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ABSTRACT. In the paper, methods of the differential game theory are applied to prob-
lems with an unkown a priori level of a dynamic disturbance. Problems with fixed terminal
time and some prescribed geometric constraint for the useful control are considered. The
objective of the useful control is to guide the system to some given terminal set at the termi-
nal instant. A feedback control method called adaptive is suggested which provides leading
the system to the terminal set if the disturbance is not greater than some critical level. With
that, a "low-level" disturbance is parried by means of a "low-level" useful control. In a lin-
earized formulation, a problem of interception of one weak-maneuvering object by another
(of a missile by an anti-missile) is considered.

1. INTRODUCTION. In the theory of differential games [1–4], there are well-
developed methods for problems, which settings include geometric constraints for
both the first and second players. However, in practical mechanical problems, the
constraints are often given only for the useful control (for the first player), but pre-
scribing some constraint for the disturbance (for the second player) is not natural.
Moreover, the optimal feedback control of the first player, which is obtained in the
framework of the standard formalization of an antagonistic differential game, is di-
rected to parry the worst disturbance and, therefore, uses the extremal values of con-
trol. But in real situations, the dynamic disturbance is usually not realized in its
worst way.

One would like to have a feedback control method, which successfully works for
disturbances from a wide range. With that, the "weaker" or "less optimal" the dis-
turbance is, the "weaker" should be the parrying useful control. The aim of the work
is to suggest such a control based on approaches of the differential game theory.

The pivotal concept from the theory of differential games which is used below
is a stable bridge [1, 2]. This is a set in the space time ¥ phase variable, where the
first player governing the useful control can keep the system motion up to the termi-
nal instant despite of the action of the second player (of the disturbance). When
constructing such sets, one supposes that geometric constraints are given for both
players’ controls.

Consider a family of differential games where the geometric constraint for the
second player’s control depends on a scalar parameter. A constraint for the first
player’s control and, therefore, a stable bridge in the game space are connected to
each value of the parameter too. Changing the parameter, we obtain a family of
bridges, which is ordered by inclusion with increasing the parameter. The first player
guarantees keeping the system in a tube using his control of the corresponding level
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if the second player’s control obeys its corresponding constraint. This family allows
us to construct a feedback control of the first player and to compute the guarantee
provided by this control.

Assume that the system is influenced by a disturbance which does not exceed
some level. Then, the system motion will cross the bridges from the family until it
reaches (from above or below) the boundary of the bridge, which corresponds to this
level of the disturbance. Further, the motion will come inside the bridge. So, the
system tunes automatically the level of the useful control to the actual, but unknown
level of the disturbance. Due to this, the control is called adaptive.

The idea described above is quite general. Its concrete realization depends on the
opportunity to realize an algorithm for constructing stable bridges for systems of
certain types. In connection with the algorithms, we mention works [4–9] dealing
with the topic.

In the paper, we consider problems with linear dynamics, fixed terminal time,
and convex compact terminal set, to which the first player tries to guide the system
at the terminal instant. The useful control is bound by a geometric constraint
which is a compact convex set. These properties of the system allow us to construct
quite easily the family of stable bridges and the adaptive control. Namely, under
these conditions, we need to compute some two bridges only, which are stored in
memory and generate the ordered family. So, on the basis of these two bridges at
any time instant, we can construct a suitable bridge from the family. Then the
control is produced by the extremal shift [1, 2] to this bridge. Efficiency of
this algorithm is provided by the fact that all the bridges have convex time sections
(t-sections).

A corresponding software is developed now for the cases, when the terminal set
is defined by two or three components of the phase vector at the terminal instant
[10, 11].

In this paper, the method of adaptive control is applied to the problem of aerial
intercept of one weak-maneuvering object by another one (of an aircraft or missile
by an antimissile). Simulation results are given.

2. THE PROBLEM SETTING. Consider a linear differential game with fixed
terminal time:

  ̇ ( ) ( ) ( ) ,z z  A t B t u C t  (1)

  z     R t T u P R Rm p q, , , .

Here, a convex compactum P  is the constraint for the control u  of the first
player, T  [ , ] 0  is the time interval of the game. The matrix-valued func-
tions A and C are continuous. The matrix-valued function B is Lipschitzian in the
interval T. There is no any concrete compact constraint for the control n of the
second player. The set P should include the origin of its space.

The first player tries to guide system (1) at the instant J to a terminal set M as
closely to its center as possible. The terminal set M is a convex compactum in a
space of some n chosen components of the phase vector z. It is assumed that M con-
tains a neighborhood of the origin of the space.

One needs to suggest a method for constructing an adaptive feedback control for
system (1).
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Let us pass to a system, which right-hand side does not contain the phase vector:
˙ ( ) ( ) ,  D t u E t (2)

    R t T u P Rn q, , , .

The passage is provided (see [1, p. 160] and [2, pp. 89–91]) by the following rela-
tions:

  ( ) ( , ) ( ), ( ) ( , ) ( ), ( ) ( , ) ( ),, , ,t X t t D t X t B t E t X t C tn m n m n m    z

where X tn m, ( , )  is a matrix combined of n rows of the fundamental Cauchy matrix

for the system   ̇ ( )z z, A t  which correspond to the components of the vector z defin-
ing the terminal set M.

In this new problem, the first player, as before, tries to guide system (2) to the
terminal set M at the terminal instant J. The set M is now a convex compactum in Rn

including a neighborhood of the origin.
Further reasoning is made for system (2). As the adaptive control U(t, x) will be

obtained in the framework of system (2), it can be applied to system (1) as

  U t X tn m( , ( , ) ).,  z

3. CONSTRUCTING ADAPTIVE CONTROL. Below, the symbol
S t R t Sn( ) { : ( , ) }     denotes the section of a set S T Rn   at the instant t Œ T.

Let O Rn( ) { : | | }       be a ball with radius e in the space Rn.
3.1. Stable bridges. In the interval T  [ , ], 0  consider an antagonistic differ-

ential game with the terminal set M and geometric constraints P, Q for players’
controls:

˙ ( ) ( ) ,  D t u E t (3)

      R t T un , , ,M, P Q.

Here, the matrices D(t), E(t) are the same as in system (2). The sets M, P and Q are
assumed to be convex compacta. They are considered as parameters of the game.

Below, u( )  and ( )  denote measured functions of time with their values in the
sets P and Q, respectively. A motion of system (3) (and, therefore, of system (2))
emanated from the point x*, at the instant t*, under controls u( )  and ( )   is denoted
by the symbol       ; , , ( ), ( ) .t u

Following [1, 2], let us define stable and maximal stable bridges.
A set W T Rn   is called a stable bridge for system (3) for some fixed pa-

rameters P, Q, and M if W(J) = M and the following stability property holds: for any
position ( , )t W    and for any control ( )  one can find a control u( )  such that

the pair t t t t t u, ( ) , ; , , ( )          stays in the set W for any instant t t ( , ].  The

set W T Rn   such that it is maximal by inclusion,W(J) = M, and possessing the
stability property is called the maximal stable bridge.

The maximal stable bridge is [1, 2] a closed set. Its t-sections are convex
([2, p. 87]) due to linearity of system (3) and convexity of the set M.
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3.2. Adaptive feedback control. Let us describe construction of the adaptive
control for system (2).

1. Choose a set Q Rq
max ,  which is the "maximal" constraint for the second

player’s control, which the first player "agrees" to count reasonable for guiding sys-
tem (1) to the set M. The set Qmax  should include the origin of its space. Denote by
W the maximal stable bridge for system (3) corresponding to the parameters P = P,
Q = Qmax and M = M.

Let us agree that the set Qmax  is chosen in such a way that for some e > 0 for any
t Œ T the following inclusion holds:

O W t( ) ( ).  (4)

Below, the quantity e is fixed.
2. Additionally, introduce a tube W T Rn#    such that each its section W t# ( )

is an attainability set for system (3) at the instant t with the initial set O(e) at the in-
stant J0. When constructing the tube W # ,  it is supposed that the first player is absent
(u ∫ 0) and the constraint for the second player’s control n equals Qmax. It is evident
that W #  is the maximal stable bridge for system (3) with P = {0}, Q = Qmax,

  M =W # ( ).0  For any t Œ T, one has

O W t( ) ( ).#  (5)

3. Consider a family of sets Wk, which sections Wk(t) are defined as follows:

W t
kW t k

W t k W t kk ( )
( ), ,

( ) ( ) ( ), .#
 

  




0 1

1 1

The set Wk(t) is closed and convex. For any numbers 0 £ k1 < k2 < k3 < k4 accord-
ing to (4), (5), the strict inclusions W t W t W t W tk k k k1 2 3 4

( ) ( ) ( ) ( )    are true.
One can show [12] that the set Wk , when 0 £ k £ 1, is the maximal stable bridge

for system (3) corresponding to the constraint kP for the first player’s control, the
constraint kQmax for the second player’s control, and the terminal set kM. When
k > 1, the set Wk is a stable bridge (but, maybe, non-maximal) for parameters P = P,
Q = kQmax, M = M + (k – 1)W#(J0).

So, with increasing the parameter k, we get an increasing system of stable
bridges, where each greater bridge corresponds to a larger constraint for the second
player’s control. The system is generated by the bridges W and W# with the help of
operations of addition and multiplication by a non-negative scalar.

Constructing the adaptive control U(t, x) is implemented as follows. Let the cur-
rent position (t, x) be outside some bridge Wk, but close to its boundary. Then, we
can use this bridge for constructing some control which is constant in the next step
of the discrete control scheme. This can be done by means of the extremal shift
method [1, 2]. With that, the control is taken from the set Pk. Here, Pk = kP, when
0 £ k £ 1, and Pk = P, when k > 1. If realization of the disturbance is weaker than the
level Qk = kQmax, then the motion will go inside the family to a bridge with less in-
dex k. And at the next step, we will use a weaker useful control. If, vice versa, the
disturbance is stronger than the level Qk, it can lead the system outside to a bridge
with a larger index k. Respectively, at the next step, the useful control will be
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stronger (if there is possibility to strengthen the control). This is the way how
the level of the useful control is tuned according to the actual level of the
disturbance.

Application of the extremal shift method is standard: choose a bridge to be
shifted to; find the nearest point at it and get the shift vector; among the points of the
set Pk , choose such a vector, which gives maximal scalar product by the shift vector.
This is the required control vector. We have some freedom for choosing the bridge
to be shifted to. We do this in the following way: fix a number r; then the bridge, to
be shifted to, is taken as the bridge separated from the current phase state in the
distance r.

4. PROBLEM OF AERIAL INTERCEPT. As an illustration to the suggested
method of adaptive control, let us consider a model setting of a problem of aerial
intercept [13, 14].

In this problem, the pursuer P is an antimissile, the evader E is a weak-maneu-
vering aerial target (an aircraft or another missile). Here, the natural payoff is the
miss, i.e., the closest distance between the objects.

The vectors of nominal velocities (VP)nom and (VE)nom are constant and directed
such that there is exact collision along the nominal trajectories. The control acceler-
ations of the objects are orthogonal to their current velocities. The maximal values of
the lateral accelerations are bounded by constants aP and aE. The constant aP is
supposed to be given in the problem setting. The value aE is not known exactly, it is
only assumed that aP > aE. The evader governs its acceleration directly, and the pur-
suer governs its acceleration inertially with the time constant tP. Capabilities of the
objects to change direction of their velocities are weak (these objects are weak-ma-
neuvering).

The choice of the coordinates is the following. The origin O is put to the nomi-
nal position of the pursuer Pnom at the initial instant. The axis OX is directed along
the nominal initial pursuer’s line-of-sight. The axis OY is orthogonal to OX and lies
in the plane defined by the vectors of objects’ nominal velocities (Fig. 1). The axis
OZ is orthogonal to the two first axes.

Since the deviations of the velocities VP(t) and V E(t) from their nominal
values (VP)nom and (VE)nom are quite small, the relative motion along the axis OX can
be considered as uniform, and the miss can be computed at the instant J of the
nominal collision as the lateral distance between objects in the plane YZ at this
instant.

Fig. 1. Coordinate system in the aerial intercept problem

5. Advances in Mechanica
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After linearization of the objects’ dynamics along their nominal trajectories, one
passes to the following system [13, 14]:

˙̇ ,x F

˙ ( ) / , [ , ], , , , .F F u t x y R u P RP       0 2 2 (6)

˙̇ ,x  

Here, x is the position vector of the first player (the pursuer), y is the position vector
of the second player (the evader), tP is the time constant characterizing the inertiality
of fulfillment of the first player’s control. The set P, which is bounding the first
player’s control, is an ellipse

P u R
u

A

u

BP P

   








2 1
2

2
2
2

2 1: .

The semiaxes AP, BP are parallel to the coordinate axes and are computed on the ba-
sis of the value aP and cosine of the angle (cP)nom. The control n of the second player
is treated as a dynamic disturbance. The terminal time J of the process is fixed. The
terminal set is defined as a circle in the difference coordinates x – y.

To apply the adaptive method of control, one should introduce an auxiliary con-
straint Qmax. To do this, let us take a reasonable value aE max bounding the lateral ac-
celeration of the evader. This value defines the constraint Qmax as an ellipse

Q R
A BE E

max : ,   








  2 1
2

2
2
2

2 1

where the semiaxes AE, BE are parallel to the coordinate axes and are computed on
the basis of the value aE max and cosine of the angle (cE)nom.

Let us show the simulation results for the case
tP = 1.0 s, J = 10.0 s, aP = 1.3 m/s2, (cP)nom = 47.94∞, (cE)nom = 45∞.
The ellipse P, therefore, has the semiaxes equal to AP = 1.3, BP = 0.87. The ra-

dius of the terminal circle is taken to be equal to 2.
Let us choose the value aE max = 1.0 m/s2. Then, the ellipse Qmax has semiaxes

AE = 1.0, BE = 0.71.
To construct adaptive control, one should introduce also the parameter r. Let us

take r = 0.01. The adaptive control U is applied in the discrete scheme with the time
step D = 0.01 s.

The initial phase vector in the difference coordinates is taken as Dx0 = x0 –
 y0 = (–3 m, 0 m),    ˙ ˙ ˙ (  x x y0 0 0 0   m/s,  2 m/s),  F = 0. The disturbance control is
generated as a piecewise-constant function, which values are in the ellipse 1.5Qmax

and which stays constant for a random time periods not longer than 3 s. The random
procedure for choosing the next value from the ellipse is the following: at first, uni-
formly we choose an angle from the interval [0,2p), then also uniformly in the ra-
dius-vector a point is chosen between the origin and the boundary of ellipse.

In Fig. 2, a, the phase trajectory of system (6) is shown in difference coordinates
Dx1, Dx2. The initial point is denoted by an asterisk, the final one by a black circle.
The circle of the terminal set is shown.

In Figs. 2, b and 2, c, one can see hodographs of realizations of the controls u(t)
and n(t). The hodograph of the control u(t) is inside the ellipse P, the initial and final
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useful control level is less than maximally possible. One can see how the useful
control reaches a level, which corresponds to the level of the disturbance in the next
time interval.

From Fig. 2, a, one can also see that despite the disturbance realization is greater
than the chosen level Qmax, the process termination is successful: the system is
guided inside the terminal set.
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