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A numerical study of the famous model control problem “Dubins’
car” has been performed in the framework of this paper. The variants
are considered with symmetric and asymmetric constraints for the turn
rates. The main objective is to construct reachability sets upto instant
or, what is the same, the level sets for the time optimal result function.
The original three-dimensional dynamics has been investigated as well
as the reduced two-dimensional one. Examples of numerically computed
optimal time result function are given for several typical situations.

I Introduction

One of the most famous models in the mathematical control theory, differential games,
and engineering practice is so-called “Dubins’ car”. It describes a car (an aircraft, a vessel)
moving in a horizontal plane and having a constant magnitude of the linear velocity. The
maneuvers can be performed by means of rotating the direction of the velocity vector,
but the angular velocity of the rotation is bounded. In the classical study, the lower and
upper bounds are symmetrical with respect to the zero, that is, the cars turns to left and
to right symmetrically.

Despite of the name, the model was formulated at first time in a work [1] by Russian
mathematician A.A. Markov (senior). In that paper, he studied a problem of constructing
railways, which should connect two given points in the plane, be of the possible minimal
length, and have radius of turns bounded from below. At the next time, this problem
is explored in a work [2] by L.E. Dubins as a pure geometric problem: of what kind
should be a curve with bounded curvature that connects two given points and (possibly)
has given tangents at these points. One can easily see that these two formulations are
equivalent to each other and to the car model.

This model have appeared in many studies. R. Isaacs used it in his famous problem
“homicidal chauffeur” [3,4] where a Dubins’ car pursues a pedestrian, which has a simple
motion dynamics. The game has been completely solved by A.W. Merz [5,6]. Later, there
were several formulations of games, which also used this model [7–10].

In 1990s, on the base of the Dubins’ car model, J.A. Reeds and L.A. Shepp suggested
a new model [11] where the car can move both forward and backward, that is, the new
model includes two controls: of the course direction rotation and of the linear velocity
magnitude, which can be negative (what corresponds to the backward motion).

The Dubins’ car model is widely used in both theoretical and practical investigations.
Reachability sets of this system in the geometric plane have been studied independently
in [12,13]. A very deep and detailed investigation of this model for the cases of symmetric,
asymmetric, and one-sided turns is set forth in [14–18]. Many applications of this model
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in robotics can be found in [19]. Also, there are applications in aircraft control (see, for
example, [20–23]). Some of the mentioned works, in particular, deal with situations of
one-sided turns of the Dubins’ car (an emergency aircraft), that is, with situations when
the lower and upper constraints for the turning rate are not symmetrical with respect to
the zero. The Dubins’ car has its applications in studying motion of naval vessels (see,
for example, [24–26]).

The main tool for investigating problems connected to the Dubins’ car model is the
Pontryagin’s Maximum Principle (PMP). Due to relative simplicity of the dynamics,
PMP can be easily written and more or less easily solved. But because of non-linearity
of the dynamics, PMP provides necessary conditions only, and its solution gives a family
of extremal trajectories, which are only candidates to be optimal motions of the system
(that is, the motions, which leads the system to the boundary of reachability set). So,
afterwards, one needs to exclude from consideration those trajectories, which indeed are
not optimal, and this task is much less easier.

Thus, another approach can be more productive. Namely, the approach when the
primary object under consideration is not a motion of the system, but a collection of
reachability sets. Having a point on the boundary of a reachability set, it is quite simple
to construct the trajectory, which attains this point. But to use this approach, one needs
to have the reachable sets of the system. And the sets can be obtained numerically.

During several years, the author investigates numerical grid method for solving time-
optimal differential games with lifeline. The notion of lifeline was introduced by R. Isaacs
in his book [4]: this is a set, after reaching which the second player wins unconditionally.
These investigations have been stimulated by the fact that practical realizations of grid
methods can process a finite number of nodes, which therefore covers a bounded domain
only. This leads to necessity to define some boundary conditions on the outer boundary
of this domain, which are often defined as plus infinity what gives unconditional win
of the second player. The algorithm computes an approximation of the value function
(the time of reaching the target set guaranteed by the first player, who tries to minimize
this time). The value function is computed as a generalized solution (in minimax [27]
or viscous [28–31] sense) of a boundary problem for a partial differential equation of
Hamilton – Jacobi type (HJE), which corresponds to the original game.

This method can be also applied to compute reachability sets of a controlled system.
To do that, the system is turned to a game by introducing a fictitious second player,
whose control is constrained by a single-point set coinciding with the origin and occurs
in the dynamics as an additive term. The lifeline in this case appears as the boundary of
state constraints, that is, the boundary of a set, in which the system should be kept. Of
course, such a problem is not equivalent to a problem without state constraints. In my
research [32], a statement is suggested, which helps to characterize the area where the
optimal result functions coincide for the problems with and without state constraints.

The paper is organized as follows. In Section II, the Dubins’ car model is introduced.
Section III describe the game problem, which can be solved by the suggested numerical
method, and the method itself. Results of numerically constructed reachability sets for
different typical variants of the system parameters are given in Section IV.

II Dubins’ Car Model

The Dubins’ car model is the simplest model describing an automobile (ship, aircraft)
movement on the plane with constant magnitude linear velocity and bounded turn radius.
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The dynamics of this system is the following:

ẋ =

ẊẎ
θ̇

 = f(x, a) =

cos θ

sin θ

a

 ,

where X and Y are geometric coordinates of the automobile in the plane, θ is the angle
between the positive direction of the axis X and direction of the automobile movement,
a ∈ A = [a1, 1] is a control input, which is the instantaneous angular velocity of the
movement direction rotation. The linear velocity magnitude is assumed to be 1. The
parameter a1 describes the lower constraint for the turn rate. If a1 = −1, then one
has the classical formulation of the Dubins’ car model when the left and right turns are
symmetrical. If −1 < a1 < 0, then the car still can turn to both left and right, but the
right turn has a large turn radius. If a1 = 0, then the right turn is prohibited, but the
car has capability of a straight-forward motion, And, finally, if 0 < a1 < 1, then the car
can not neither turn right, nor go straightly, but can only turn left with different turn
radii.

This problem allows dimensional reduction suggested by R. Isaacs in his book [4]. A
moving coordinate system is introduced, which origin is joined with the automobile, and
the axis x2 is directed along the instantaneous vector of the linear velocity. The axis x1
is introduced to be orthogonal to the axis x2. The motion equations in new coordinates
are as follows:

ẋ =

(
ẋ1
ẋ2

)
= f(x, a) =

(
−x2a
x1a− 1

)
.

Control input a ∈ A = [a1, 1] has the same meaning of the instantaneous angular velocity
of movement direction rotation. Note that after this passage to the reduced dynamics,
the system is mirrored: the left turn of the original system corresponds to the right turn
of the reduced one, and vice versa.

The systems are considered in a finite time interval [0, T ] with the initial positions
X(0) = Y (0) = θ(0) = 0 and x1(0) = x2(0) = 0. Admissible controls are open-loop, that
is, the set A of the feasible controls consists of all measurable (or, which is the same,
piecewise-continuous) functions a(·) : [0, T ] → A. Under this assumption, a trajectories
x
(
·; a(·)

)
and x

(
·; a(·)

)
of the systems generated by a control a(·) are just solutions of

integral equation

x(t) =

t∫
0

f
(
x(t), a(t)

)
dt

and, respectively,

x(t) =

t∫
0

f
(
x(t), a(t)

)
dt.

During numerical constructions these equations can be solved approximately by means
of the Euler or Runge – Kutta methods.

The objective is to obtain numerically reachability sets of these systems upto instant t,
that is, the sets

G(t) =
{
x = (X, Y, θ) | ∃ a(·) ∈ A∃ 0 ≤ τ ≤ t : x

(
τ ; a(·)

)
= x

}
and, respectively,

G(t) =
{
x = (x1, x2) | ∃ a(·) ∈ A ∃ 0 ≤ τ ≤ t : x

(
τ ; a(·)

)
= x

}
.
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III Numerical Method

III.A Formulation of Game with Lifeline

Consider a conflict controlled system

ẋ = f(x, a, b), t ≥ 0, a ∈ A, b ∈ B, (1)

where x ∈ Rn is the phase vector of the system; a and b are the controls of the first
and second players constrained by compact sets A and B in their Euclidean spaces. A
compact set T and an open set W ⊂ Rn are given such that T ⊂ W and the boundary
∂W is bounded. Denote G := W \ T and F := Rn \ W (see Fig. 1). The game takes
place in the set G; the objective of the first player is to guide the system to the set T
as soon as possible keeping the trajectory outside the set F ; the objective of the second
player is to guide the system to the set F , or if it is impossible, to keep the trajectory
inside the set G forever, or if the latter is impossible too, to postpone the reaching the set
T as long as he can. Control problems also match this formulation, because one can use
an additive second player control b constrained by a set B consisting of the zero vector
only: f(x, a, b) = g(x, a) + b, b ∈ B = {0}.

G

T

F

Figure 1. The sets T , F , and G

Such a game can be called a game with lifeline; the boundary ∂F of the set F is the
lifeline where the second player wins unconditionally.

Assume that the following conditions are fulfilled:

C.1 The function f : Rn × A × B 7→ Rn is continuous in all variables and Lipschitz
continuous in variable x: for all x(1), x(2) ∈ Rn, a ∈ A, b ∈ B∥∥f(x(1), a, b)− f(x(2), a, b)

∥∥ ≤ L‖x(1) − x(2)‖;

moreover, it satisfies Isaacs’ condition:

min
a∈A

max
b∈B

〈
p, f(x, a, b)

〉
= max

b∈B
min
a∈A

〈
p, f(x, a, b)

〉
∀p ∈ Rn;

Here and below, the symbol 〈·, ·〉 stands for scalar product.
C.2 The boundary ∂G of the set G (that is, the boundaries ∂T and ∂F) is smooth,

compact, and has a bounded curvature.

The players’ aims of this kind can be formalized in the following way. Let the function
x(·;x0) be a trajectory of the system emanated from the initial point x(0) = x0. Two
instants are considered:

t∗ = t∗
(
x(·, x0)

)
= min

{
t ≥ 0 : x(t;x0) ∈ T

}
,

t∗ = t∗
(
x(·, x0)

)
= min

{
t ≥ 0 : x(t;x0) ∈ F

}
,

ThL2T2.1

1009



which are the instants when the trajectory x(·;x0) hits for the first time the sets T and F ,
respectively. If the trajectory doesn’t arrive at the set T (F), then the value t∗ (t∗) is
equal to +∞. The reasonings can be conducted using either formalization with nonantici-
pating strategies, or positional formalization of N.N. Krasovskii and A.I. Subbotin [33,34].
In the last case, the feedback strategies of the first and the second player are arbitrary
functions a(·) : Rn 7→ A and b(·) : Rn 7→ B, respectively.

Define the result of the game on the trajectory x(·;x0) as

τ
(
x(·;x0)

)
=

{
+∞, if t∗ = +∞ or t∗ < t∗,

t∗, otherwise.
(2)

In [35], the author proves that a time-optimal problem with lifeline has the value
function:

T (x0) = inf
a(·)∈A

sup
b(·)∈B

τ
(
x(·;x0)

)
= sup

b(·)∈B
inf
a(·)∈A

τ
(
x(·;x0)

)
.

Here, the extremes are searched over the classes A and B of all admissible strategies of
the first and the second player (nonanticipating or feedback). The strategies a(·) and
b(·) define the trajectory x(·;x0) according to the chosen ideology (of nonanticipating or
feedback strategies).

The unboundedness of the value function and cost functional can cause some uneasi-
ness in numerical researching game (1), (2). For this reason, one often substitutes the
unbounded cost functional with a bounded one by means of Kruzhkov’s transform:

J
(
x(·, x0)

)
=

{
1− exp

(
−τ
(
x(·;x0)

))
, if τ

(
x(·;x0)

)
< +∞,

1, otherwise.
(3)

In such a case, the value function also becomes bounded and its magnitude belongs to
the range from zero to unit:

v(x0) := inf
a(·)∈A

sup
b(·)∈B

J
(
x(·;x0)

)
= sup

b(·)∈B
inf
a(·)∈A

J
(
x(·;x0)

)
.

III.B Boundary Value Problem for HJE

Generally speaking, numerical scheme construction and justification of its convergence
are analogous to paper [31] where the numerical scheme for the classic time-optimal
problem is constructed and it’s convergence is proved. Herewith, the value function is
characterized as the unique generalized (viscosity) solution of the corresponding boundary
value problem for HJE:

z +H(x,Dz) = 0, x ∈ G,
z(x) = 0, if x ∈ ∂T , (4)

z(x) = 1, if x ∈ ∂F .

Here and below, the symbol Dz denoted the gradient of the function z. The function H
is called the Hamiltonian and in the case of dynamics (1) is defined as follows:

H(x, p) = min
a∈A

max
b∈B

〈
− f(x, a, b) · p

〉
− 1, x ∈ G, p ∈ Rn.

A complexity of solving problems of this type is that the necessary condition of the
existence of a classical solution of a partial differential equation is double differentia-
bility of the function in the left-hand side of the equality. However, in the case of the
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time-optimal game, one can only speak of continuity of the Hamiltonian, so, there is no
guarantee that HJE has a classical solution.

The notion of the generalized viscosity solution introduced in [36] has been used to deal
with this problem. In book [27], an alternative method of obtaining a generalized solution
of HJE was introduced. It is called generalized minimax solution. Also in book [27], it is
proved that viscosity and minimax solutions coincide in the points of continuity.

In [37, 38], the author proves that the value function of game (1), (3) is a viscosity
solution of problem (4). The proof was performed under the assumption of the dynamical
advantage of each player on the boundaries of the corresponding sets:

∀x ∈ ∂T min
a∈A

max
b∈B

〈
nT (x), f(x, a, b)

〉
< 0,

∀x ∈ ∂F max
b∈B

min
a∈A

〈
nF(x), f(x, a, b)

〉
< 0.

Here, nT (x)
(
nF(x)

)
is a normal vector to the boundary ∂T (∂F) of the set T (F)

at the point x directed outward the corresponding set or (what is the same) inward the
set G. The sense of these relations is that if the system is at the boundary of the set
T (F), then the first (second) player can guarantee leading the trajectory of the system
inside the corresponding set despite of the action of the opponent. Combination of these
assumptions results in the continuity of the value function inside the set G.

III.C Discrete Scheme

Replace the continuous dynamics with a discrete one with the time step h > 0:

xn = xn−1 + hf(xn−1, an−1, bn−1), n = 1, . . . , N, x0 is set,

where an ∈ A and bn ∈ B.
Now, it is the turn of the space discretization. Consider a grid L with the step k

covering the whole space Rn and consisting of nodes qi1,...,in = (xi1 , . . . , xin), i1, . . . , in ∈ Z,
xij = kij. (Generally speaking, steps along different axes can differ, but this fact doesn’t
change the main idea of numerical scheme construction.) Here and below, mostly, a linear
indexation qν , ν ∈ Z for the nodes of the grid L is used. The symbol LT stands for the
set of those nodes of the grid L, which belong to the set T , the symbol LG denotes the
collection of nodes falling into the set G, and the symbol LF stands for the set of nodes
from the set F . In theoretical constructions, the grid is assumed infinite.

For every point x ∈ Rn, one can find a simplex S(x) with vertices
{
ql(x)

}
from L

such that the point x belongs to the simplex S(x) and S(x) does not contain other nodes
of the grid. It is assumed that with choosing the grid L, a separation of the game space
to simplexes with vertices at nodes of the grid is also chosen. On the basis of S(x), one
can obtain the barycentric (local) coordinates λl(x) of the point x with respect to the
vertices ql(x) of the simplex S(x):

x =
n+1∑
l=1

λl(x)ql(x), λl(x) ≥ 0,
n+1∑
l=1

λl(x) = 1.

Sometimes, the arguments of the coefficients λ and vertices q will be omitted if they are
clear from the context.

Substitute the function wh(·) with a new one w(·), which magnitudes w(qν) at the
nodes qν of the grid L form an infinite vector W =

(
w(qν)

)
s∈Z. The magnitude w(x)
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at some point x, which is not a node of the grid, can be reconstructed by means of
piecewise-linear approximation based on local coordinates of the point x:

wloc(x,W ) =
n+1∑
l=1

λl w(ql). (5)

The value function of discretized game can be characterized by means of Discrete
Dynamic Programming Principle:

w(qν) =


γmax

b∈B
min
a∈A

wloc
(
z(qν , a, b),W

)
+ 1− γ, if qν ∈ LG,

0, if qν ∈ LT ,
1, if qν ∈ LF .

Here γ = e−h, z(x, a, b) = x+ hf(x, a, b).
This characterization is of recursive kind, because the magnitude w(qν) at some

node qν depends on the magnitude of local reconstruction wloc, which again depends on
the magnitudes of the function w(·) at nodes of the grid, which may include the node qν .
Such a kind of relations obtained is typical for dynamic programming principle. In the
following, on the basis of this formula, an iterative numerical method of construction of
vector W and function w is proposed. Moreover, from the definition of w(·), one can see
that in a practical realization of the numerical method it is necessary to keep values of
this function on nodes from LG. If the set G is bounded, then LG contains only finite
number of nodes and can be represented in a computer.

For the chosen grid L = {qν}ν∈Z, denote byM the set of infinite vectors with elements
W =

(
w(qν)

)
ν∈Z. Denote byM1 those vectors in the setM, which elements w(qν) satisfy

the inequality 0 ≤ w(qν) ≤ 1. For every s ∈ Z, define an operator Fs :M→ R using a
vector W =

(
w(qν)

)
ν∈Z in the following way:

Fs(W ) =


γmax

b∈B
min
a∈A

wloc
(
z(qs, a, b),W

)
+ 1− γ, if qs ∈ LG,

0, if qs ∈ LT ,
1, if qs ∈ LF .

(6)

Here, wloc : Rn×M→ R is the local reconstruction (5) of the function w(·) corresponding
to the vector W . The manifold of values of the operators Fs over all indices s (over all
nodes qs) defines an operator F :M→M.

In [39], it is proved that if the time and space steps h and k are fixed, then the
operator F is a contraction map and as a consequence, one can obtain that there exists
a unique fixed point W of the operator F , which determines a function w(·) in Rn. This
function depends on the time h and space k discretization steps. In [40], it is proved
that if sequences of time and space steps {hn} → 0 and {kn/hn} → 0 as n → ∞, then
the sequence of functions

{
wn(·)

}
converges to the value function after the Kruzhkov’s

transform.

III.D Realization of Numerical Procedure

So, the computer realization of this numerical procedure implies a realization of some
storage for a grid, which covers some bounded parallelepipedal domain or bounded domain
of some arbitrary shape. Since, the procedure is of iterational kind, two values should
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be stored in each node: the current value and value for the next iteration. This storage
should provide an operation of computation of an approximation of the function in any
point, both in a node and in some intermediate one. The nodes should cover the set G
where the system moves; values in nodes from LT and LF equal constantly to 0 or 1,
therefore, no need to allocate cell to keep this information.

As the initial values all nodes get 1. The operator monotonically decreases, so the
initial values should be not less than the values to be computed.

Then for each node qs, formula (6) is applied. Application of this formula to all nodes
makes one iteration of the algorithm. Entire algorithm either consists of some prescribed
number of iterations, or repeats the iteration procedure until some condition becomes
true (for example, the values of the function in nodes stabilize).

The described algorithm and corresponding data structures have been realized as a
program in C# 4.6 for computational environments .Net and .NetCore, therefore, the
obtained program is cross-platform and can be started as under Microsoft Windows, as
under Linux, and under macOS.

Note that the Dubins’ car problem is of control type, not a game. Despite this, one can
state that it can be considered as a game with a fictitious second player having a control
constrained by a one-point set coinciding with the origin and embedded into dynamics
as an additive term. Formally, the coincidence of the reachable sets for the control
problem and level sets of the value function for the game can be explained in the following
way. Stepwise motions of the game system written according to the formalization by
N.N. Krasovskii and A.I. Subbotin will coincide with the Darboux sums of the integrals
of the trajectories of the original controlled system (without the second player). When
the diameter of the time partition tends to zero and the stepwise motions converge to the
constructive motions (the Krasovskii motions), the Darboux sums converge to the value
of the corresponding integral, that is, to the trajectories of the original control problem.
Therefore, the bundles of motions in the systems with and without second player coincide,
and the times of reaching the target set are the same for these systems. So, one can say
about equivalence of the results of the controlled system and the game with a fictitious
second player and applicability of the suggested computational algorithm for constructing
reachable sets upto instant.

IV Examples of Reachable Sets

Four variants of the problem have been considered for computations:

1. for a1 = −1.0, the case of two-sided symmetrical turn;
2. for a1 = −0.5, the case of two-sided asymmetrical turn;
3. for a1 = 0.0, the case of one-sided turn, the straight-forward motion is allowed;
4. for a1 = 0.5, the case of one-sided turn, the straight-forward motion is prohibited.

For each variant, the optimal result function has been computed for two problems:
for the original 3-dimensional problem in the coordinates X, Y , θ and for the reduced
2-dimensional one in the coordinates x1, x2.

The results of computation for each variant are given in 4 figures: the picture of level
sets of the optimal result function for the reduced system and two views of 3-dimensional
reachability sets G(t) upto moment for three time instants: t = 1.0, t = 2.5, t = 3.5. It
would be also interesting to compute the reachability sets for larger times in the range
from 1.5π up to 6π.

The computations have been performed under Linux Kubuntu 18.04 with .NetCore
3.0 on a PC having CPU Intel Core i7 4702MQ, 2.2GHz, and 16Gb of RAM. (However, for
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three-dimensional problems the program takes about 1.8Gb of RAM only.) This processor
has 4 cores with HyperThreading, so, the internal capabilities of C#/.NetCore for parallel
processing of arrays have been used, what gives approximately 4.5-times acceleration in
comparison with sequential 1-threaded computations.

Two-dimensional problems have been computed using the following parameters of
discretization: 70 iterations, the time step h = 0.15, the space step for all axis k =
0.025, the state constraint set G = [−5.0,+5.0] × [−3.0,+6.0]. So, the grid contains
401 · 361 = 144761 nodes (the nodes from the part LT are also included to the stored
grid.) The initial set T = [−0.05,+0.05] × [−0.05,+0.05]. The abstract minimization
over the control set A = [a1, 1] of the controller has been changed by minimization over
a grid with the step 0.05. The computation time was about 13 minutes for problems 1
and 2, and (somewhy) about 6 minutes for the the problems 3 and 4.

For three-dimensional problems, the following discretization parameters have been
used: 50 iterations, the time step h = 0.15, the space step for all axis k = 0.05, the state
constraint set G = [−5.0,+5.0] × [−3.0,+6.0] × [−3.25,+3.25]. So, the grid contains
201 · 181 · 131 = 4765911 nodes (the nodes from the part LT are also included to the
stored grid.) The initial set T = [−0.2,+0.2]×[−0.2,+0.2]×[−0.2,+0.2]. It is sufficiently
non-point-like. Also, it would be interesting to organize more delicate computations with
a more fine space grid and with a less-sized initial set. The abstract minimization over
the control set A = [a1, 1] of the controller has been changed by minimization over a grid
with the step 0.05. The computation time was a bit less than 2 hours for problems 1
and 2, and (somewhy) about 1 hour and 40 minutes for the the problems 3 and 4.

The decreasing of computational time for problems 3 and 4 can be explained by the
fact that major part of the grid did not changed the stored values and kept units until the
end of computations what saves writings to memory and, therefore, the computational
time.

Figure 2 shows level set of the optimal result function for the problem with sym-
metrical turns (a1 = −1). Figures 6, 10, and 14 show them for the cases of asym-
metric (a1 = −0.5) and one-sided (a1 = 0.0 and a1 = 0.5) turns. In these Figures,
the blue color corresponds to small times and to the initial set T , the red color cor-
responds to the time +∞, that is, to the area, which cannot be achieved either at all
because of the state constraints, or earlier some time. This time can be estimated as
70 iterations · 0.15 (time step)/3 (iterations per cell) ≈ 3.5 (several iterations are neces-
sary to get exact values in all vertices of a cell even the neighbor cell already have exact
values). To obtain exact results for a wider area, one needs to enlarge the set G and to
increase the number of iterations.

The triples of Figures 3–5, 7–9, 11–13, and 15–17 shows evolution of the 3-dimensional
reachability sets for each of 4 problems. The reachability sets G(t) are shown for the
instants t = 1.0, t = 2.5, and t = 3.5. Each figure contains two views of the 3-dimensional
sets.

One can see as the 2-dimensional sets lose symmetry and size along the axis x2 as
the turn capability of the controller decreases. In the case of 3-dimensional sets, the
sets decrease their lengths along the axis θ what corresponds to decreasing the range of
possible course angles of the car at the respective instant. This can be evidently seen in
the case a1 = 0.0 when the sets are just halves of the corresponding sets for a1 = −1.0.

Some “ripple” of the pictures of 2-dimensional level sets of the optimal result functions
and “angularity” of the 3-dimensional reachability sets are caused by “granularity” of the
initial set. These effects can be decreased by decreasing the space discretization step k.

The considered examples have been taken from the works [15,18]. In general, one can
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Figure 2. The level sets of the optimal result function for the reduced dynamics, a1 = −1
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Figure 3. a1 = −1, the reachability set G(t) for G(t) for t = 1
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Figure 4. a1 = −1, the reachability set G(t) for G(t) for t = 2.5
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Figure 5. a1 = −1, the reachability set G(t) for G(t) for t = 3.5
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Figure 6. The level sets of the optimal result function for the reduced dynamics, a1 = −0.5
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Figure 7. a1 = −0.5, the reachability set G(t) for G(t) for t = 1
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Figure 8. a1 = −0.5, the reachability set G(t) for G(t) for t = 2.5
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Figure 9. a1 = −0.5, the reachability set G(t) for G(t) for t = 3.5
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Figure 10. The level sets of the optimal result function for the reduced dynamics, a1 = 0
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Figure 11. a1 = 0, the reachability set G(t) for G(t) for t = 1
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Figure 12. a1 = 0, the reachability set G(t) for G(t) for t = 2.5
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Figure 13. a1 = 0, the reachability set G(t) for G(t) for t = 3.5
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Figure 14. The level sets of the optimal result function for the reduced dynamics, a1 = 0.5
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Figure 15. a1 = 0.5, the reachability set G(t) for G(t) for t = 1
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Figure 16. a1 = 0.5, the reachability set G(t) for G(t) for t = 2.5
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Figure 17. a1 = 0.5, the reachability set G(t) for G(t) for t = 3.5
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state that there is a quite good coincidence of our results and the ones obtained by those
authors. However, we performed computations for such parameters of the grid, which
provided more or less fast production of the result. Therefore, the grid is not too large
and covers not too wide part of the game space. Also, level sets of the value function
coinciding with the ones for the problem without lifeline correspond to times, which are
not too large; namely, a bit larger than π, whereas in those works there are level sets for
times 3π, 4π and larger. Potentially, these level sets can be computed, but it requires
more time and memory.

V Conclusion

In the framework of this paper, a numerical algorithm for constructing the level sets
for the optimal result function (reachability sets upto instant) is suggested. The compu-
tational procedure is iterative and recomputes values in some spacial grid, which converge
to the magnitudes of the optimal result function. The algorithm has been implemented
as a cross-platform computational program in C# under the environment .Net Core. By
means of this program, level sets of the optimal result function of the Dubins’ car model
have been computed. Situations of different capabilities of the controller have been con-
sidered. Along with the classical formulation when the left and right turns are symmetric,
variants of the problem are considered when the turns are asymmetrical or the turn is
one-sided.

The used computational procedure is created originally oriented to solving time-
optimal differential games with lifeline. Control problems with state constraints can be
quite easily injected into this class of games, therefore, this procedure can solve control
problems of the mentioned type.

The reachability sets obtained as a result of this study coincide more or less with
those obtained analytically earlier.
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