreover, the parts of one trajectory are not equal: in the
simplest case, the measurement MSE can vary in time or

depend on the position of the aircraft with respect to the radar.
So, the NPE has to be considered as a function of time.

Another important fact: it is much simpler to make an
estimate with small MSE in straight line segments of motion
than in circular ones. The most difficult thing for estimating is
the transitions between segments of the different motion types.
Usually, the MSE of a trajectory tracking algorithm has the
“peak” after the maneuver starts. Also, there is a time required
to decrease the MSE from the peak value to the level that is
typical for the steady motion.

This work is a result of collaboration with NITA, LLC,
which is the leading Russian company in the area of air traffic
management (ATM) systems. The trajectory tracking complex
by NITA is based on the well-known interacting multiple
model (IMM) algorithm. The engineers of the company in
their work observe all the typical behaviours of the tracking
estimates as “peaks” and address a natural question how
to “smooth” them and improve the performance. The algorithm
behaviour depends on many parameters of the IMM method.
Thus, the problem of setting the parameters of IMM arises.

II. PARAMETERS OF THE TRAJECTORY TRACKING
ALGORITHM

The real trajectory tracking algorithm of the NITA company
consists of two parts: the preprocessor, which is responsible for
correct mixing of data from different sensors and robustness
against outliers, and the IMM filtering procedure whose main
purpose is to produce a good estimate of the current aircraft
position despite of its maneuvers.

We consider the preprocessor part as a black box: it was
given by the NITA company as an executable file and we could
only change its parameters. There are discrete and continuous
parameters; their column vector will be denoted as θpre.

In contrast, the next part (i.e., the IMM procedure) has
an explicit description. The vector of its parameters will be
labeled as θimm. All the parameters are continuous.

The core of the IMM procedure [1], [3] are several Kalman
filters, each of which corresponds to its own motion model.
These filters produce the estimates at the last measurement
instant, then the algorithm produces the joint estimate.978-1-7281-8942-0/20/$31.00 c©2020 IEEE
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The algorithm of the NITA company deals with several
models of the aircraft dynamics, which are widely used in
practice (see [1], [4], [5]): constant velocity (CV) motion,
constant acceleration (CA), and coordinated turn (CT). Since
the CA and CT dynamics have a nonlinear description, the
IMM extended Kalman filter (IMM EKF) modification is used.
Denote the total number of the models as K.

All the dynamics can be represented [4] by the equation

ξ
(k)
j+1 = f (k)(tj+1 − tj , ξ(k)j ) + g(k)(tj+1 − tj , ξ(k)j )ν(k),

where ξ
(k)
j ∈ Rdk is the state vector of kth model at the

instant tj which includes the position vector x(tj) of the
aircraft, its velocity vector, and such specific variables as
angular speed or acceleration; tj+1 and tj are successive time
instants; f (k) is the transitional function of the kth dynamics;
g(k) is the process noise function of the kth dynamics; and
ν(k) ∈ Rmk is the random process noise whose characteristics
are specific for the kth dynamics.

The parameters θimm of the IMM method consist of two
main parts. The first one is the process noise covariances
Q(k) = E

{
ν(k)ν(k)T

}
. In our algorithm, a simple version

is used:

Q(k) = diag
{
σ2
1(k), . . . , σ

2
mk(k)

}
.

The second part of θimm is the parameters of the transition
probability matrix (TPM). Since the time intervals between
consecutive measurements vary, the transition probabilities
also have to vary. We use a simple version of this dependence:

P (tj+1 − tj) = Ie−(tj+1−tj)/λP + P∞(1− e−(tj+1−tj)/λP ),

where P is the TPM, P∞ is the limit value of TPM as the
time interval tends to infinity, I is the identity matrix, and λP
is the constant of the convergence rate.

The constant λP is included into θimm directly, but this is
not the case for P∞. Indeed, every row pk of P∞ is a list of
the transition probabilities pkj from the kth dynamics to the
jth one with the constraints:

pkj ∈ [0, 1],
K∑
j=1

pkj = 1. (2)

Such a set is known as a simplex. Equality constraints (2)
are inconvenient for numerical optimization, if we use pkj as
parameters in a straightforward way. But we can simplify this
problem using some representation of pkj by means of other
parameters ηkj with the box constraints.

There are two useful facts. First, the uniform distribution
over simplex (2) can be modelled by the Dirichlet distribution
Dir(α1 = 1, . . . , αn = 1), which is described by n exponen-
tial random values [6], [7]:

η′kj ∼ Exp(1) =⇒

=⇒

(
η′k1∑K
j=1 η

′
kj

, . . . ,
η′kn∑K
j=1 η

′
kj

)
∼ Dir(1, . . . , 1).

Second, using the inverse transform sampling [8], the expo-
nential random value can be represented as follows: η′kj =
− log ηkj where ηkj ∼ U(0, 1] (the uniform distribution over
the interval (0, 1]). On the basis of these facts, we use the
following representation for the probabilities

pkj =
− log ηkj

−
∑K
`=1 log ηk`

, (3)

where ηkj ∈ (0, 1] are directly adjusted parameters that are
included in θimm. This representation is convenient and can
be found, for example, in [9].

If the adjusted parameters ηkj , j = 1,K, spread uniformly
over the box (0, 1] × . . . × (0, 1], then the probabilities pkj ,
j = 1,K, also spread uniformly over simplex (2). In other
words, this representation allows us to avoid an “artificial”
concentration of pkj in some part of the simplex.

The joint vector θimm is

θimm =
[
σ1(1) . . . σmK(K) λP η11 . . . ηKK

]T
.

The total parameter vector θ consists of θimm and θpre.

III. PARAMETER ADJUSTMENT METHODOLOGY

The application of IMM filtering procedure to the trajectory
tracking has been widely presented in literature [1], [2], [4],
[9]–[11]. In one part of the publications, the parameters are
chosen a priori and do not change during the IMM work
[2], [12], [13]. In another part, adaptive versions of the IMM
algorithm are considered, where parameters are adjusted while
the tracking process runs [9], [14].

In our work, we keep a non-adaptive strategy and consider
the parameters of IMM as a priori chosen (and they do not
change during tracker executes) because the current trajectory
tracking program of the NITA company is based on a non-
adaptive version of the IMM method. Our aim is to improve
the existent tracking complex, but not to develop a new one.
So, we try to find the “best” or “good” parameters that enable
the tracking program to work well in all the motion segments
of all aircraft types.

The elements of TPM can be the parameters most affecting
the behavior of the IMM algorithm. There are several publica-
tion [4], [9], [15] devoted to the design of TPM. The authors of
[15] suggest a generic Bayesian framework for the online TPM
adjustment and suppose three practical numerical schemes. In
[9], the TPM is modelled by the Dirichlet distribution like
(3) and analytical formulas are suggested to integrate of the
common density of the state, mode, and TPM sequence.

We optimize not only the TPM elements but also many
different heterogeneous parameters such as process noise co-
variances and discrete tuning constants of the IMM preproces-
sor θpre. Thus, we have to use a simple optimization method
that can handle both continuous and discrete variables and
does not rely on the existence of the cost function derivatives
in its work. A genetic algorithm matches these conditions [16],
[17], so we decided to use it.

The genetic approach has been used for the parameter
adjustment in the trajectory tracking problems. For example,
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in [12], the authors describe a version of the IMM method,
namely the Fuzzy IMM (FIMM), and adjust the process noise
covariances using the genetic algorithm. In [13], the genetic al-
gorithm sets the switching parameters in the variable structure
IMM. Genetic algorithms in these papers are used in off-line
regime: the parameters do not change as the tracker executes.
Unlike this, in [14], the genetic algorithm is used on-line
for the data association. All these examples have a common
point: the genetic algorithm optimizes parameters that have a
complex and unobvious influence on the performance. This is
very close to our case.

The difficult point in our study is to define what “the best”
and “good” tracking quality are. There are many criteria of
the trajectory tracking quality in ATM practice. We follow
EUROCONTROL documents [18], [19] and the criteria in
them as basic. In our investigation, we consider only the
position error, which is the difference between the true position
of the aircraft and the estimated one.

The position errors along and across the trajectory are
distinguished [18] and the performance criteria in these direc-
tions are distinctly formulated [19]. Moreover, different quality
norms stand for the different motion segments and transitions
between segments [19]. The measure of these errors in the
standard [19] is the root mean squared (RMS) error.

We decided to use such norms as the reference in our quality
criteria. Following the standard [19], for each measurement
instant tj , we can assign the norm values for deviation between
the ideal trajectory position x(tj) and the estimated one x̂j :
σ̃lj for the deviation along the trajectory and σ̃nj for the across
deviation. The norm values depend on the motion type of
the ideal trajectory x(·) at the measurement instant tj and
are adjusted in accordance with the standard deviation of the
measurement noise. Our analog of the NPE is based on the
ratios between the tracking error value and the quality norm:

rlj =
|el Tj (x̂j − x(tj))|

σ̃lj
, rnj =

|en T
j (x̂j − x(tj))|

σ̃nj
. (4)

Here, elj is the unit vector along a certain trajectory x(·) at
the point x(tj) and enj is the corresponding unit vector for the
across direction. Their calculations are based on the velocity
vector of the trajectory x(·) at tj .

Ideally, we want to decrease the root mean squared ratios

σl=
√
ExEtjEwj

{
(rlj)

2
}
, σn=

√
ExEtjEwj

{
(rnj )

2
}
, (5)

where Ex, Etj , Ewj are expectations relative to the trajecto-
ries x(·), their measurement instants tj , and the measurement
random errors wj , respectively. But the distribution over the
trajectories x(·) is unknown and there is a problem with the
distribution over wj since, in the presence of outliers, we do
not know exactly their properties.

Usually, the expectations in (5) are substituted by the means
over a sufficiently wide set {x(·)} of trajectories. In the present
work, for simplicity, we decide to use one but a long trajectory
that has all the types of motion segments and their transitions
and a wide range of the speed regimes. To minimize the risk of

the overfitting (see [20]), we use one trajectory as the training
set (the training trajectory) but check the quality on some other
test trajectory.

In order to substitute expectation over the measurement
errors in (5), a set (or package) of the measurement tracks
{{zij}ni

j=1}Ni=1 is considered. Every track i is the sequence
of measurements {zij}ni

j=1 obtained by a specific run of the
measurement noise {wij}ni

j=1 at the measurement instants
{tij}ni

j=1. The training and test trajectories have their own
measurement track packages.

Finally, after substitutions in (5), we have these total RMS
errors in the along and across directions:

σ̂l=

√√√√ 1

N

N∑
i=1

1

ni

ni∑
j=1

(
rlij
)2
, σ̂n=

√√√√ 1

N

N∑
i=1

1

ni

ni∑
j=1

(
rnij
)2
. (6)

To show separately the behaviour on the motion segments
and their connections, we use the RMS error as a function of
time along the trajectory x(·):

σ̂l(x(·), t) =

√
1

N(t)

∑
i∈I(t)

(
rlij

)2
. (7)

Here, each instant t is considered to belong to the union ∪i,jtij
of all the measurement instants, I(t) = {i : tij = t} are
the indices of tij that coincide with t, and N(t) = #I(t)
is the cardinality (#) of this set. In addition, a quantile
analogue is considered in order to check the guaranteed (with
ε probability) level of deviations:

qlε(x(·), t) = min

{
q :

#
{
i ∈ I(t) : rlij ≤ q

}
N(t)

≥ ε

}
. (8)

The functions σ̂n(x(·), t), qnε(x(·), t) for across deviations
are defined in a similar way.

There are a lot of criteria important for the practice. Thus,
the multicriterial optimization technique is needed as, for
example, in [21].

IV. GENETIC PROCEDURE

The genetic algorithm is based on modeling the process
of the natural evolution with the inclusion of elements of
directional search [16], [17]. The scheme of the algorithm
workflow is presented in Fig. 1. In this section, we describe
subprocedures of the algorithm according to their sequence in
the total procedure and discuss their details. The term “geno-
type” denotes the parameter vector θ of the tracking algorithm
when the term “gene” stands for some specific parameter θk.
An “individual” a corresponds to a point θa in the space of
the parameter vectors. The term “generation” stands for the
iteration number of the genetic algorithm workflow and the
set of all individuals at this iteration.

A. Initialization

The initialization of the algorithm is performed from one
individual. After the creation of one individual, the population
starts to spread: a certain number of individuals is generated,
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Initialization
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Calculation of fitness function
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3

Fig. 1. Genetic algorithm flowchart

whose genes differ from the parameters of the first individual
by the current standard step of variation of this gene (or,
sometimes, by 1/3 of the current step).

B. Evaluation of New Individuals
In every generation, new individuals are created. For each

newly formed individual, the quality criteria are evaluated
using the trajectory tracking program.

To speed up the calculations, we use parallel computation of
individuals. For debugging, we use a personal computer (with
OS Windows) with a multi-core processor. For the main exper-
iment we use the “Uran” supercomputer of N.N. Krasovskii
Institute of Mathematics and Mechanics (with OS Linux).

The evaluation process is based on the one ideal training
trajectory, which represents the typical motion of a civil
aircraft, and a package of N measurement tracks. The tracks
differ in the measurement time step and the characteristics of
the random error.

For each track in the package, ratios (4) are calculated for
all the measurements of the trajectory. Based on these data,
the genetic algorithm calculates the values of the individuals’
criteria. For robustness, we do not use RMS criterion (6)
exactly in the training process, but use its analogs that are
based on the mean and maximum absolute values.

The following criteria are used: the average over the package
of the maximum over time in the along and across channels:

c2 =
1

N

N∑
i=1

max
j
rlij , c3 =

1

N

N∑
i=1

max
j
rnij ,

the average of the package in the along and across channels:

c4 =
1

N

N∑
i=1

1

ni

ni∑
j=1

rlij , c5 =
1

N

N∑
i=1

1

ni

ni∑
j=1

rnij ,

the total average of the package:

c6 =
c4 + c5

2
,

and the maximum over package of the average over time in
both channels:

c7 = max
i

1

ni

ni∑
j=1

rlij + rnij
2

.

The criterion c1 is used in the algorithm as the fitness
function h. It is the complex empirical criterion that takes
into account several criteria with weights:

h = c1 =
5

12

(
c2 + c3
10

+ 2c6 +
c7
5

)
.

C. Immortal Individuals Assignment

The individuals that are good by any criteria have to be
preserved in the population. To do this, these individuals are
marked by “immortality” flags. Two levels of “immortality”
are introduced: the “best immortality” and the “good immor-
tality”.

After all the individuals are evaluated, the extreme values
of the criteria for the entire population are determined:

Ckmin = min
a∈A

ck(a), Ckmax = max
a∈A

ck(a), k = 1, 7.

Here, A is the set of all individuals in the given generation;
ck(a) is the value of criterion ck for the individual a.

If the minimum of any criterion is reached at an individual,
then this individual is marked with the “best immortality” flag.
The individual a of “good immortality” is such that at least
one criterion value ck(a) satisfies the inequality

ck(a) ≤ λimCkmax + (1− λim)Ckmin.

Here, λim is the parameter of proximity of the “good immor-
tality” to the “best immortality”, the same for all the criteria.

The initial value of the proximity parameter λim is equal
to 0.01. During further work of the algorithm, if the number
of individuals of “good immortality” increases greatly in some
generation, then the value of the parameter decreases by half.

D. Selection

During selection, the “old” individuals (the age of the
individual is greater than the current established level TL) are
destroyed, except for those which have the “immortality” flag.
If the number of individuals exceeds the assigned maximum
value after destruction of the “old” individuals, the “elderly”
individuals (for which the difference between the current age
and TL is small) can be destroyed.

The maximum assigned age TL for an individual a is
calculated at each generation on the base of h(a):

TL(a) = 1 +MA
C1max − h(a) + 1

C1max − C1min
.

Here, the constant MA is the maximum possible age (the
parameter of the algorithm).

E. Crossover

Any two individuals whose age are greater than 2 can be
crossovered. Pairs of individuals chosen by the random number
generator participate in the crossing gene exchange with the
creation of a new individual: each gene of the new individual
is randomly inherited either from the parent 1 or from the
parent 2. If the child is a clone of one of the parents, then the
individual is not formed.
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F. Directed Breeding

Two random chosen individuals with different fitness func-
tion values can participate in breeding. Denote the indi-
vidual with the best fitness as b and the individual with
the worst fitness as w. The values of the ith gene are θib
and θiw, respectively. The value of this gene for the child
in the breeding process is chosen randomly in the interval[
1
2 (θ

i
w + θib), 2θib − θiw

]
from a uniform distribution over it.

G. Mutation

At every generation, the immortal individuals mandatorily
undergo the mutation process while other individuals undergo
mutations only with some probability.

If the current age of an individual is less than the maximum
assigned age TL, then the individual undergoes an “usual”
mutation: the value of each gene is randomly changed by a
value no greater than the current step of variation of this gene.

To revive genetic diversity in the case of “stagnation” of the
population, the individual can be subjected to “micromutation”
or “macromutation” if the age of the individual exceeds TL
(it is possible for the immortal individuals).

In the micromutation, the value of each gene is changed by
a random value with the magnitude 1/100 of the current step
of variation of this gene.

When the macromutation occurs, the value of only one
randomly selected gene is changed by a random value with
the magnitude 100 of the current step of gene variation.

H. Adaptive Choice of the Basic Variation Step of Each Gene

The basic step size of gene variation is adjusted depending
on the history of variations. If the new individual has a better
fitness value than its parent and it has been created with the
step size different from the basic one, then, further, this step
size will be assigned as the basic. Otherwise, the basic step is
not changed.

I. Intermediate Populational “Shaking”

The “shaking” is used when the evolution stalls. In shaking,
all the individuals that are not “immortal” are removed. For the
remained ones, the genetic algorithm starts new spreading
that is similar to the initialization from the first individual.
The steps of variation of these descendants are changed to
the initial step of variation, and then the genes are varied.
The “best immortality” individuals produce more descendants
than the “good immortality” ones. The intermediate shaking
algorithm is called up every 100th generation.

V. NUMERICAL EXPERIMENTS

The training was performed on a package of 20 measure-
ment tracks (N = 20) built on the basis of the single ideal
trajectory with duration 2430 s. The RMS for the random
measurement errors depended on the track label i as follows:
σi = 6i m, i = 1, 20, hence covered the range from 6 to 120 m.
Tracks with the labels i greater than 10 contain outliers. The
probability of the outliers is 1/20, and the RMS error of the
outliers is five times greater than the regular RMS. The tracks

Fig. 2. Total RMS error as a function of the generation number g in along
(green) and across (blue) channels, for the test package

Fig. 3. Time dynamics of gene θ5. Gene value as a function of the generation
number g

with odd numbers have the measurement time step 4 s (the
airport zone is simulated according to [19]) and the tracks
with even numbers have the measurement time step 12 s (the
en-route radar is simulated according to [19]).

The initial point of the evolution process was the “IMM0”
parameters, which are close to the parameters used by the
NITA company in its tracking program. The evolution lasted
during 648 generations and was stopped when the total RMS
criterion (6) became to increase confidently on the test trajec-
tory as one can see in Fig. 2.

Fig. 2 shows the results for the test package of tracks: the
total RMS errors in the across (7) and along channels are
shown as functions of the generation number. The horizontal
lines at the top of the figure are the criterion levels for the
measurements. They are depicted for reference. This package
consisted of 120 tracks with duration 1280 s and the measure-
ment RMS error σi covered the range [10, 120]. Half of the
trajectories had outliers, the measurement time step was either
4 s or 12 s. The parameters that are best for this generation
according to the c6 criterion were used to restore tracks in the
test package.

An example of a noticeable change in the distribution of the
gene θ5 depending on generation number g is shown in Fig. 3.
The initial value of gene θ5 was 0.01. At the 419th generation,
the immortal (and others) individuals of the population were
concentrated around the value of 0.35.

Fig. 4 shows graphs of the 95% quantiles ql 0.95 as functions
of the measurement time for the test track package. This
package consists of 240 tracks with duration 2070 s and with
σi covering the range [5, 105]. The most of the trajectories
are with outliers, the step between consecutive measurements
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Fig. 4. 95% quantile ql 0.95 as a function of the measurement time in the
along channel, for the test package

Fig. 5. A fragment of the test trajectory on plane: the ideal trajectory
(magenta), the measurements (black), and the tracking results before (blue)
and after (green) optimization

is 12 s. The black lines (Mes) are for the level of measure-
ments. The magenta color (IMM0) shows the results for the
initial IMM0 parameters θ. The dark blue lines (BST) are the
results obtained for the best parameters by the c6 criterion for
the 350th generation of evolution.

In Fig. 5, a fragment of plane with these test trajectories
is shown. The ideal test trajectory depicted with magenta and
has straight line, circular, and acceleration motion sections.
The measurements are shown as black stars. The blue line is
a one realization of the tracking result with IMM0 parameters
before optimization. The green line corresponds to the tracking
result with optimized BST parameters.

VI. CONCLUSION

As a result of the numerical experiment, we have found
the set of the parameter vectors θ (the set of the “immortal”
individuals) that outperform the initial IMM0 parameters. The
tracking algorithm with these parameters shows less relative
(with respect to the norms [19]) RMS error in the horizontal
plane in both along and across channels. The errors are
decreased both in the total value per trajectory and in the
problematic parts of the trajectories, i.e. in the connections
of the motion segments. The influence of outliers is also
decreased.

However, we are aware of the fact that we used too small
both training and test sets in our numerical experiment. In our
future work, we are going to use bigger sets and add the real
data from radars.
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