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Abstract—A three-dimensional reachable set for a nonlinear controlled object “Dubins car” is investigated.
The control is the angular velocity of rotation of the linear velocity vector. An integral quadratic constraint is
imposed on the control. Based on the Pontryagin maximum principle, a description of the motions generat-
ing the boundary of the reachable set is given. The motions leading to the boundary are optimal Euler elasticae.
Simulation results are presented.
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1. INTRODUCTION

By the mathematical “Dubins car,” we mean an
object moving on a plane with a constant value of lin-
ear velocity. The phase state includes two coordinates
of the geometric position and the angle of the direc-
tion of the velocity vector. The scalar control u has the
meaning of the instantaneous angular velocity of the
turn. The control is restricted on the interval  by
an integral quadratic constraint

(1)

with a given value . The purpose of the paper is to
numerically study a three-dimensional reachable set

 at time .

Any non-zero control leading to the boundary of
the set  delivers the minimal value (equal to ) of
the functional

(2)

under fixed boundary conditions. Extreme motions
corresponding to functional (2) were classified by
Euler [3] and are called Euler elasticae.
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Studying the problem of constructing the set ,
we rely on the experience [1, 2] of analytical descrip-
tion and numerical construction of the reachable set
for the case of geometric constraints . The
fundamental difference is that in the case of the geo-
metric constraints, many calculations can be per-
formed explicitly using elementary functions, while in
the case of integral constraints, analytical calculations
are difficult due to the need to use special elliptic func-
tions. Nevertheless, numerical constructions of the
reachable set  are possible. The results obtained
when constructing the boundary of the set  com-
plement the researches of Zelikin [4], Sachkov and
Ardentov [5], associated with Euler elasticae.

2. STATEMENT OF THE PROBLEM
Let the motion of a controlled object on a plane be

described by a system of differential equations

(3)

Here x, y are the coordinates of the geometric posi-
tion,  is the angle of inclination of the velocity vector
measured counterclockwise from the positive direc-
tion of the axis . The speed is equal to one. We con-
sider the values of the angle  on the interval .
The initial instant  is equal to zero. Initial values

 are also considered zero. Admissible
controls are measurable integrable functions , sat-
isfying the constraint (1).

The reachable set  for  is the collection

of all points , into each of which it is possible
to transfer system (3) at the time tf with an admissible
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control. Denote by  the two-dimensional cross-
section of the set  corresponding to the value  of
the angular coordinate. Let  be the symbol of the
boundary of a set. If some point  belongs to

, then the point  belongs to .
The converse, generally speaking, is not true.

It is required to construct the three-dimensional
reachable set . For the sake of brevity, we put

. We denote by  the point on 
to which the control  leads.

3. SYMMETRY OF CROSS-SECTIONS 
OF THE SET  ALONG THE ANGULAR 

COORDINATE

Let  be an admissible control leading at the
instant  to some point  of the set . We

introduce a “reverse” control ,
. Obviously, this new control is admissible

with the old value of the integral of the squared con-
trol.

Consider the motion  under the control
. We have

(4)

Therefore, . We draw an auxiliary
axis  through the origin of the system  at the
angle  with respect to the direction of the axis
x. Assume that the axis Y is orthogonal to the axis .
By the symbols  and 

we denote the positions of the points 

and  in the auxiliary coordinate sys-
tem .

Lemma 1. The relations ,  =
‒Y(tf) are valid.

Proof. From the formulas (4), we get ϕ#(t) =
. Let us introduce the angles measured

from the axis :
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Then

Replacing  in the integrals with  and taking
into account that  is an even function, we get

.  

We have from Lemma 1 that any -section 
is symmetric with respect to the axis X of the auxiliary
coordinate system. Note also a symmetry of -sec-
tions  for  and . Namely, the -sec-
tion  for  is related to the -section ,
where , by mirror reflection about the axis . It
follows from the fact that the motions of system (3)
from the initial zero point  under controls  and

 are related by , ,
.

4. PONTRYAGIN MAXIMUM PRINCIPLE
It follows from general results of the mathematical

control theory that the set  is closed and
bounded. In [6] it is shown that for any point

 on , the Pontryagin maximum
principle (PMP) is satisfied for the problem of mini-
mizing the functional (2) on the motions of system (3)
with fixed boundary conditions  and .
Herewith, the minimum of the functional is
equal to .

Let us write the PMP relations for the problem of
minimizing the functional (2) under fixed boundary
conditions for system (3) (see, for example, [4, 5]). Let

 be an admissible control not identically zero and
 be the corresponding motion of sys-

tem (3) on the interval . The differential equa-
tions of the adjoint system have the form

(5)

The PMP means that if  is a minimizing con-
trol, then there is a nonzero solution (ψ1(·),
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 of system (5), for which the equality
 is fulfilled on . In what follows, a

control that satisfies the PMP is assumed to be contin-
uous.

The functions  and  are constants. We
denote them by  and . If  and , then

 on . Therefore, in this case
 and it is given by the formula u(t) =

± . This constant control determines the one-
point section  for the extreme value ϕ = ± .

Now let at least one of the numbers ,  be not
equal to zero. Based on (3) and (5), we can write the
expression . It implies that

 if and only if the point  of the
geometric position at the instant t satisfies the equa-
tion of a straight line

(6)

The straight switching line (6) is not universal:
when the control that satisfies the PMP is changed,
the switching line also changes. In what follows, we
write SSL instead of “straight switching line.”

Complementing the systems (3) and (5) with the
relation

(7)

we get a closed system of differential equations, for
which the standard conditions for the existence of a
unique solution are satisfied. Therefore, in particular,
on the plane x, y there cannot be motions, tangentially
approaching the SSL in a finite time. Likewise, there
cannot be motions leaving the SSL after they have
been moving along the SSL for some time. It is only
possible to cross the SSL at a non-zero angle, or leave
it at the initial instant (respectively, enter it at the last
instant) with a non-zero angle. Considering the values

, ,  in addition to the fixed initial condition
, we obtain a collection of motions ,

among which there must be all the motions leading to
.

Taking into account (7), we write the equations for
 and  (with the specified constants  and ) in

the form of one equation of the second order:

Here  is the length of the vector with the components
 and ,  is the slope angle of this vector mea-

sured counterclockwise from the axis x. Thus, consid-
eration of the constants , ,  can be replaced
by consideration of the constants , , and

.
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Applying a relation from [4] gives

Therefore,

(8)

Thus, for  we have

(9)

We use this formula on the intervals of the motion
where . The sign “+” corresponds to the con-
trol , the sign “–”means that . Bearing
in mind expression (6) for SSL and considering the
equality , we get that the sign “+” in
front of the root corresponds to one half-plane
defined by the SSL, and the sign “–” corresponds to
the other half-plane. Let us agree to choose the direc-
tion of the SSL in such a way that the half-plane,
where , lies on the left, and the half-plane with

 is on the right. The angle  is equal to the angle
(measured counterclockwise) between the direction of
the axis  and the direction of the SSL. The constants
C in (6) and  in (8) are related by the equality

.
From (9), we have

(10)

Formula (10) allows one to replace an integration
over  with an integration over  in half-planes with a
constant control sign.

5. SIMPLE CONSEQUENCES FROM THE PMP. 
THEOREM ON CONTROLS LEADING

TO THE BOUNDARY 
OF THE REACHABLE SET

In the statements below, it is assumed that the con-
sumption of the integral resource under the consid-
ered admissible control is equal to .

Proposition 1. Let the motion  of system (3) on the
interval  be generated by a continuous control 
(not equal to zero identically) and the PMP be satisfied.
Then the control  changes sign at most a finite number
of times. Furthermore:

(a) the points of the geometric position of system (3) on
the plane x, y at the instants of sign change of the control

 lie on the SSL;

(b) if  is such that the motion  intersects
the SSL at least three times, then the intervals between
consecutive crossings of the SSL are the same; the abso-
lute values of the corresponding increments of the angle
are also the same;
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(c) if  is such that the motion  intersects
the SSL at least once, then the accumulated angle in
absolute value does not exceed  on each interval of
control sign constancy.

Lemma 2. Let the motion  of system (3) on the
interval  be generated by a continuous control 
satisfying the PMP with two instants ,  of sign change
of the control, where . Assume that

(11)

Then .
Proof. Without loss of generality, we accept the fol-

lowing sequence of signs of the control : –, +, –.
Then the condition (11) can be written in the form

To prove the lemma by contradiction, we assume
that . Then any control leading to this
point satisfies the PMP.

We choose instants  and  such
that the equality

holds. The possibility of this choice follows from the
continuity of . We have .

Consider the reverse control  on the

interval . Replacing the initial condition 
in Lemma 1 with  and taking into account the

equality , we get  =

. Let us now take the control

, . For the corresponding motion

starting from the point , we get . We
extend the control  and the corresponding motion

 onto the interval  by setting 

for . The integral resource consump-
tion under the control  on  coincides
with the resource consumption under the control .
We have . Therefore, the control 
also leads to . However, it does not satisfy
the PMP since it is discontinuous at the
instants .  

Lemma 3. Let the motion  of system (3) on the
interval  be generated by a continuous control 
satisfying the PMP with three instants  of sign
change of the control, where . Then
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Proof. By Proposition 1b, we have ϕ(t2) –
. Therefore, on the interval ,

the conditions of Lemma 2 are satisfied (with the inte-
gral constraint equal to the difference between the
original constraint and the integral of the squared con-
trol over ). Therefore, the motion  comes at
the instant  to the interior of the reachable set con-
structed on the interval  from the initial state

. Hence .

Let us list all possible types of continuous controls
 with at most two instants of sign change. The type

U1 is characterized by the inequality  satisfied
on the entire interval . Similarly, we define the
type U4 with the positive control replaced by a negative
one. The type U3 has one instant of sign change of the
control, with the sign “+”coming first, then “–.” The
type  also has one instant of sign change, but from
“–” to “+.” The type  is given by two instants of sign
change with the sequence +, –, +. The type  has
two instants of sign change of the control with the
sequence –, +, –.

Theorem 1. For any point  on ,
there is a continuous control, leading to this point, that
satisfies the PMP and belongs to one of the types U1–U6.
There are no other variants of control leading to the
boundary.

If , then there are only four types , , ,
 left in the list of possible control types. In the case

, four types , , ,  are possible. If
, there are four types , , ,  in the list;

in this case, controls of the types  and  generate the
same set of points.

Proof. For any point  on , there
is a control (leading to this point) that satisfies the
PMP. By virtue of Proposition 1, the control has at
most a finite number of sign change instants.

To prove the theorem by contradiction, we assume
that there is a point  on , transfer to which is
possible using a control with three or more instants of
sign change. If there are several such controls, then we
take the control  with the least number of instants
of sign change. We denote by  the motion under
the control . Let us consider the motion  on
the last four intervals of constancy of the control sign.
By virtue of Lemma 3, we obtain .

Thus, to any point  on , we can
pass using a control related to one of the types U1–U6.
Taking Lemmas 1 and 2 into account, we refine this
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fact depending on the sign of the angle  for the point
 under consideration as

follows.
Any control of the type  leads to a point with

. For controls of the type , we have

. Therefore, the types  and  are excluded
for . Lemma 1 implies that the controls 

and  generate the same set of points 
for the case .

Let . Controls of the type  are excluded.
Controls of the type  are also excluded since such
controls lead to the interior of the reachable set by
Lemma 2.

The case of  is treated similarly. Here we
also get four control variants: , , , .

6. RELATIONS FOR CALCULATING MOTIONS 
UNDER CONTROLS OF THE TYPES U1–U6

To describe the curves from which the boundary of
the -section for  is formed, we
will use the curves , , , and , which are gener-
ated by controls of the types , , , and .

(1) The curve  consists of points, to each of which
a positive control leads. For such controls, the follow-
ing relations are valid:

(12)

(13)

Here  is the angle measured from the axis x (along
which the velocity vector is directed at the initial
instant) counterclockwise up to the direction of the
SSL. Let us represent the constant  in the form ,
where . This allows, considering the multiplica-
tion , to obtain from formulas (12) and (13) for a
fixed  an equation with one unknown :

(14)

The first and second integrals in this relation are
reduced by a simple transformation to elliptic integrals
of the first and second kind [7]. Having determined ,
we find  from relation (13). Next, we integrate the
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first two equations of system (3) over , taking
into account (9). We get a motion on the plane ,
the end of which is denoted by  and referred to
the curve  for the considered .

If , then the corresponding motion
comes onto the axis X. With that, the direction of the
SSL coincides with the direction of the axis X. The
construction of the curve  is convenient to start from
this very point by going over  in the range

. We increment  from the value

. By the symbol , we denote the largest  for
which there is a solution to Eq. (14). Geometrically,
the value  stands out by the fact that the correspond-
ing SSL passes through the point . For any

, the motion leading to the point 

is located strictly to the left of the SSL on the interval

. If , then the angle between the

velocity vector at point  and the direction of the
SSL is greater than zero. Let us denote it by . If

, this angle is zero. The value

 is realized only for , i.e.,

when the direction of the axis X is opposite to the
axis .

When constructing numerically, the range

 is divided into three parts, in each of which

the features of elliptic integrals are taken into account
in a special way [7].

Having constructed the described part of the curve
, we reflect it relative to the axis X (according to

Lemma 1) and obtain the symmetric part. The union

of such two parts forms the curve . When  +

π, the curve  becomes closed. If , then the
curve  is not constructed.

(2) When constructing the curve , we go through
all the controls with one instant of sign change from
“+” to “–,” which provide at the instant  the angle
value equal to . Each trajectory is completely
determined by the values , , , and the angle 
of the trajectory inclination at the instant of crossing
the SSL (the angle is measured counterclockwise from
the direction of the velocity vector to the direction of
the SSL). Therefore, taking an auxiliary starting point
on the SSL, we can separately consider the part of the
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motion from this point in direct time under a negative
control satisfying the PMP and with a given angle .
The considered part of the motion continues until the
modulus of the change of the angle  reaches the fixed
meaning . After that, in reverse time, from the
same auxiliary point at the same angle , we consider
a motion under the positive control on the time inter-
val, on which the change of the angle  is .
The value  for the fixed  is chosen in such a way
that the total time on these two intervals is equal to 
and the integral resource consumption under the con-
trol is equal to . Gluing the two resulting trajectories
together at their common starting point, we obtain one
trajectory on the interval  with a total change in
angle equal to . Transferring the initial point of
the trajectory to the origin of the system  and align-
ing the direction of the velocity vector at the initial
instant with the direction of the axis , we obtain the
required motion. Let us denote its end point by .
We form the curve  by increasing the angle .
In addition, we make sure that the branch of the curve
constructed in reverse time does not go back to the
SSL. The latter determines the largest angle 
of the inclination of the velocity vector to the SSL at
the auxiliary starting point.

The above conditions lead to the following system
of relations:

(15)

(16)

Taking into account  at the auxiliary
starting point on the SSL, we have .
Multiplying Eqs. (15) and (16), we get an equation for

. For each , we find the only solution 
to this equation, and then the only value  from the
relation (16). Based on the found values of  and ,
we construct two branches of the desired geometric
curve. Both of these branches get out from the auxil-
iary starting point on the SSL. We transfer the
initial point of the glued curve to the origin of the sys-
tem .
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Going through the values  gives the
curve . This curve corresponds to a curve  sym-
metrical with respect to the axis , to each point of
which a reverse control leads. The curve  is not con-
structed if .

(3) Let  be the value of  obtained for

. When constructing the curve , we take 
as a one-dimensional parameter, decreasing it from
the value . A motion leading to the point 
for the considered  consists of three parts, whose
angular coordinate changes are equal, respectively, to

 (the part lies to the right of the SSL),
 (this part lies to the left of the

SSL), and  (to the right of the SSL). Here
 are assumed to be positive. The follow-

ing equality holds:

(17)

The angle β6 is defined in the same way as the angle
β3, but it corresponds to the second hit of the motion
on the SSL.

Let us write the following relations:

We set . The above relations together
with Eq. (17) form a system of equations for the
unknowns  and  with a given . We construct the
curve  until it hits the axis  with the equality
ϕ6,1 = ϕ6,2. By Lemma 1, considering a curve symmet-
ric with respect to the axis X, we obtain the combined
curve . The curve  connects the ends of the curves

 and , being smoothly conjugated with them. The
curve  is not constructed if .
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Fig. 1. Three-dimensional reachable set  for μ = 100 and , and its -section at .
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7. SIMULATION RESULTS

The three-dimensional reachable set  calcu-
lated for μ = 100 and  is shown on the left of
Fig. 1. The parts of the boundary to which various
types of controls lead are highlighted in color:  is a
positive control (blue),  is a negative control (yel-
low),  is a control with one instant of sign change
from “+” to “–” (green), and  is a control with one
instant of sign change from “–” to “+”(purple). The
point , for which the control is identically equal
to zero, lies at the junction of the four indicated parts.
The parts corresponding to  and  are not
smoothly glued together. The black lines mark the
contours of the cross-sections of the three-dimen-
sional set  with some step along the axis . The
set  is not simply connected: there is a cavity that
does not belong to the set. The cavity is not visible
when we look at the set from the outside.

To show the cavity, the -section  of the set
 at  is presented in Fig. 1 on the right. Since
, the auxiliary axis , with respect to which the

-section is symmetric, coincides with the axis x.
There is no curve  on . The point 
belongs to this -section and is located on the axis x.
The curves  and  are symmetric to each other and
depart from the axis x. Their arcs up to the point  of
the first intersection give the “outer” boundary of the

-section. The arcs of the curves  and  from the
point  up to the point  of the second intersection
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ϕ
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lie in the interior of the -section. The curve  and
the adjacent arcs of the curves  and  after the point

 form the boundary of the “hole” that does not
belong to . The dashed lines show the trajecto-
ries of four motions on the plane , leading onto the
boundary of the -section (and, therefore, onto the
boundary of the three-dimensional reachable set).
The trajectories leading to the points , , and  have
one inflection point (the sign change point of the con-
trol). Such curves represent globally optimal Euler
elasticae. The trajectory leading to the point  on the
curve  has two inflection points (two sign change
points of the control) and this is a locally optimal elas-
tica.
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