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For a control system of the third order, a reachable set at instant is
investigated. Such a system is often called the Dubins’ car. An object
moves in the plane with constant linear velocity and symmetric or
asymmetric bounds onto the right and left turns. We also consider the
case of constraints on the control, under which the turn is possible only
to one side (to the left or to the right). Examples are given with results
of numerical construction of three-dimensional reachable sets.

I. Introduction

In applied works based on the mathematical control theory, there is a popular model
of a controlled object, which is described by a nonlinear system of differential equations of
the third order. Two phase variables characterize the object geometric state in the plane,
the third variable is the direction of the velocity vector. The magnitude of the linear
velocity is supposed to be constant. The control is the instantaneous angular velocity
of rotation of the linear velocity direction. The control is restricted by some constraint.
Under constant linear velocity, the control determines the current radius of turn. So, this
is a controlled object (for instance, an aircraft or a car) with the simplest model of motion
in the horizontal plane.

In 1957, American mathematician L.Dubins had published theoretical work [1] about
a curve of the minimal length that has the constrained radius of curvature and connects
two points in the plane with a prescribed direction of leaving from the first point and
with a prescribed direction of reaching the second one. The results obtained by L.Dubins
became very useful for investigating the motions of objects with bounded radius of turn
and constant linear velocity. This is why such objects are used to call the Dubins’
car. Later, it was found that similar problems were investigated in 1889 by Russian
mathematician A.A. Markov in work [2] devoted to some aspects of constructing railroads.
Dynamics of the simplest car was also used by R. Isaacs in his works on differential
games [3,4]. The Dubins’ models are used for control of wheel robots [5,6], for calculation
of aircraft trajectories (by air traffic managers in civil aviation) [7], and, also, in applied
works for constructing trajectories of unmanned vechicles in the horizontal plane [8]. In
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book [9], Yu.I. Berdyshev used the Dubins’ model in problems of time-optimal sequential
visiting several points in the plane.

We shall mean the reachable set G(tf ) at instant tf as a totality of all phase states in
the three-dimensional space, which are reachable exactly at the instant tf from the given
initial phase state using some admissible control.

Traditionally, the bounds onto the radii of the left and right turns are given. The
case with equal bounds for both turns is called symmetric. If the left and right turns
are possible, but bounds for these turns are not equal, we call this case asymmetric. In
the common case, the constraints onto the scalar angular velocity given in the form of a
segment can mean a prohibition on the left turn or right turn and, also, a prohibition on
straight line motion (if such a segment does not contain the zero point).

The goal of this paper is investigation of boundary of the reachable set at instant
for the Dubins’ car in the general case. For this aim, we use the Pontryagin’s Maximum
Principle [12] for controls carrying the object onto the reachable set boundary [13]. Three-
dimensional reachable sets at instant for symmetric and asymmetric cases were earlier
investigated by the authors in works [17, 18, 20]. Results for the case when there is a
prohibition on the left turn or right turn are new.

From analysis of structure of the reachable set at instant, some useful facts follow for
the time-optimal problem (for instance, an estimate of switch number and character of
switches of the optimal control). But in whole, investigation of boundary of a reachable set
at instant and solution of time-optimal problem (particularly, constructing the optimal
synthesis) are separate problems. For the Dubins’ car, synthesis of the optimal control is
known in the time-optimal control problem for the symmetric (see [10]) and asymmetric
(see [11]) cases.

It is necessary to distinct reachable sets at instant and up to instant. In the second case,
the terminal instant is not fixed, but must belong to the interval [0, tf ]. For symmetric
and asymmetric cases, the construction of reachable sets up to instant was considered in
works [5,15,18]. It is established that reachable sets at instant and up to instant coincide
when the instant tf is sufficiently large. Papers [16,19] describe the material construction
of reachable sets with usage of 3D-printing.

II. Problem formulation

Let the controlled object (the Dubins’ car)
motion in the plane x, y be described by the
following differential equation system:

ẋ = cosϕ,

ẏ = sinϕ,

ϕ̇ = u, u ∈ [u1, u2], u1 < u2,

(1)

where x, y are geometric coordinates of the state,
ϕ is an angle of velocity heading (Fig. 1), u is a
control. The velocity magnitude is equal to one.
In the sequel, we shall suppose that u2 = 1.

y  

ϕ  

x

V  

Fig. 1: Coordinate system

The three-dimensional system (defining the motion with the constant linear velocity)
can be reduced to form (1) with u2 = 1 by rescaling of the geometric coordinates and
time. At the initial instant t0 = 0, we take the initial phase state of system (1) equal to
x0 = 0, y0 = 0, ϕ0 = 0.
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As admissible open-loop controls u(·), we shall consider measurable functions of time
with values u(t) ∈ [u1, u2]. The angle ϕ is considered in the interval (−∞,∞).

In the paper, we consider constructing the reachable sets G(tf ) for the cases u1 < 0,
u1 = 0, and u1 > 0.

III. Pontryagin’s Maxixmum Principle

It is known [13] that controls that carry a system onto the reachable set boundary
satisfy the Pontryagin’s Maximum Principle (PMP). We write relations of the PMP for
system (1).

Let u∗(·) be some admissible control and (x∗(·), y∗(·), ϕ∗(·)) be the corresponding
motion of system (1) on the interval [t0, tf ]. Differential equations for the adjoint system
have the form

ψ̇1 = 0,

ψ̇2 = 0, (2)
ψ̇3 = ψ1 sinϕ∗(t)− ψ2 cosϕ∗(t).

The PMP means that a nonzero solution (ψ∗1(·), ψ∗2(·), ψ∗3(·)) of system (2) exists, for
which almost everywhere (a.e.) on the interval [t0, tf ], the following condition is satisfied:

ψ∗1(t) cosϕ∗(t) + ψ∗2(t) sinϕ∗(t) + ψ∗3(t)u∗(t)

= max
u∈[u1,u2]

[ψ∗1(t) cosϕ∗(t) + ψ∗2(t) sinϕ∗(t) + ψ∗3(t)u].

Thus, the maximum condition takes the form

ψ∗3(t)u∗(t) = max
u∈[u1,u2]

ψ∗3(t)u, a.e. t ∈ [t0, tf ]. (3)

Note that the functions ψ∗1(·) and ψ∗2(·) are constants. Denote these constants by ψ∗1
and ψ∗2. If ψ∗1 = 0 and ψ∗2 = 0, then ψ∗3(t) = const 6= 0 on the interval [t0, tf ]. Therefore,
in this case we have either a.e. u∗(t) = u1 or a.e. u∗(t) = u2.

Now, let at least one of the numbers ψ∗1, ψ∗2 is not equal to zero. Basing on (1) and (2),
one can write an expression for ψ∗3(t):

ψ∗3(t) = ψ∗1y
∗(t)− ψ∗2x∗(t) + C.

From this, it follows that ψ∗3(t) = 0 iff the point (x∗(t), y∗(t)) of the geometric state at
instant t satisfies the equation of a straight line

ψ∗1y − ψ∗2x+ C = 0. (4)

Line (4) is used in many works (see, for instance, [21,22]), in which the PMP was analyzed
for system (1).

By virtue of relation (3), if ψ∗3(t) > 0 on some time interval, then u∗(t) = u2 a.e. on this
interval. With that, the corresponding motion (in projection onto the plane x, y) goes over
a circle arc with the radius 1/u2 counter-clockwise in the half-plane ψ∗1y − ψ∗2x+ C > 0.
If ψ∗3(t) < 0, then u∗(t) = u1. In this case, a motion in the half-plane ψ∗1y − ψ∗2x+C < 0
goes over a circle arc with the radius 1/|u1| clockwise for u1 < 0, over a straight line for
u1 = 0, and over a circle arc with the radius 1/u1 counter-clockwise for u1 > 0.
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A part of the motion, on which a.e. u∗(t) = u2 or a.e. u∗(t) = u1 6= 0, and the angle
varies by 2π, we shall call a cycle. The motion trajectory on such a part in projection
onto the plane x, y is a circular curve (circumference).

If ψ∗3(t) = 0 on some time interval, then on this interval the motion (x∗(·), y∗(·)) goes
over a straight line (4). Thus, ϕ∗(t) = const. So, u∗(t) = 0 a.e. on this interval. Such a
case is not possible under u1 > 0.

It is evident that controls carrying the state onto the boundary of the reachable set
(and satisfying the PMP) can change their value only on line (4), which we shall call the
straight switching line (SSL).

Having considered variants of possible mutual location of the motion trajectory
(x∗(·), y∗(·)) and the SSL (Fig. 2), we can formulate the following proposition.

a) Trajectories )( )(),( ** ⋅⋅ yx  for the case u1 < 0  ( the example with u1 = − 0.5 ) 

b) Trajectories )( )(),( ** ⋅⋅ yx  for the case u1 = 0 

c) Trajectory )( )(),( ** ⋅⋅ yx  for the case u1 > 0  ( the example with u1 = 0.5 ) 

y

x

0*
3 =ψ

ft  

0t  

2u  
1u  

y

x

ft  

0t  

0*
3 =ψ  

2u  
1u  

y

x

0*
3 =ψft  

0t

2u  
1u  

y

x

0*
3 =ψ

0t  

ft  2u  
1u  

y

x

0*
3 =ψ

2u  
1u  

ft  

0t

y

x0t  

0*
3 =ψft  

2u  
1u  

Fig. 2: Trajectories of the maximum principle and the straight switching line.
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Proposition 1. Let a motion of system (1) obey the PMP. Then the corresponding
trajectory consists of finite number of circle arcs and rectilinear parts. The latter is possible
only if 0 ∈ [u1, u2].

Sketch of the Proof.
Let us use the PMP with the maximum condition written as (3). Consider the motion

between the first and the last instants, when it is on the SSL. The parts of this trajectory
located outside the SSL are circle arcs. Intersections of these parts with the SSL (including
the case of tangency) happen with the same angle (Fig. 2), and time duration of them is
the same for all parts at each side from the SSL. Therefore, the number of these parts
is finite. Thus, we obtain the boundedness of the number of switches and of the number
of parts with constant control (including the parts of rectilinear motion) along the whole
trajectory on the interval [t0, tf ]. �

If the condition of the PMP (3) is fulfilled, then on the base of Proposition 1 the
function ψ∗3(·) on the interval [t0, tf ] can change its sign only a finite number of times.
Therefore, we can take the control u∗(·) (generating the motion to the boundary of the
reachable set G(tf )) to be piecewise–constant with a finite number of switches on the
interval [t0, tf ]. For certainty, let us admit that such a control is piecewise–constant from
the right, and the instant tf is not included in the collection of switching instants.

IV. Case u1 < 0

In works [17, 18, 20], symmetric (with the bounds u1 = −1, u2 = 1) and asymmetric
(u1 < 0, u2 = 1) cases are investigated. Theorems have been proved on a finite number
of switches and on the character of switches of controls carrying the motion onto the
boundary of the reachable set. Namely, it is proved that it is possible to get any boundary
point of the reachable set G(tf ) by means of a control having not more than two switches.
With that, it is possible to consider only six variants of the control sequences:

1) u2, 0, u2; 2) u1, 0, u2; 3) u2, 0, u1;

4) u1, 0, u1; 5) u2, u1, u2; 6) u1, u2, u1.
(5)

To construct the boundary of the reachable set G(tf ), we look over all controls of the
forms 1–6 from list (5) with two switching instants t1, t2. The parameter t1 is chosen from
the interval [0, tf ], and the parameter t2 is taken from the interval [t1, tf ]. Controls with
one switching and without it are considered also. Taking some specific variant of switches
and choosing parameters t1, t2 for it over some sufficiently accurate grid, we obtain a
collection of points creating a surface in the three-dimensional space x, y, ϕ.

Each of the six variants in list (5) gives the corresponding surface in the three-
dimensional space. The boundary of the reachable set G(tf ) comprises of parts of these
surfaces. Then, six surfaces are loaded into a visualization program without any additional
processing. With its help, we form an image of the boundary of the reachable set.
Some surfaces (partially or completely) can get inside the reachable set. Then during
visualization of the boundary, such parts are invisible.

Figure 3 shows (from two points of view) the boundary of the set G(tf ) for the
instant tf = 1.5π. Different parts of the boundary are marked by their own colors. With
some step along the axis ϕ, cross-sections (by planes ϕ = const) of the reachable set are
drawn.
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Fig. 3: Reachable set G(tf ) at instant tf = 1.5π for u1 = −1 and u2 = 1

The control identically equal to zero leads to the point of joining the parts 1–4.
Controls with only one switching get the motion to points of the lines locating on junctions
of parts 1–2, 1–3, 2–4, 2–5, 2–6, 3–4, 3–5, and 3–6. Two motions come at any point of
the line that is common for the parts 5 and 6. Each of these two motions has two control
switches. On such a line, the parts 5 and 6 have nonsmooth connection.

Figure 4 shows (from the same point of view) the reachable sets G(tf ) for four
instants tf . Variation of structure of the reachable set boundary is cleary seen. As the
time increases, the frontal part of the boundary (comprised of parts 1–4) “embraces” the
rear part composed of parts 5 and 6.
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Fig. 4: Evolution of reachable sets G(tf ) for tf = π, 2π, 3π, 4π in the symmetric case
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As it was noticed in the problem formulation, we consider possible variations of the
angle ϕ in the interval (−∞,∞). In engineering practice, the angle ϕ is usually considered
in an interval of size 2π. In this case, ϕ-sections for the reachable sets at instant represent
the union of ϕ-sections of the original reachable sets, which are overlaid over each other
for values of ϕ coinciding by modulo 2π. Corresponding reachable set is easily constructed
on the basis of the considered approach. In Fig. 5, examples of reachable sets are given
for three instants when the angle ϕ is considered on the interval (−π, π].
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Fig. 5: Reachable sets G(tf ) with ϕ computed by modulo 2π for the instants
tf = 1.6π, 2π, 2.5π in the symmetric case

In Fig. 6, the picture is shown for the control bounds u1 = −0.25 and u2 = 1
(asymmetric case), the instant tf is equal to 6π.
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6) -0.25, 1, -0.25 

5) 1, -0.25, 1 

1) 1, 0, 1 

Fig. 6: Reachable sets G(tf ) with u1 = −0.25 for tf = 6π in the asymmetric case

Figures 3 – 6 are taken from the work [18].
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V. Case u1 = 0

In this case, the controls (given by the maximum principle (3)) carrying the motion
onto the boundary of the reachable set G(tf ) take the marginal values u1 = 0,u2 = 1. The
main peculiarity of this case is that the rectilinear parts can appear in two situations:

1) When the part is located at the side of SSL, where ψ∗3(t) < 0. Then the maximum
in condition (3) is attained when u(t) = 0;

2) When the system moves upon SSL.

If for a motion that carries the system to the boundary of the set G(tf ), one has
ψ∗3(t0) < 0 at the initial instant t0, then either the motion is rectilinear (to the direction
of the initial velocity vector) in the entire interval [t0, tf ], or it reaches SSL with some
non-zero angle at some instant and further turns to a circle arc in the half-plane ψ∗3(t) > 0.
If earlier than the instant tf the trajectory reaches SSL again, then since the entrance
angle is the same, it passes to the half-plane ψ∗3(t) < 0 and further is rectilinear. As a
result, it has no more than two switches.

Now, let ψ∗3(t0) > 0. Then in the initial period of time, the motion goes along a circle
arc. When it reaches SSL with a non-zero angle, it passes to the half-plane ψ∗3(t) < 0,
where the motion continues rectilinearly. If the first reach of SSL is tangent (Fig. 7), then
in further the motion goes either along a circle arc, or upon SSL with possible transition
to a circle arc in the half-plane ψ∗3(t) > 0. If the instant tf is sufficiently large, then cycles
are possible, which were mentioned in Section III. Such cycles can be translated to the
initial or, vice versa, final part of the motion with final hit of the same point of the
set G(tf ) (as it is shown in Fig. 7). With that, the motion has no more than two switches.

In the same way, the case ψ∗3(t0) = 0 can be considered.
Thus, the following statement is true:

Proposition 2. Let u1 = 0. Then any point on the boundary of the set G(tf ) can be
reached by a motion, which has no more than two switches. With that, only two variants
of control sequences are possible : u1, u2, u1; u2, u1, u2. For the first variant, the duration
of the second trajectory part, where u(t) = u2 = 1, is less than 2π.

In this proposition, variants with only one switching and without it are also considered.
For this, the length of corresponding one or two intervals are equal to zero.
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Fig. 7: Case u1 = 0. Translation of a cycle to the beginning or to the end of the motion for
a variant of a tangency with SSL. Three motions reach the same point of the set G(tf ).
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Due to the mentioned property (by analogy with the previous constructions for
u1 < 0), the boundary of the reachable set G(tf ) can be built by means of two surfaces
generated by the variants of control shown above. In Fig. 8, examples of sets G(tf ) are
presented for instants tf = 4π, 6π.

π6=ft  

ϕ  

x

y

π4=ft  

Fig. 8: Reachable sets G(tf ) with u1 = 0 for the instants tf = 4π, 6π

Let us show that cross-sections of the sets G(tf ) on the coordinate ϕ are convex and
have the form of a circle or a part of circle which is cut off by a chord. We call this figure
circle segment.

Consider a motion on the time interval [t0, tf ] with two instants t1 and t2
(t06 t1<t26tf ) of switching and with three intervals of control constancy. The initial
state (as before) is regarded to be the origin at the initial instant t0 = 0. The control
is constant on the intervals [t0, t1), [t1, t2), [t2, tf ]. With that, control values on the first
and third intervals coincide. Denote the length of intervals with the control constancy as
follows: ∆t1 = t1 − t0, ∆t2 = t2 − t1, ∆t3 = tf − t2.

We write formulas for phase states of system (1) at the instant tf for the variant with
the control sequence 0, 1, 0:

x(tf ) = ∆t1 + sin(∆t2) + cos(∆t2) ·∆t3,

y(tf ) = (1− cos(∆t2)) + sin(∆t2) ·∆t3,

ϕ(tf ) = ∆t2.

It is evident that for a fixed value of ϕ(tf ), motions coming onto the boundary of
the reachable set are characterized by a constant value ∆t2. Further, taking into account
the relation ∆t3 = tf − ∆t2 − ∆t1, one can conclude that the values x(tf ) and y(tf )
depend linearly on ∆t1. Totality of such points comprises a segment in the plane x, y for
admissible collection of values ∆t1: 0 6 ∆t1 6 (tf −∆t2).

Note that the variant 0, 1, 0 of the control sequence is considered only for ∆t2 < 2π.
It follows from Proposition 2.
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Consider now the variant with the control sequence 1, 0, 1. Similarly, integrating
dynamic equations (1), we obtain the following relations defining system states at the
instant tf :

x(tf ) = sin(∆t1 + ∆t3) + cos(∆t1) ·∆t2,
y(tf ) = (1− cos(∆t1 + ∆t3)) + sin(∆t1) ·∆t2,
ϕ(tf ) = ∆t1 + ∆t3.

Here for a fixed value ϕ(tf ), the motions carrying onto the boundary of the reachable set
are characterized by a constant value ∆t1 + ∆t3. The value ∆t2 = tf −∆t1 −∆t3 is also
a constant.

Totality of points x(tf ), y(tf ) (obtained in such a way) in the plane x, y is defined
by variation of the parameter ∆t1 in the limits from 0 up to (tf −∆t2). Corresponding
hodograph satisfies the equation of a circle. The circle radius is equal to ∆t2.

Having considered possible collection of values of the parameter ∆t1, we obtain either
a circle arc or the whole circle (circumference). The marginal points of the circle arc
correspond to controls 0, 1 and 1, 0. These points coincide with the ends of the straight
line interval (in the plane x, y) obtained earlier for variant with the control sequence
0, 1, 0. Thus, we have a description of the ϕ-sections of the reachable set that actually
represents either a circle segment (for ϕ < 2π) or a whole circle (for ϕ > 2π).

In Fig. 9, the variant is shown, in which values of the coordinate ϕ are taken by
modulo 2π.

π333.3=ft  

ϕ  

x

y

Fig. 9: Reachable set G(tf ) for tf = 3.333π with ϕ computed by modulo 2π
in the case u1 = 0

VI. Case u1 > 0

In this case, rectilinear motions disappear and controls carrying the motion onto the
boundary of the reachable set produce a collection of circle arcs with radii 1/u1 and 1/u2,
and the number of switches is finite.

Consider two neighbor parts of the motion satisfying the PMP and suppose that their
time intervals do not touch the boundaries of the interval [0, tf ]. Total variation of the
angle ϕ during these parts is equal to 2π. Corresponding total duration in time is constant
and belongs to the interval (2π/u2, 2π/u1).
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VII. Projections of reachable sets at instant onto the plane of geometric
coordinates

Investigation of reachable sets for the Dubins’ car in the plane of geometric coordinates
x, y has a particular interest. Denote a reachable set at instant in the plane x, y
by Gx,y(tf ). For the symmetric case the reachable sets Gx,y(tf ) are described in paper [14].
In the symmetric case, the controls carrying the system to the boundary ∂Gx,y(tf ) of
the set Gx,y(tf ) has no more than one switching. The variants of these controls are
the following: −1, 0; 1, 0; −1, 1; 1, −1. Controls in the asymmetric case has similar
structure. Namely, instead of −1, one should take u1. In the case u1 = 0, from studying
the projections of the three-dimensional sets G(tf ) into the plane x, y, one can obtain
the following structure of the controls generating motions going to ∂Gx,y(tf ): 1, 0; 0, 1.
When u1 > 0, the number of switchings of controls guiding the system to ∂Gx,y(tf )
grows with growth of tf . A peculiarity is also that for a fixed tf , motions that going to
different points on ∂Gx,y(tf ) can have different number of switchings. The authors did
not study this question in details yet. In Figs. 11, 12, the sets Gx,y(tf ), which correspond
to the case u1 > 0, are obtained by projections of three-dimensional sets G(tf ) into the
plane x, y. The boundaries of the sets Gx,y(tf ) for u1 = −1, u1 < 0, and u1 = 0 are
computed with usage of the described property of the extremal motions going to the
boundary.
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Fig. 11: Reachable sets Gx,y(tf ) for the instant tf = 2π
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Fig. 12: Reachable sets Gx,y(tf ) for the instant tf = 2.5π

VIII. Conclusion

The paper presents results of numerical studies of three-dimensional reachable sets
at instant for the Dubins’ car. The authors proved the convexity of the cross-sections
(orthogonal to the angular axis) of the reachable set for the case when zero lies on the
edge of the interval of admissible values of the control. In this case, the car can turn only
to one side with the possibility of rectilinear segments of motion. It is discovered that
the convexity of the cross-sections orthogonal to the angular axis is also kept in the case
when the control constraints exclude the possibility of rectilinear motion. In the future,
an attempt will be made to prove theoretically such a property.
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