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Abstract—In mathematical control theory, a Dubins car is a nonlinear motion model described by dif-
ferential relations, in which the scalar control determines the instantaneous angular rate of rotation.
The value of the linear velocity is assumed to be constant. The phase vector of the system is three-
dimensional. It includes two coordinates of the geometric position and one coordinate having the
meaning of the angle of inclination of the velocity vector. This model is popular and is used in various
control tasks related to the motion of an aircraft in a horizontal plane, with a simplified description of
the motion of a car, small surface and underwater vehicles, etc. Scalar control can be constrained
either by a symmetric constraint (when the minimum rotation radii to the left and right are the same)
or asymmetric constraint (when rotation is possible in both directions, but the minimum rotation radii
are not the same). Usually, problems with symmetric and asymmetric constraints are considered sep-
arately. It is shown that when constructing the reachability set at the moment, the case of an asymmet-
ric constraint can be reduced to a symmetric case.
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INTRODUCTION
The term Dubins car is used to denote a controlled object that moves on a two-dimensional plane with

a constant linear velocity and the set constraints on the instantaneous angular speed of rotation.
In addition to the article [1], the publications [2] and [3] should also be considered as classical works

where such an object was considered. There are numerous works related to the Dubins car. Many of them
are listed in the bibliography for the article [4]. In [5] and [6], substantial problems are described in which
the Dubins car model and its various modifications/generalizations are applied.

We note some recent works. In [7], the problem of interception by a Dubins car in the shortest time of
an object whose motion is predetermined is studied. In [8], a very general formulation of control problems
with two geometric coordinates and two-dimensional control is studied. As one of the special cases of
applying the obtained results, the authors consider the problem of the performance of the Dubins car. In
[9], a variant of the algorithmic construction of the optimal open-loop trajectories of the Dubins car in
the time-optimal problem was proposed. The numerical construction of a three-dimensional reachability
set for the Dubins car in the presence of moving obstacles on the plane of geometric coordinates was con-
sidered in [10]. Some control problems for a hybrid system composed using the Dubins car were studied
in [11].

This paper studies the 3D reachability set for the Dubins car. Without loss of generality, the value of
the linear velocity of the object is assumed to be unity and the initial phase state is assumed to be zero. By
the reachability set G(tf), we mean the totality of all three-dimensional phase states x, y and ϕ (x and y are
the coordinates of the geometric position, while ϕ is the direction angle of the velocity vector), to each of
which the object can be transferred at the given moment of time tf. We denote by  the two-dimen-
sional section of the set G(tf) by the angular coordinate ϕ and call it the ϕ-section.

We name the canonical case when the scalar control u (meaning the instantaneous velocity of the rota-
tion) is constrained by . Problems with asymmetric constraints , in which  and

, are also considered in the literature (see, for example, [12]).

( )ϕ fG t

≤  1 u [ ]∈ 1 2,u u u <1 0u
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As a practical example of asymmetric constraints, we can point to the coordinated motion (see, for
example, [13, pp. 60, 61] and [14, p. 764]) of an aircraft in a horizontal plane at a constant linear velocity.
Rotations in this case are carried out by changing the angle of the roll. For the model kinematic descrip-
tion, the kinematics of the Dubins car is used. Violation of the symmetry of the roll constraints (including
due to incorrect operation of the actuators) leads to the consideration of an asymmetric case.

This study is a continuation of the article [15]. It is shown that the study of ϕ-sections for an arbitrary
asymmetric case is reduced to a study of the ϕ-sections in the canonical case. In other words, an affine
one-to-one correspondence has been established between the ϕ-sections of the reachability set for an
arbitrary asymmetric case and ϕ-sections for the canonical case. An analytical description of the ϕ-sec-
tions for the canonical case is given in [4] and [16].

Now, we briefly describe the content of this article. In Section 1 we present the problem statement of
finding the reachability set for a Dubins car with asymmetric control constraints  and . The
reachability set G(tf) is represented as a set of its sections along the angular coordinate ϕ. The ϕ-sections
for the general case need to be described by reducing them to consideration of ϕ-sections in the canonical
case.

The study is based on the maximum principle of L.S. Pontryagin [17], which is satisfied by motions
and controls leading to the boundary of the reachability set. As a simple consequence of the maximum
principle in Section 2, when describing the boundary, we find that we can restrict ourselves to piecewise
constant controls with a finite number of switchings and with values in the three-element set . In
Section 3, statements are formulated and proved about the properties of motions and controls that satisfy
the maximum principle. It is shown that when constructing the boundary of the reachability set, it suffices
to take six types of controls with at most two switchings. This result can be extended to points from the
interior of the reachable set under an appropriate restriction of the control constraints. In Section 4, at a
fixed value of the angular coordinate , the motions generated by the controls from Section 3 are
described. The points obtained at the moment tf form a continuous closed curve  on the geometric
coordinate plane. This curve contains all points of the boundary of the considered ϕ-section, but part of
it, generally speaking, also passes into the interior of the ϕ-section. An important property is that the curve

 is symmetrical about the X axis of some auxiliary rectangular coordinate system X and Y (depend-
ing on ϕ).

Section 5 is central to the article. In it at  a correspondence is established between the curve
 and some curve  considered for the canonical case. The moment  is given by a certain for-

mula and differs from the moment tf. Based on this correspondence, a similar relationship is derived

between the ϕ-sections Gϕ(tf) and  for the original and canonical cases in the auxiliary coordinate
system. In Section 6, the ϕ-sections are described for values ϕ < 0, based on the case ϕ > 0.

The six types of control considered in this article coincide in the canonical case with the six variants
indicated in [1] for the performance problem. In relation to this, we emphasize that in our article, we are
talking about the description of the boundary of the reachability set at the given moment tf. From a logical
point of view, the set of open-loop controls that solve the problem of performance, generally speaking, is
insufficient for the complete construction of the boundary of the reachable set at the moment.

1. PROBLEM STATEMENT
Let the motion of a controlled object on a plane be described by a system of differential equations

(1.1)
Here x and y are the coordinates of the geometric position, ϕ is the angle of inclination of the velocity vec-
tor (Fig. 1) counted counterclockwise from the positive direction of the x axis. The speed value is one. We
consider measurable functions of time that satisfy the constraint  as permissible controls

u(⋅). The values of angle ϕ are considered in the interval . We denote the phase vector  of
system (1.1) by z.

We record z0 the phase state of system (1.1) at the initial moment of time t0. The reachability set G(tf)
at the time  is the collection of all points z of the three-dimensional phase space into each of which
system (1.1) can be transferred at the moment tf through some admissible control on the interval 
from the starting point z0.
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Fig. 1. Initial coordinate system.
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We denote by  the two-dimensional ϕ-section of the set G(tf). Note that if some point (x, y)T

belongs to , then the point  belongs to . The converse is generally not true. Here,
symbol  indicates the boundary of the set.

When studying reachable sets, without loss of generality, we set  and . We will call
system (1.1) in the particular case of symmetric constraints  and  canonical. The correspond-
ing reachability set will be denoted by .

The aim of this article is to show and justify a method for obtaining ϕ-sections of the reachability set
G(tf) of the original system (1.1) for arbitrary  based of the ϕ-sections of the reachability set
of the canonical system.

2. PONTRYAGIN'S MAXIMUM PRINCIPLE

It follows from the general results of mathematical control theory [18] that the reachable set G(tf) is
closed and limited. It is also known that controls that lead to the boundary of the reachable set satisfy the
Pontryagin maximum principle (PMP). We write down the relations of the maximum principle for
system (1.1).

Assume u*(·) is some admissible control and  is the corresponding motion of sys-
tem (1.1) on the interval . The differential equations of the adjoint system are written as

(2.1)

The PMP means that there is a nonzero solution  of system (2.1) for which the fol-
lowing equality is satisfied almost everywhere (a.e.) on the interval :

Thus, the maximum condition has the form

(2.2)

Assuming that  satisfies (2.2), we formulate some simple properties. Note that the functions 

and  are constants. We denote them by  and . If  and , then 
in between . Consequently, in this case, either  or  a.e.
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Fig. 2. Trajectories of the maximum principle and switching straight.
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We now assume that at least one of the numbers  or  is not zero. Based on (1.1) and (2.1), we can

write the expression  Hence it follows that  if and only if the

point  of the geometric position at moment t satisfies the equation of a straight line:

(2.3)

The straight line of switching (2.3) is not universal: when the motion that satisfies the PMP changes, gen-
erally speaking, the straight line of switching also changes.

By relation (2.2), if  ( ) over a certain period of time, then  ( )
a.e. on this interval. At the same time, the corresponding motion in the projection onto the plane x, y takes

place along an arc of a circle of radius 1/u2 counterclockwise in the half plane  (along

the arc of a circle of radius  clockwise in the half plane ). We will call the left
(right) cycle the section of motion with duration  (according to the duration ) on which a.e.

 ( ). The trajectory of the motion in such a section in the projection onto the plane x,
y represents a circle.

If  on a certain interval of time, then on this interval the motion  goes in a
straight line. In other words, . That is why  a.e. on this interval.

Figure 2 shows the motions of system (1.1) that satisfy the PMP. Here and in the following explanatory
figures, for definiteness, we assume . The trajectory in Fig. 2a has three switching points and con-
trol sequence . Figure 2b shows a trajectory with six switching points with the control sequence

 there are left and right cycles.

Only the following three variants for the relative position of the trajectory of motion  and
straight-line switching are possible.

1. The trajectory intersects the straight line (2.3) at some moment at a nonzero angle (Fig. 2a). Then
the trajectory is a set of arcs of circles with the same angular opening between adjacent points of intersec-

tion of the switching of the straight line. Function  changes sign on the interval  a finite number
of times.

2. The trajectory touches the straight line (2.3) at some moment (Fig. 2b). Then the trajectory is a set
of arcs of circles and straight sections. The rectilinear segments lie on the straight line (2.3) and the arcs
of the circles touch this line. In this case, any complete section in the form of an arc of a circle which is
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not extreme is one or more consecutive cycles. Function  in between  either does not change
sign or changes sign a finite number of times.

3. The trajectory does not intersect with the straight line (2.3). In this case, the function  has the
same sign throughout the interval  and the trajectory is an arc of a circle.

Thus, if the maximum condition (2.2) is satisfied, then the function  in between  can only
change sign a finite number of times. Therefore, as the control u*(⋅), generating motion z*(⋅) and satisfying
the PMP, we can take a piecewise constant control with the values  and a finite number of switch-
ings on the interval . For definiteness, we assume that such a control is piecewise continuous on the
right. Moment tf is not included in the number of switching times.

The foregoing allows us to formulate the following two assertions.

Statement 1. We assume that the motion z*(⋅) of system (1.1) on the interval  is generated by an
admissible measurable control and, in addition, the PMP is satisfied. Then the motion z*(⋅) can be imple-
mented using a piecewise constant control with a finite number of switchings and with values in the three-
element set .

Statement 2. We assume that the motion z*(⋅) of system (1.1) on the interval  is generated by the
piecewise constant control u*(⋅) and at the same time, the PMP is fulfilled. Then, the following points are
valid:

(a) points of the geometric position of system (1.1) on the plane x, y at the moment of switching of the
control u*(⋅) lie on the switching line (2.3);

(b) if in the motion z*(⋅) there are no sections with zero control, no cycles, and the number of control
switchings u*(⋅) are more than two, then the increment of the angle between adjacent switching moments
is the same in absolute value;

(c) if in the motion z*(⋅) there are no sections with zero control, there is at least one cycle, and the num-
ber of control switchings u*(⋅) is more than one, then all points of the geometric position at the moments
of switching coincide;

(d) if in the motion z*(⋅) there is a section with zero control, then any section of motion between adja-
cent switching moments in which constant control u1 or u2 is implemented represents one or more succes-
sive cycles.

3. PROPERTIES OF MOTIONS THAT SATISFY THE PMP

In the main part of this section, we will prove several lemmas and, based on them, Theorem 1 on the
number and nature of control switching leading to the boundary of the set G(tf). In accordance with State-
ment 1, we consider piecewise constant controls  with a finite number of switching times.
Such controls are sufficient to construct the boundary of the reachability set. Lemmas 1–3 study motions
without segments with zero control. Lemma 4 analyzes the case with a segment of zero control. The final
result is formulated in Theorem 1. Theorem 2 is an analog of Theorem 1, but, for controls leading to an
arbitrary point of the set G(tf). We will use the symbol int to denote the interior of a set.

Lemma 1. We assume that the motion z(⋅) in some interval  is generated by the piecewise constant con-

trol u(⋅) with two switching points t1 and t2, where  In this case, the control sequentially takes the

values u1, u2, and u1 (respectively, u2, u1, and u2). We assume that . Then in the same time interval

there is a control  with two switching points  and , where , which is transfers from the

point  to the point  and sequentially takes the values u2, u1, and u2 (respectively u1, u2,
and u1).
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Proof. Assume that control u(⋅) takes values u1, u2, and u1 sequentially. We set  and

. It is obvious that  and . Furthermore,

(3.1)

We write equality  in the form  From here

 Substituting the obtained expression for  into (3.1), we have

(3.2)

Taking into account (3.2), we obtain .

We set the control  in the interval  between two switching points  and , as well as values ,

, and  in the three areas of constancy. We consider the corresponding motion 

emerging at moment  from the point . We show that .

From the definition of moments  and , as well as relations (3.2), we have

In other words,

(3.3)

Adding the left and right parts of these equalities, we get  Hence, taking into

account the condition , we arrive at the equality . Substituting this equality

together with the equality  into the first and third relations from (3.3), we have

(3.4)

We integrate the first equation of system (1.1) by the control u(⋅) on :

Integrating by the control , we have

Taking into account (3.4), we obtain . Direct integration also establishes the equality

.

The case when the initial control sequentially takes the values u2, u1, and u2 is treated in a similar way.
We just need to swap the symbols u1 and u2. Lemma 1 is proved.
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Lemma 2. We assume that the motion z(⋅) in between  is generated by the piecewise constant control
u(⋅) with values  and two switching points t1, t2, and . We assume that

(3.5)

Then .
Proof. Condition (3.5) substantively means that the sum of the angle increments ϕ in the first and third

sections of the constancy of the control, taken in absolute value, is greater than the modulus of the incre-
ment of the angle in the middle section. Without loss of generality, we accept the following sequence of
control values u(⋅): . Then condition (3.5) can be written as

(3.6)

We assume on the contrary that . Then any control leading to this point satisfies the
PMP.

1. We consider the case when the points  and  of the geometric position on
the plane x, y at the times of switching t1 and t2 do not match. By Statement 2c, we obtain that the
motion z(⋅) in between  has no cycles.

We choose the moments  and  so that the following equality is fulfilled:

(3.7)

The possibility of selecting  and  with provision (3.7) follows from the monotonic change of angle ϕ
depending on the total length of the two extreme gaps with the control u1. We can take, for example,

Indeed, the inequality  is valid due to condition (3.5), and the inequality
 is satisfied because the control u2 is valid in the interval . That is why  and,

therefore,  and . For moments  and  introduced in this way, we have

By substituting these equalities into relation (3.7), we verify that it holds. Relation (3.7) means that
.

Based on Lemma 1 in between , we consider the motion leaving the point , arriving at the

point , and using the sequential control u2, u1, and u2 with two switching points  and .

Together with the original motion z(⋅) generated by the control u(·), we introduce an auxiliary motion

 leaving the starting point  by the control

Control  is different from the original control u(⋅) only in between . In this case, .

In other words, . Hence, . Therefore, control  satisfies the PMP.
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Fig. 3. Explanation of point 1 of the proof of Lemma 2.
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Motion  has no cycles in the interval . This follows from the definition of control  and
the absence of cycles in motion z(⋅). By Statement 2b, we obtain that the increment of angle ϕ modulo any

adjacent moments of control switching  is constant along the given motion.

However, it is not. We take successive switching moments , , , and  in the auxiliary motion. For
it, the increment of the angle between adjacent switching moments is also constant in absolute value. Let

us denote this value by . Then  can be expressed through  taking into account the sequence

of control values  in between :

Since , then . We obtain a contradiction.

In other words,  when . The trajectories of the initial
and auxiliary motions for this case are shown schematically in Fig. 3.

2. Now, we assume that . In this case, the motion in the interval 
represents one or more consecutive cycles with control u2. In this case, due to (3.6), the total accumulated
angle in the first and third sections exceeds  in absolute value, i.e.,

(3.8)

This allows us to set an auxiliary motion  on the interval [t0, tf] (leaving the point  and

arriving at the point ) through control :
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Fig. 4. Explanation of point 2 of the proof of Lemma 2.
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with three switching points:

It can be verified using (3.8) that  and .

The formation of an auxiliary motion for the case  is illustrated in

Fig. 4. Here in between [t1, t2] the initial motion  (solid line) has a cycle due to control u2. The

geometric positions at moments t1 and t2 correspond. The path of the auxiliary motion  is

marked with a dotted line. The switching points  and  are taken so that the equalities 
and  are fulfilled. Therefore, the auxiliary motion on the section  is a semicircle, and

in the area  it is an entire circle (i.e., forms a cycle). The geometric positions in the auxiliary motion

at moments  and tf match. The positions at moments  and  also coincide.

For the auxiliary motion, we have . The initial motion in the interval [t1, t2]
represents one or more consecutive cycles with control u2. Therefore, the expression  is a multi-
ple of 2π. Therefore, the value  is not a multiple of 2π. It follows from this that the geometric

positions of the auxiliary motion at moments  and  do not match. Taking into account Statement 2c,
we obtain that the auxiliary motion due to control  does not satisfy the PMP. That is why

 in the case when the points of the geometric position of the initial motion at the
moments of switching t1 and t2 match. Lemma 2 is proved.

Lemma 3. Assume motion z(·) in the interval [t0, tf] is generated by the piecewise constant control u(·) with
values u1, u2 and three switching points , with . Then, .

Proof. Of the two middle intervals [t1, t2] and [t2, t3] of the considered motion, we take the one in which
the change in angle ϕ, taken modulo, is smaller. If the change in angles in modulo coincides, then we take
any interval.
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Fig. 5. Explanation of the proof of Lemma 4.
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We assume that the interval [t2, t3] is selected. Then . Additionally, con-
sidering that in the intervals  and [t3, tf] the controls are the same, we get

From this it follows that motion z(·) satisfies the conditions of Lemma 2 in [t1, tf] and, therefore,
.

If the interval [t1, t2] is selected, then the conditions of Lemma 2 are satisfied for motion z(·) in between
[t0, t3]. That is why  and, therefore, . Lemma 3 is proved.

Lemma 4. We assume motion z(·) in between [t0, tf] is generated by the piecewise constant control u(·) with
values in the set  and two switching points. We assume that there is only one interval with zero control
and it is one of the two extreme intervals of control constancy. Then .

Proof. We assume for definiteness that control u(·) takes the sequential values . We assume on
the contrary that . Then control u(·) satisfies the PMP.

According to Statement 2d, motion z(·) in between [t1, t2] represents one or several consecutive cycles

(Fig. 5). That is why .

We consider the auxiliary motion  leaving point z(t0) at moment t0 and which is given by the control

Here  and , where value ε is taken from range .

Motions  and z(·) match in between . Hence, . That is why .

Therefore, control  satisfies the PMP. However, motion  in between  has no cycles, which
contradicts Statement 2d.

Thus, . Lemma 4 is proved.

We formulate the main theorem on the nature of controls leading to the boundary of the reachable set.
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Theorem 1. Each point of the boundary of the reachability set G(tf) of system (1.1) can be reached at the
moment tf using a piecewise constant control with at most two switchings and with values in the three-element
set . In this case, in the case of two switchings, we can limit ourselves to six variants for the control
sequence:

(3.9)

Proof. Any point on the boundary of the reachability set is controlled by a control that satisfies the
PMP. According to Statement 1, it can be considered piecewise constant with a finite number of switch-
ings and with values in the three-element set .

We assume by contradiction that on the boundary of the reachability set G(tf) there is a point  that
can be reached only through a control with three or more switchings. If there are several such controls,
then we take the control  with the least number of switches. We denote the motion  generated
by it.

We consider the motion  in the last four areas of the constancy of the control. There cannot be
more than two sections with zero control among them. In this case, the following four cases are possible.

1. There are no areas with zero control. Then  by Lemma 3. This is contrary to

.
2. There is only one area with zero control. In this case, three successive segments can be distinguished

so that the segment with zero control is located at the beginning or at the end of such a triple. Based on
Lemma 4, we have , which contradicts the relation .

3. There are two areas with zero control, and they are located at the edges. Here, similarly to the pre-
vious case, using Lemma 4, we establish that , and we get a contradiction.

4. There are two (out of four) sections with zero control, and only one section with nonzero control is
located between them. Control  satisfies the PMP. Therefore, according to Statement 2d, the middle
segment with nonzero control, which lies between the segments with zero control, is one or several suc-
cessive cycles. We transfer all cycles from the middle section to the starting point of the first straight sec-
tion or to the end point of the second straight section. By gluing the rectilinear sections in time, we obtain
an auxiliary motion  leading to the same point at time tf, which is the original motion . In this
case, the auxiliary motion has one switching less than the original one. This contradicts the assumption
made about the choice of control  with the least number of switchings.

As an explanation, Fig. 6 shows an example of motion with three switching points  and control
sequence . In the third section (from moment t2 until moment t3), one or more cycles are imple-
mented with control u2. When forming an auxiliary motion, the cycles from the middle section of the ini-
tial motion are transferred to the starting point of the first straight section. We get two switching moments
in the auxiliary motion  and  and the control sequence .

Thus, any point on the boundary of the reachability set G(tf) can be reached using a piecewise constant
control with at most two switchings.

We turn to the question of the form of the sequence of controls. In addition to variants U1–U6 of the
controls indicated in the formulation of Theorem 1 with two switchings, six more variants are logically
possible:

Controls of form (7)–(10) cannot lead to the boundary of the reachable set due to Lemma 4.
We consider variants (11) and (12). Here, for each motion, the number of switchings can be reduced by

one, analogously to how it was done for case 4. We obtain the control with one switching leading to the
same point on the boundary. Theorem 1 is proved.
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Fig. 6. Explanation of the proof of Theorem 1.
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Taking into account Lemmas 1 and 2, we can refine the result of Theorem 1 depending on the sign of
angle ϕ for the considered point  on the boundary of the set G(tf).

Note 1. If ϕ > 0, then only four of the six types of controls can be left in list (3.9): U1, U2, U3, and U6.
When ϕ < 0, list (3.9) can be limited to four types of controls: U2, U3, U4, and U5. If ϕ = 0, then the
following four types of controls can be left in list (3.9): U2, U3, U5, and U6; in this case, controls of types
U5 and U6 generate the same set of points.

Proof. Let ϕ = 0. Any type of control U1 leads to the point . For controls such as U4 we have
. Therefore, controls of types U1 and U4 are excluded. By Lemma 1 controls U5 and U6 gener-

ate the same set of points at  and .

Assume ϕ > 0. A control of type U4 is excluded by analogy with the case ϕ = 0. A control of type U5
is also ruled out, since by Lemma 2 such controls lead to the interior of the reachable set.

The case of ϕ < 0 is dealt with in a similar way. Here, we also get four control variants: U2, U3, U4,
and U5. Note 1 is proved.

Based on Theorem 1, we formulate a theorem on controls leading to an arbitrary point of the reach-
ability set G(tf).

Theorem 2. We assume some continuous strictly increasing functions  and , defined on [0, 1]
with values  and  at the extreme points, are given. Then for any point

, there is such  that it is possible to move to point z at time tf using a piecewise

constant control with at most two switchings and with values in the three-element set , where

 and . In this case, in the case of two switchings, we can limit ourselves to six variants
for the control sequence:

(3.10)

Proof. We denote by  at  a reachable set of a control system similar to system (1.1) with
the only difference that control u is hampered by the constraint , where 
and . If α = 0, then the only admissible control is the control  and the set

 consists of one point. If α = 1, then the set  coincides with G(tf).
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Let . Then the desired result follows from Theorem 1 for  = 1. In particular,
a control that is identically equal to zero leads to the boundary of the set G(tf). Indeed, in this case the

motion moves to the point  with the maximum possible value of the first coordinate.

We now assume . We denote by  the smallest  at which . Such 
exists due to the continuity of the functions f1 and f2, the continuous dependence of the set G(tf) in the
Hausdorff metric of parameters u1 and u2, and also due to the closeness of the reachability set. The con-
tinuity of the reachability set with respect to parameters u1 and u2 follows from a certain very general prop-
erty of differential inclusions described in [19] (Chapter 4, Theorem 5.4(b) and Corollary 5.5).

Note that . Indeed, at  we would have . This is impossible because, as

noted above, the one-point set  belongs , while .

We take the sequence  of positive numbers converging to  from below. We have .
We assume zi is the point on the boundary of the set  closest to point z. Let us show that the
sequence {zi} converges to point z.

Taking into account the monotonic increase of the functions f1(α) and f2(α), we obtain a monotonic
increase (by inclusion) of the sets  as i increases. Due to the continuity of the change in the set

 by parameter α in the Hausdorff metric, we have  as . Here h is

the Hausdorff distance. Since the Euclidean distance  from point z to the set  does

not exceed , we get  as .

Since , by Theorem 1 (considering the restrictions  and  for control u in it)
point zi can be reached using a control with at most two switchings with values in the three-element set

, where  and . In this case, in the case of two switch-
ings, we can restrict ourselves to controls of the form

(3.11)

From the sequence {αi} we select the subsequence {αj} with the same number of switchings for each j.
In this case, in the same constant control interval in time order (there are not more than three of them),
either the control with the same sign or the zero control is implemented.

The lengths of the control constancy sections are limited. Therefore, from the sequence {αj}, we can
select the subsequence {αk} for which the corresponding lengths of intervals of constancy of control have
a limit (possibly equal to zero). The limit values of these lengths define some admissible control with at
most two switchings that leads to the point z. The structure of this control satisfies the properties indicated
in the statement of the theorem. Theorem 2 is proved.

Theorem 2 can be refined by analogy with Theorem 1, taking into account the sign of angle ϕ for the
considered point  in the reachability set G(tf).

Note 2. If ϕ > 0, then only four out of six types can be left in list (3.10) with two switchings: , ,
, and . When ϕ < 0, list (3.10) can be limited to four types: , , , and . If ϕ = 0, then

list (3.10) can contain the following types of controls: , , , and ; and controls of types 
and  generate the same set of points.

Proof. If , then the proof of the remark above follows from Note 1 for .

We assume that .
Let ϕ = 0. This case is analyzed in the same way as in Note 1, with the controls of types U1, U4, U5,

and U6 replaced by , , , and .
Let ϕ > 0. In proving Theorem 2, we considered the sequence {αi} for which points zi were chosen for

. Since ϕ > 0, then starting from some number , we have . For points zi, where , we
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will consider the four variants indicated in Note 1 as the generating controls with two switchings, with the
extreme values u1 and u2 being replaced by  and , respectively. When forming the subsequence
{zk}, we consider one of these variants to be implemented (in the case of two switchings). Then for the limit
point  the corresponding limit control (if it also has two switchings) belongs to the same variant. There-
fore, for point z, there are only four variants, , , , and  (the same as in Note 1), as possible
generating controls with two switchings for ϕ > 0.

The case ϕ < 0 is dealt with in a similar way. We also get four control variants: , , , and .
Note 2 is proved.

4. INTEGRATION FORMULAS FOR EXTREMAL MOTIONS

The set of possible values of ϕ of system (1.1) at the moment  is determined by the constraint
 and is the segment . In this and the next section, we assume that . The

case  will be discussed in the last section of the article.
According to Theorem 1, a piecewise constant control with at most two switchings leads to any point

of the boundary  of a 3D reachable set. At the same time, taking into account , in the case of
two switchings, we can restrict ourselves to four types of controls: U1, U2, U3, and U6 (Note 1). The same
is true for points lying on the boundary of the ϕ-section Gϕ(tf) at .

In Sections 4.1–4.4 we will assume that . The extreme value  corresponds to the
one-point set Gϕ(tf), which is described in Section 4.5.

4.1. One-Parameter Curves of Four Types in ϕ-Sections

We fix some . Using switching times t1 and t2, we introduce for each of the four types a one-
parameter curve on the plane x, y. We rely on the fact that the switching times are related by the relation

(4.1)

where . Expression (4.1) allows us for each type, using one parameter, to describe the controls
leading to a fixed ϕ-section, i.e., build a one-parameter curve of end positions with the given ϕ at the
moment tf in the plane x, y.

1. We consider the sequence of controls  with two switching points t1 and t2 (type U1). In this
case, .

Condition (4.1) for hitting the given ϕ-section takes the following form:

(4.2)

It follows from the formula that for a fixed ϕ the difference  (i.e., the duration of the average interval
of the motion) is a constant: . Considering , we get

(4.3)

Taking t1 as an independent variable, we obtain in  the range  of possible values of
t1. Integrating system (1.1) in the interval [0, tf] at fixed t1, and then, taking into account (4.3), we arrive at
the expression for the geometric position at moment tf:

(4.4)

Formula (4.4) defines a continuous one-parameter curve (with respect to parameter t1) on the surface x, y.
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We take a new independent parameter . For it, the range of possible values 
becomes symmetrical.

Substituting the expression  into (4.4), we get a one-parameter curve on the
plane x, y for :

(4.5)

2. Proceeding similarly, we establish that the motions corresponding to the types of controls U2, U3,
and U6 also generate one-parameter curves on the plane x, y (with fixed ϕ). To describe them, we intro-
duce the notation

(4.6)

It is obvious that at  the inequality θ > 0 is fulfilled. We define variants s2, s3, and s6 through t1
and θ:

(4.7)

Integrating system (1.1), we obtain the following formulas:

(4.8)

(4.9)

(4.10)

Formulas (4.8)–(4.10) define one-parameter curves on the plane x, y, corresponding to controls of
types U2, U3, and U6 with two switchings. Variants s2, s3 and s6 change in the following ranges:

(4.11)

3. For  controls u(·) with one switching that satisfy the PMP can only have the following
structure: ; ; , and u2, u1. It is easy to verify that the motion generated by each of these variants
leads to the extreme point of at least one of curves (4.5) and (4.8)–(4.10). The control without switching
(satisfying the PMP) is identically equal to zero. The corresponding motion gives , ,

. This means that the point , corresponding to a zero control, can be in ϕ-section
of the set G(tf) only when ϕ = 0. The obtained values x(tf) and y(tf) coincide with the values calculated by
formula (4.5) for ϕ = 0 and .

Thus, by Theorem 1, when describing the boundary  for , it suffices to use curves
(4.5) and (4.8)–(4.10) with closed domains:
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Fig. 7. Auxiliary coordinate system X, Y.
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4.2. Auxiliary Coordinate System
In addition to the original coordinate system, we will use an auxiliary orthogonal system X, Y. Axis X

of the auxiliary system passes through the origin of the original coordinate system x, y and is rotated at
angle ϕ/2 about the x axis (Fig. 7). The origin of the auxiliary coordinate system is located at point

. Recalculation into the auxiliary system X, Y from the original system x, y is carried
out according to the formula

(4.13)

The auxiliary coordinate system depends only on angle ϕ. Formula (4.13) defines a one-to-one affine cor-
respondence (for fixed ϕ) between vectors  and .

We recalculate curves (4.5) and (4.8)–(4.10), defined for  by parameters s1, s2, s3, and s6 in
the closed intervals (4.12), into the auxiliary coordinate system X, Y and denote them by A1, A2, A3, and
A6, respectively. To shorten the notation, we put
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Fig. 8. Examples of the curve  for the asymmetric case: , , ; values  (a) and
 (b).
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We note the structural analogy of formulas (4.15)–(4.18): a square bracket, the same coefficient in
front of it, and the same last term. Variants  and s6 included in square brackets, change in
ranges (4.12).

Curves A1 and A6 are arcs of circles. Each of them is symmetrical about the X axis due to the symmetry
with respect to zero of the ranges of the variation in parameters s1 and s6. Curves A2 and A3 are mutually
symmetrical about the axis X. This follows from the fact that the X components of points on curves A2 and
A3 at  match and the Y components differ only in sign.

4.3. Compound Closed Curve

With fixed , the set of curves A1, A2, A3, and A6 contains the boundary of the set Gϕ(tf). We
consider these curves in the sequence A1, A3, A6, and A2 bypassing them in ascending order of parameters

 and s6. For the extreme values (4.12) of the parameters, we have

As a result of gluing, we obtain a continuous piecewise-smooth closed curve on the plane X, Y. We
denote it with the symbol  and we will call it a compound curve. This curve is symmetrical
about the X axis and continuously depends on , , and tf. The curve structure at fixed ϕ becomes more
difficult with the growth of tf. We emphasize that the curve  is composed of curves of four
types and contains all points of the boundary of the set Gϕ(tf).

Figure 8 gives two examples of the curve  for the asymmetric case  and  at
. As noted above, the symmetry of the curve about the X axis is preserved by the auxiliary coor-

dinate system. The articulation points of arcs A1, A3, A6, and A2 are marked with risks. For the value
 (Fig. 8a), curve  has no self-intersections. For the value  (Fig. 8b), the

curve  has self-intersection points.

Curve  will play a major role in solving the main task of this article, which is to establish a
correspondence between ϕ-sections of Gϕ(tf) reachable sets for the canonical and asymmetric cases.
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4.4. A Family of Compound Curves

Assume , while  and  are some functions that satisfy the condition of
Theorem 2. We consider an arbitrary point in the set Gϕ(tf). By Theorem 2 and Note 2, there exists

 such that it is possible to move to this point at the moment tf using a piecewise constant control

with at most two switchings and with values in the three-element set , where  and

. In this case, in the case of two switchings, we can limit ourselves to four types of controls:
, , , and .

We denote by the symbol  a glued curve similar to the curve  and
constructed using formulas (4.6) and (4.14)–(4.18) by substituting in them the values  and

 instead of values u1 and u2. We find that the family of curves , where
, fills the whole set Gϕ(tf), i.e.,

(4.19)

Each curve  (by analogy with the curve ) is symmetrical about the X
axis of the auxiliary coordinate system. Therefore, due to (4.19), we obtain the symmetry of the set Gϕ(tf)
about the X axis.

4.5. Single Point ϕ-Section in the Special Case 

The extreme value  is realized on the control . By integrating system (1.1), we obtain
a point with coordinates  and . We recalculate it into an
auxiliary coordinate system and denote it by the symbol . We have

(4.20)

Thus, the ϕ-section of Gϕ(tf) at  consists of one point, e(tf).

5. RELATIONSHIP OF ϕ-SECTIONS FOR THE ASYMMETRIC AND CANONICAL CASES

This section will show that any ϕ-section for the general asymmetric case is related by some one-to-
one affine correspondence with an ϕ-section for the canonical case. This will mean that ϕ-sections for the
asymmetric case can be obtained based on the description of ϕ-sections for the canonical case.

In system (1.1), we fix some values , , , . As before, we consider 

and .
Together with the general case, we consider the canonical case, for which we set

(5.1)

We note that the input time  depends on values u1, u2, tf, and ϕ. It is clear that . By the symbol

, we denote the ϕ-section of the reachability set at the moment  for the canonical case. By analogy
with (4.6), we set

[ )ϕ ∈ 20, ft u ( )α1f ( )α2f

( ]α ∈� 0,1

{ }� �

1 2,0,u u = α� �

1 1 1( )u f u

= α� �

2 2 2( )u f u
�U1 �U2 �U3 �U6

( ) ( )( )ϕ α α! 1 2, , fu u t ( )ϕ! 1 2, , fu u t
( ) ( )α = α1 1 1u f u

( ) ( )α = α2 2 2u f u ( ) ( )( )ϕ α α! 1 2, , fu u t
( ]α ∈ 0,1

( ) ( ) ( )( ){ }
( ]

ϕ ϕ
α∈

= α α∪ ! 1 2
0,1

  , , .f fG t u u t

( ) ( )( )ϕ α α! 1 2, , fu u t ( )ϕ! 1 2, , fu u t

ϕ = 2ft u

ϕ = 2ft u ( ) ≡ 2u t u
( ) ( )= 2 2sin /f fx t t u u ( ) ( )( )= − 2 21 cos /f fy t t u u

( )fe t

( )
  

    = −      
 

2

2

2sin1  1 .2
0

f
f

ut
e t

u

ϕ = 2ft u

<1 0u >2 0u > 0ft [ ]ϕ ∈ 20, ft u =0 0t

( ) ( ) ( )= ϕ =T T
0 0 0 0, , 0,0,0z t x y

( )ϕ −
= − = = + ϕ ϕ = ϕ

−
c1 2c c c

1 2
2 1

2
1, 1, , .f

f
u t u

u u t
u u

c
ft ≤ ϕ ≤c c0 ft

( )ϕ
c c

fG t c
ft

( )ϕ −
θ =

−

c c c

2
c

1
c

1c 2
c   

. 
fu t u

u u
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 3  2023



THREE-DIMENSIONAL REACHABILITY SET 463
Taking into account (5.1), we have

(5.2)

Before establishing a correspondence formula between the ϕ-sections of Gϕ(tf) and , at

 we obtain a similar formula for curves  and . Here  is

a closed curve in the form of a glue of curves , , , and  given by formulas (4.15)–(4.18) by sub-
stituting in them the values , , , and θc instead of u1, u2, tf, and θ. In other words, we will show that

the curves  and , written in the auxiliary coordinate system (it depends only
on ϕ), are related by the relation

(5.3)

The value  is defined by formula (4.14). The proof of relation (5.3) will suggest a way of reasoning

when establishing a correspondence between the ϕ-sections of Gϕ(tf) and .

To verify the validity of relation (5.3), it suffices to check it for the corresponding pairs of curves: ( ,
), ( , ), ( , ), and ( , ). By substituting the value  from (5.1) into (5.2), we obtain the

equality θc = θ, where θ is defined by (4.6). Therefore, given the equality ϕc = ϕ, we conclude that ranges
(4.12) of the change in parameters s1, s2, s3, and s6 when curves , , , and  are given coincide with

the corresponding ranges for curves , , , and .

We consider curves A1 and . Curve A1 is given by formula (4.15) and corresponds to the moment tf

with control constraints u1 and u2. Curve  corresponds to the moment  with the control constraints 

and . Taking into account the fact that , , and θc = θ, it has the form
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Using formulas (4.15) and (5.4), we verify the validity of the equality

Similar equalities (in the auxiliary coordinate system) are also valid for other pairs of curves: (A2, ),

(A3, ), and (A6, ). Therefore, relation (5.3) holds.

Theorem 3. Assume . Sections Gϕ(tf) of the reachability set of the original system (1.1) are

related in the auxiliary coordinate system with sections  of the reachable set of the canonical system (5.1)
by the relation
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Proof. At first, we will assume that . Let us use the scheme used to establish equality (5.3).
Then we assume that .
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These functions satisfy the conditions stipulated in Theorem 2.

We put , . Curves  while iterating α ∈
(0, 1] fill the whole set Gϕ(tf) (Section 4.4).

For the canonical case defined in (5.1), we consider the functions

(5.7)

We put  and . Curves  while iterating α

∈ (0, 1] fill the whole set .

Let us establish a correspondence between the introduced families of curves by the formula

(5.8)

We fix some α ∈ (0, 1]. Due to (5.6) and (5.7), we obtain

(5.9)

(5.10)

To simplify the notation, we set , , , and .

Using (5.6) and the inequality , as well as taking into account that , we have

 and . It is clear that  and .

With fixed values of ϕ, tf, and , we introduce the values
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Formulas (5.11) and (5.12) are similar to relations (4.6) and (5.2), in which the controls u1, u2 and ,

 were used. Using (5.11) and (5.12), we introduce the curves  and . We

calculate their constituent parts using formulas (4.15)–(4.18), substituting in them , ,  and ,
, θ(2) instead of u1, u2, θ. The curve  (just as the curve ) is in the set Gϕ(tf)

and the curve  lies in the set .

Let us show that . Substituting into (5.11) expressions for  and  from (5.9), we get
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Formula (5.12) when substituting  from (5.1) and  from (5.10) takes the form

(5.14)

Comparing (5.13) and (5.14), we see that .

We denote the composed curve  by  and the composed curve  by

, . Each component  of the curve , in accordance with formulas (4.15)–
(4.18), can be represented as

Here the square bracket  (matrix-column) fits the curve  and is determined by the values of ϕ

and θ(1), as well as the parameter sn. For the composed curve , the same formula is valid;
however, in the notation, instead of superscript (1), we need to substitute index (2).

We take any curve  of the four curves  included and the corresponding curve  as

part of . We write formula (5.8) to be proved for the chosen curves:
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Thus, equality (5.15) and, therefore, equality (5.8) are proved. Taking (4.19) into account, we have
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2. Let . In this case, the set Gϕ(tf) consists of one point, which in the auxiliary coordinate sys-

tem is written in form (4.20). For the canonical system, the quantity  due to (5.1) takes the value .

c   ft ( )2
2u

( ) ( )ϕ − ϕ ϕθ = α + − − 

2 1 2

2 1

        . 
2 2

fu t u
u u

( ) ( )θ = θ1 2

( ) ( )
ϕ!

1 1
1 2( , , )fu u t ( )1An

( ) ( )( )ϕ! 2
c2 2

1 , , fu u t
( )2An = 1,  2,  3,  6n ( )1An

( ) ( )( )ϕ!
1 1

1 2, , fu u t

( ) ( )
( )

( )( )ϕ
   − + ξ   

   1

1
21 1

A2 1

...1 1  . 

...
n

u
u u

( )

 
 
  1A

...

...
n

( )1An

( ) ( )( )ϕ!
2 2

1 2
c, ,   fu u t

( )1An
( ) ( )( )ϕ!
1 1

1 2, , fu u t ( )2An

( ) ( )( )ϕ!
2 2

1 2
c, ,   fu u t

( ) ( )
( )

( )( )ϕ
   − + ξ =   

   1

1
21 1

A2 1

...1 1 

...
n

u
u u

( ) ( )
( )

( ) ( )ϕ ϕ
    −= − + ξ + ξ        2

21 2
2 22 2

1 2 A2 1

...1 1  ( ) . 

...2
n

u u u u
u u u u

( ) ( )θ = θ1 2

( )1
1u ( )1

2u ( )2
1u ( )2

2u

( ) ( ) ( ) ( )
   −− −   
   

1 2
1 1 2 2

1 22 1 2 1

1 1 1 1, 
2

u u
u uu u u u

( ) ( ) ( ) ( ) ( )      −ϕ ϕ ϕ− = − + −      
      

1 2
1 2  

1 2 22 2

 1 1 12sin 1  2sin 1 2sin   1 . 
2 2 2 2  

u u
u u uu u

( )1
2u ( )2

2u

( ) ( ) ( ) ( ) ( ){ }
( ]

( ) ( ) ( ) ( ) ( ){ }
( ]

ϕ ϕ ϕ ϕ
α∈ α∈

= α α = α α∪ ∪! !
 
 c1 1 2 2

1 2 1
c c

2
0,1 0,1

( , , ) , ( , , ) .f f f fG t u u t G t u u t

( )ϕ
cc
fG t

ϕ = 2ft u
c
ft = ϕc

ft
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 3  2023



466 PATSKO, FEDOTOV

Fig. 9. Illustration of mutual correspondence of ϕ-sections in the nonsymmetric and canonical cases.
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Then the maximum possible value of the angular coordinate is . Therefore, the set 

also consists of one point, which we denote by . It is calculated by analogy with formula (4.20):

Substituting e(tf) and  instead of Gϕ(tf) and  in (5.5), we obtain the equality

which is valid because .

Thus, relation (5.5) is also satisfied in the case when . Theorem 3 is proved.
Figure 9 explains the application of formula (5.5). The initial data for the asymmetric case are taken in
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in the canonical system, is 1.28π. The set  corresponding to this moment in the auxiliary coordinate

system is shown in the figure on the right. In the multiplication of the set  by the coefficient

, it is compressed relative to the zero of the auxiliary system (shown second from
the right). The shift of the resulting set along the X axis by  gives the desired set Gϕ(tf) (first
from the left) for the asymmetric case.

Note 3. Formula (5.5) can be rewritten in the original coordinates x, y. The new formula will have the
same form, but only the shift  must be replaced in it by

Note 4. In [20], the case of a one-sided rotation was considered, when . Here each ϕ-section
Gϕ(tf) of the three-dimensional reachable set is either a segment of a circle (for ) or a whole circle
(with ). Due to the continuous dependence of the reachability set on parameter u1 (we assume that
value u2 is fixed), this ϕ-section represents the limit in the Hausdorff metric of the ϕ-sections of Gϕ(tf) at

. We emphasize that in this case the sets Gϕ(tf) for  are not convex. Therefore, the correspon-
dence formula (5.5) is applicable only for the case . It cannot be used to obtain the limit set for

.

6. THE CASE ϕ < 0

We consider some  at . It is required to obtain a description of the set Gϕ(tf). We indi-
cate in the initial coordinates the symmetry property that allows us to do this.

We assume u(⋅) is an admissible control with values in the interval [u1, u2], leading to the point

, where . Together with the original problem with constraints
u1 and u2, we consider a new problem with constraints  and . We denote the three-dimen-
sional reachable set obtained in it at the same value of tf by .

In the new task, we take the control , . We have . The specificity of
the equations of motion of the Dubins car is manifested in the fact that the current values  and

(t) of the phase variables obtained at time t satisfy the relations , , and
. In this case, .

Thus, to find the set Gϕ(tf) at ϕ < 0, we need to take the set  in a new task and reflect it about the
x axis. In this way, the case ϕ < 0 in the original problem is reduced to the case  in the new task.

CONCLUSIONS
We study a three-dimensional reachability set for a nonlinear controllable object called the Dubins car.

It is assumed that rotations are possible both to the left and to the right. The case with, generally speaking,
asymmetric possibilities (tolerances) of such rotations is considered. The main results of the article are
based on the PMP and are as follows.

The well-known theorem for the symmetric case on six types of piecewise constant controls with at
most two switchings leading to the boundary of the reachable set can be extended to the nonsymmetric
case. A similar theorem has also been proved for points from the interior of the reachability set (with
decreasing tolerances for the left and right rotations).

The types of controls used at a fixed value of   of the angular coordinate generate a continuous
closed curve on the plane of geometric coordinates. The set of such curves, obtained by reducing the tol-
erances for rotations to the left and right, completely fills the considered ϕ-section. This makes it possible
to justify  for the formula of the calculation of the ϕ-section of the reachability set in the nonsym-
metric case through the corresponding section in the canonical symmetric case. Herewith, in the canon-
ical case, we take the same value of ϕ of the angular coordinate, but some other point in time for which
the ϕ-section is calculated. The formula has the form of an affine transformation and defines a one-to-
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one correspondence of such ϕ-sections. The ϕ-sections at ϕ < 0 are analyzed based on the ϕ-sections
for ϕ > 0.

As a result, the construction of the reachability set for the Dubins car in the asymmetric case is reduced
to the canonical case. Due to the one-to-one correspondence obtained in this paper, this means that the
presence of a description of the three-dimensional reachability set for some specific tolerances for the left
and right rotations allows us to obtain a description of the reachability set for an arbitrary case with two-
sided rotations.

The study of such a question in the case of a strictly unilateral rotation [21] (rotation is possible only in
one direction with constraints from above and below on the instantaneous rotation radius) is also likely to
have a positive answer. The authors will try to substantiate this in one of their following papers.

REFERENCES

1. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial
and terminal positions and tangents,” Am. J. Math. 79 (3), 497–516 (1957).

2. A. A. Markov, “A few examples of the solution of a special type of problems on maximum and minimum values,”
Soobshch. Khar’kov. Mat. O-va, Vtoraya Ser. 1 (2), 250–276 (1889).

3. R. Isaacs, Differential Games (John Wiley and Sons, New York, 1965; Mir, Moscow, 1967).
4. V. S. Patsko and A. A. Fedotov, “Three-dimensional reachable set for the Dubins car: Foundation of analytical

description,” Commun. Optim. Theory 2022, 23 (2022).
5. Robot Motion Planning and Control, Ed. by J.-P. Laumond (Springer, Berlin–Heidelberg, 1998).
6. S. M. LaValle, Planning Algorithms (Cambridge University Press, Cambridge, 2006).
7. M. E. Buzikov and A. A. Galyaev, “Time-optimal interception of a moving target by a Dubins car,” Autom. Re-

mote Control (Engl. Transl.) 82 (5) 745–758 (2021).
8. A. A. Ardentov, L. V. Lokutsievskii, and Yu. L. Sachkov, “Explicit solutions for a series of optimization problems

with 2-dimensional control via convex trigonometry,” Dokl. Math. 102 (1), 427–432 (2020).
9. S. P. Khabarov and M. L. Shilkina, “Geometric approach to solving the Dubins car problem with the formation

of program motion trajectories,” Nauchno-Tekh. Vestn. Inf. Tekhnol. Mekh. Optim. 21 (5), 653–663 (2021).
10. A. A. Zimovets, A. R. Matviichuk, A. V. Ushakov, and V. N. Ushakov, “Stability property in the convergence

game problem in the presence of phase constraints,” J. Comput. Syst. Sci. Int. 60 (4), 530–548 (2021).
11. A. S. Bortakovskii, “Fastest planar motion trajectories with unlimited curvature,” J. Comput. Syst. Sci. Int. 61

(4) 512–522 (2022).
12. E. Bakolas and P. Tsiotras, “Optimal synthesis of the asymmetric sinistral/dextral Markov–Dubins problem,”

J. Optim. Theory Appl. 150 (2), 233–250 (2011).
13. A. Miele, Flight Mechanics (Dover, Mineola, N.Y., 1962; Nauka, Moscow, 1965).
14. T. Pecsvaradi, “Optimal horizontal guidance law for aircraft in the terminal area,” IEEE Trans. Autom. Control

17 (6), 763–772 (1972).
15. V. S. Patsko, S. G. Pyatko, and A. A. Fedotov, “Three-dimensional reachability set for a nonlinear control sys-

tem,” J. Comput. Syst. Sci. Int. 42 (3), 320–328 (2003).
16. V. S. Patsko and A. A. Fedotov, “Analytical description of the reachability set for a Dubins car,” Tr. Inst Mat.

Mekh. Ural. Otd. Ross. Akad. Nauk 26 (1), 182–197 (2020).
17. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal

Processes (Fizmatgiz, Moscow, 1983) [in Russian].
18. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967; Nauka, Moscow,

1972).
19. A. A. Tolstonogov, Differential Inclusions in a Banach Space (Kluwer, Dordrecht, 2000).
20. V. S. Patsko and A. A. Fedotov, “Reachability set at a certain time for a Dubins car in the case of a one-sided

turn,” Tr. Inst Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 24 (1), 143–155 (2018).
21. V. S. Patsko and A. A. Fedotov, “The structure of the reachability set for the Dubins car with a strictly one-sided

turn,” Tr. Inst Mat. Mekh. Ural. Otd. Ross. Akad. Nauk 25 (3), 171–187 (2019).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.
JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL  Vol. 62  No. 3  2023


	INTRODUCTION
	1. PROBLEM STATEMENT
	2. PONTRYAGIN'S MAXIMUM PRINCIPLE
	3. PROPERTIES OF MOTIONS THAT SATISFY THE PMP
	4. INTEGRATION FORMULAS FOR EXTREMAL MOTIONS
	4.1. One-Parameter Curves of Four Types in j-Sections
	4.2. Auxiliary Coordinate System
	4.3. Compound Closed Curve
	4.4. A Family of Compound Curves
	4.5. Single Point j-Section in the Special Case

	5. RELATIONSHIP OF j-SECTIONS FOR THE ASYMMETRIC AND CANONICAL CASES
	6. THE CASE j < 0
	CONCLUSIONS
	REFERENCES

