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Abstract—The multilateration problem is described in the 
case when measurements from several consecutive instants of 
signal transmission are processed together. For the 
corresponding observation equations, the Cramer–Rao Lower 
Bound is computed. The solution is based on minimization of a 
nonlinear functional, and we proposed an effective numerical 
method for this optimization task. The results of work of the 
algorithm on simulation data corresponding to some real location 
and characteristics of the receiving stations are presented. 

Keywords—multilateration; nonlinear least squares; Cramer–
Rao lower bound; Levenberg–Marquardt algorithm 

I. STATEMENT OF THE PROBLEM  
The problem of multilateration (MLAT) is as follows: at 

some unknown time instant t  the object (aircraft) under 
observation, which is at location r , transmits a radio signal 
(for example, it can be a reply of the airborne transponder to 
the secondary radar request). This signal is received by several 
stations (there are m  stations) with known coordinates  miir 1 . 
The receiving station i  records the time of arrival (TOA) it  of 
this signal, but there is a random measurement error iw . We 
can write the following observation equation ( c  is the speed of 
light): 
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It is necessary to produce an estimate of the object position 
r  so that the estimation error would be as less as possible. We 
assume the estimation error as mean squared error (MSE) 

2( )E r r .  

Note that in the literature (for example, in [1]) the problem 
of multilateration is often considered for the case when the 
measurements are not times of arrival (TOA)  miit 1 , but the 
time differences of arrival (TDOA)   Pjiji tt


 ,

 for some pairs 

of receivers P . However, taking into account the features of 
architecture of the system, where a practical application is 
possible, we are interested in the statement with measurements 
of the times of arrival. For this case, the mathematical 
statement of the multilateration problem almost completely 

coincides with the statement of the problem of positioning in 
the global positioning system (GPS). But there are differences. 
So, in the case of GPS, the unknown variable is not the 
transmission time t , but the time bias between the receiver 
clock and the satellite clock. Also, the accuracy of time 
measurement in the receivers and the typical values of the 
station coordinates ir  are different. In multilateration, the 
stations are usually located on the Earth surface, and the 
observed object is usually an aircraft, which is also near the 
surface (in comparison with the satellites in the case of GPS). 
As a consequence, all the vectors irr   are close to the plane 
of the local horizon, which makes the task difficult from the 
view point of numerical methods, and even makes the solution 
impossible in some cases. The estimation error along the 
vertical direction is especially large. 

Another feature of multilateration is that there is often no 
reception of a signal at some station (for example, i ) due to the 
shading of the propagation path by obstacles on the Earth 
surface. In this case, there is no corresponding measurement it . 
If the number of stations that received the signal is less than 4, 
it is impossible to make the estimate r  using the remaining 
measurements. These peculiarities led us to the idea of 
combining the measurements obtained from several successive 
signal transmission instants and making a joint estimate. It 
would be possible to use all the measurements available from 
the beginning of the observation, and to perform filtering using 
the model of the moving object [2]. But such a solution does 
not look universal; for different aircraft, it would be necessary 
to use different filters with specific settings. The combination 
of measurements into small batches and using the simplest 
assumption of straight line and steady speed motion looks as a 
more useful and straightforward approach. But this easy 
method can already reduce the effect of lost measurements and 
increase the accuracy of estimation. 

II. OBSERVATION MODEL. CRAMER–RAO LOWER BOUND 
The observation model for the problem with several signal 

transmission instants is based on equations (1). As before, let 
us denote by t  the time, for which it is necessary to provide 
the estimate r . Assume that the instants of signal transmission 
are jj tt  , the number of them is n . The measurement 
instants and their random errors are denoted by j

it  and j
iw , 

respectively. The following equations are fulfilled  
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Here, jI  is the set of indices of the stations that have received 
the signal at the time jt  (they can be not all stations, and at 
each time the set can change); r  and v  are the position and 
velocity of the object at the instant t . Next, we shall consider a 
special case where ntt  , 0n , that is, we estimate the 
position at the time of the last transmission of the signal. 

In the observation model (2), there are n7  variables: 
3, Rvr  , 11 ,,, Rt n  . Equality 0n  removes one of 

them, but their number still remains significant. Often, in 
practice, the differences j  of transmission instants are known 
(for example, in a case of periodic broadcast of the signal) or 
they can be easily recovered. Let us consider the case of known 
differences j . For sake of brevity, we denote the remaining 
parameters as a vector TTT tvr ][ . 

For the observation model (2), it is possible to construct the 
Cramer–Rao lower bound of accuracy [3], [4], which shows 
potentially achievable accuracy of unbiased estimators. Let us 
introduce unit vectors of the direction from the location ir  of 

the station i  to the location jvr   (the position of the object 
at the instant jt )  
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The density )( j
it t  of the distribution of the measurements 

j
it  is expressed through the density )(w  of the random 

variable j
iw  (we assume that they are independent and 

identically distributed for all i , j ) and such a residual 
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The Fisher information matrix has the form 
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where  


 dw
w
w

)(
)( 2  is a constant depending on the 

properties of the random measurement errors j
iw  only, and the 

matrix )(D  expresses the geometric properties of the 
observation problem. The Cramer–Rao inequality [3] 

 1 1 1( )( ) ( ) ( )TE I D             

should be considered in the sense of positive semidefiniteness 
of the matrices difference. The accuracy of an estimate of   
cannot be better than boundary (5) (in the case of unbiased 
estimates) [3]. The estimation accuracy of a part of the vector 
  (for example, r , which is important in our case) is 
connected with the corresponding part of the matrix 1)( I . 

Given the characteristics of the multilateration system 
(location of the receiving stations ir , characteristics of the 

errors j
iw ), it is possible to build the accuracy boundary at 

each position in the observation zone using formula (5). The 
vectors j

ie  are almost identical for different j  in some 

reasonable range of v  and j . As a consequence, the 
dependence of matrix (4) on v  is very weak and it can be 
neglected in calculations. 

Figure 1 shows the levels of the accuracy lower bound 
(according to equation (5)) for the horizontal coordinates are 
shown. They are calculated for specific locations of the 
receiving stations on the ground (shown by asterisks) and the 
normally distributed errors j

iw  with zero mean and standard 
deviation of 1 μs; the aircraft altitude is 2000 m. 



Fig. 1. Levels for the Cramer–Rao lower bound of accuracy (in meters) of 
estimation for the horizontal coordinates of the aircraft for the specific 
location of the receiving stations (marked with asterisks) 

III. NONLINEAR LEAST SQUARES ESTIMATE.  
MINIMIZATION OF THE FUNCTIONAL 

The solution of the multilateration problem and the 
development of estimates of r  can be made in different ways, 
but apparently the most promising is maximum likelihood 
estimates [1]. In the particular case of normally distributed 
observation errors j

iw , such an estimate corresponds to the 
minimization of mean square of residuals (3) 
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This estimate reaches accuracy (5) in the limit (asymptotic 
efficiency) when the number of measurements increases [3]. 
Even if the distribution of the errors j

iw  is not normal, the 

estimate arg min ( )J    has good properties. 

Functional (6) is not convex, so its optimization is 
complicated. Different scales of variables also make significant 
difficulties. The gradient descent method used for minimization 
showed an extremely low rate of convergence, requiring a large 
number of iterations (about 104). And convergence is not 
always achieved in experiments. In a sufficiently large 
percentage of cases, the numerical procedure makes 
fluctuations and "jumps". 

Second-order methods based on Newton's method have a 
very high rate of convergence [4], but their application to the 
optimization of functional (6) requires regularization. Thus, the 
classical Newton's method [5] has the form 

 )())(( 12
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where )(2
kJ   is the matrix of second derivatives calculated 

at the current approximation point k . However, the main 
condition of convergence of procedure (7) is positive 
definiteness of )(2

kJ  , which is not fulfilled in the case of 
functional (6). To overcome this difficulty Levenberg–
Marquardt modification [5] of Newton's method is used, which 
is constructed as follows. Consider the matrix of the second 
derivatives 
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Only the second term in the brackets is responsible for the 
violation of positive definiteness of )(2

kJ  . But near the 
optimal point it cannot be large, since the values of the 
residuals j

if  are small. Therefore, we can make an 
approximate matrix Q  for which positive definiteness is true  
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and which can be used instead of )(2
kJ   in (7): 
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Method (8), directly applied to the optimization, shows a 
good rate of convergence with the constant   of the order of 
10-3 in some experiments, but often stops far from the 
minimum of functional (6). This situation has been overcome 
by dynamic changing the constant of regularization  . If the 
functional J  ceases decreasing, but the value of J  remains 
large, then the constant increases  2: . If the step length is 

small, but there is a stable decrease of the functional on several 
iterations, an attempt is made, on the contrary, to decrease  . 

With such a modification, the Levenberg–Marquardt 
algorithm has shown a good performance on simulated data in 
terms of recovery of the horizontal components of the 
coordinates of r . In Fig. 2, the levels of accuracy of the 
method are shown for the same configuration of the receiving 
stations as in Fig. 1. The empirical standard deviation 
  1/2

21
1

( ) ( )N
N k

r r r


     over N  realizations is taken as the 

accuracy estimate. The comparison of Figs. 2 and 1 shows that 
the accuracy of the estimate obtained by minimizing the 
functional (6) using the method (8) is comparable to the 
Cramer-Rao lower bound of accuracy. 

 
Fig. 2. Levels for the root mean squared deviation of estimation for the 
horizontal coordinates of the aircraft for the specific location of the receiving 
stations (marked with asterisks) 
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