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Control of an Aircraft Landing in Windshear 

V. S. PATSKO, 1 N.  D.  BOTKIN, 2 V. M. KEIN, 3 V. L. TUROVA, 4 AND M.  A. ZARKH 5 

Communicated by N. V. Banichuk 

Abstract. The problem of the feedback control of an aircraft landing 
in the presence of windshear is considered. The landing process is 
investigated up to the time when the runway threshold is reached. It is 
assumed that the bounds on the wind velocity deviations from some 
nominal values are known, while information about the windshear 
location and wind velocity distribution in the windshear zone is absent. 
The methods of differential game theory are employed for the control 
synthesis. 

The complete system of aircraft dynamic equations is linearized 
with respect to the nominal motion. The resulting linear system is 
decomposed into subsystems describing the vertical (longitudinal) mo- 
tion and lateral motion. For each subsystem, an auxiliary antagonistic 
differential game with fixed terminal time and convex payoff function 
depending on two components of the state vector is formulated. For 
the longitudinal motion, these components are the vertical deviation of 
the aircraft from the glide path and its time derivative; for the lateral 
motion, these components are the lateral deviation and its time deriva- 
tive. The first player (pilot) chooses the control variables so as to 
minimize the payoff function; the interest of the second player (nature) 
in choosing the wind disturbance is just opposite. 

The linear differential games are solved on a digital computer with 
the help of corresponding numerical methods. In particular, the opti- 
mal (minimax) strategy is obtained for the first player. The optimal 
control is specified by means of switch surfaces having a simple 
structure. The minimax control designed via the auxiliary differential 
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game problems is employed in connection with the complete nonlinear 
system of dynamical equations. 

The aircraft flight through the wind downburst zone is simulated, 
and three different downburst models are used. The aircraft trajectories 
obtained via the minimax control are essentially better than those 
obtained by traditional autopilot methods. 

Key Words. Flight mechanics, landing, feedback control, windshear 
problems, differential games, longitudinal motion, lateral motion, nu- 
merical methods, linear differential games, switch surfaces. 

Notations 

b = mean  ae rodynamic  chord,  m; 
cx, Cy, G = ae rodynamic  force coefficients, body-axes  system; 
g = acceleration o f  gravity,  m sec-2; 
Ix, Iy, Iz, Ixy = inertia moments ,  kg m2; 
I = wing span, m; 
m = aircraft  mass,  kg; 
rex, my, m z = aerodynamic  m o m e n t  coefficients, body-axes  system; 
Mx, My, Ms = aerodynamic  moments ,  N m; 
P = thrust  force, N; 
q = dynamic  pressure,  k g m - ~  sec-Z; 
S = reference surface, m2; 
V = absolute  velocity, m sec-  1; 
t 7 = relative velocity, m sec -1,  

W = wind velocity, m sec-  ~; 
Vxg, V yg, V~g = absolute  velocity components ,  m sec- l ;  
I ? ,  l~yg, / ?  = relative velocity components ,  m sec-1; 
Wxg, Wyg, Wzg = wind velocity components ,  m sec- l ;  
Xg, yg, zg = coordinates  o f  the aircraf t  center o f  mass,  m, 

ground-f ixed system; 
0~ = angle o f  a t tack,  deg; 
fl = sideslip angle, deg; 
7 = bank  angle, deg; 
6a = aileron deflection, deg; 
6e = elevator  deflection, deg; 
6r = rudder  deflection, deg; 
6a~ = aileron setting (control) ,  deg; 
6e~ = elevator  setting (control) ,  deg; 
6ps = engine control  lever setting, deg; 
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6r~ = rudder setting (control), deg; 
0 = pitch angle, deg; 
~O = yaw angle, deg; 
p = air density, kg m-3; 
a = thrust inclination, deg; 
cox, coy, co t = angular velocity components, body-axes system, deg sec -1. 

Acronyms 

DG = differential game; 
LM = lateral motion; 
VM = vertical (longitudinal) motion; 
RW = runway. 

1. Introduction 

The first papers studying the control of aircraft in landing and take-off 
under severe wind conditions appeared in the late 1970s/early 1980s. Both 
the stochastic and deterministic approaches for the description of wind 
disturbances were considered. One of the versions of the deterministic 
formulation assumes that the a priori information about the wind distur- 
bances consists in the knowledge of the possible bounds on the wind 
velocity deviations from the nominal values. For such formulation, it is 
natural to apply the methods of differential game (DG) theory. The present 
paper is devoted to the application of numerical methods, based on the DG 
theory of Krasovskii and his school (Refs. 1-2), to the feedback control of 
an aircraft in landing. The first efforts in using the methods of DG theory 
for the aircraft landing problem were made in Refs. 3-6. 

The investigations by Miele and his coworkers about aircraft control 
in take-off, abort landing, and penetration landing (see, e.g., Refs. 7-9) 
were followed by numerous papers by Chen, Leitmann, Bulirsch, and their 
coworkers (see Refs. 10-13 and references therein). In these papers, the 
wind disturbances associated with the aircraft passage through a down- 
burst zone were considered. A downburst is a descending air column which 
spreads horizontally in the neighborhood of the ground. 

In the majority of the papers, the downburst structure was supposed 
to be known a priori. The aircraft motion was considered in a vertical 
plane, and the angle of attack and the engine power setting were employed 
as control variables. As a rule, the methods of optimal control were used, 
so the results obtained characterize the potential control possibilities. 
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In Refs. 10-11, the take-off dynamics model of Ref. 7 was used, but 
global information about the wind field was supposed to be unknown 
a priori. The Lyapunov function was designed by means of robust control 
theory, and the feedback control was found by aiming along the antigradi- 
ent of this function. Concerning numerical simulations, the proposed 
control algorithm was tested on different downburst models, and the results 
obtained were compared with those of Ref. 7. 

In this paper, the landing problem for midsize transport aircraft is 
considered. As to the wind, we suppose that the bounds on the deviations 
of the wind velocity components from some average values are known. The 
aircraft dynamics is described via a sufficiently complete nonlinear system. 
The time lag of servomechanisms is taken into account. We consider the 
landing process from the altitude of 400 m up to the time when the runway 
(RW) threshold is reached. Numerical DG algorithms, developed a t  the 
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy 
of Sciences, Ekaterinburg, are employed for the feedback control synthesis. 
The complete system is linearized with respect to the nominal motion along 
the descending glide path. Then, the resulting linear system is decomposed 
into a vertical motion (VM) subsystem and a lateral motion (LM) subsys- 
tem. For both subsystems, DGs with a terminal performance index are 
formulated. The numerical solution of these games gives the minimax 
feedback controls for the linear models. Then, the control laws are applied 
to the original nonlinear system. We test the control laws simulating the 
motion of the nonlinear system under various wind disturbances. Three 
models of wind downburst are employed (Refs. 7, 14-15). For these 
models, we compare the minimax laws with traditional autopilot methods. 

2. Mathematical Model of Controlled Motion 

2.1. Equations of Motion. For an aircraft on the approach trajectory, 
the motion is described by the following 12th order system of differential 
equations (see, e.g., Refs. 16-17): 

(1) 

12g = [(p cos a - qScx) cos ~ cos ~ + (P sin a + qScy) 

x (sin ~ sin 7 - cos ~, cos ~ sin ,9) 

+ qSc~(sin ~k cos 7 + cos 4' sin 0 sin y)]/rn, (2) 

L = (3) 
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lYyg = [(P cos tr -- qScx)  sin 9 + (P sin o" + qScy)  

• cos 9 cos 7 - qScz cos 9 sin 7]/m - g, (4) 

~ = v~, (5) 

lYg = [(p cos ~ - qScx)( -sin ff cos 9) + (P sin a + qScy) 

• (cos ~ sin ~ + sin ff sin 9 cos 7) 

+ qScz(COS ~ cos 7 - sin ff sin 9 sin 7)]/m, (6) 

= coz cos 7 + COy sin 7, (7) 

69 z = [Ixy(CO2x _ co2y) _ (Iy -- Ix)coxcoy]/I z + M z  /Iz, (8) 

= (COy cos 7 -- coz sin 7)/cos~9, (9) 

Chy = [(I x -- I~)IxyCOy + (I~ - Ix)IxOgx]co~/J 

+ (I~My + LyMx)/J + co~Ixy(Ixcoy - Lycox)/J, (10) 

=co x -(COy cos7 -co~ sinT) tang ,  (11) 

o~x = [ ( ie  -L)Iyco~ + (i~ -L)I~ycox]coz/J 

+ ( I y M x  + I x y M y ) ] J  + I~ycoz(Ix/Oy - Iy~Ox)/d. (12) 

The state variables are: the coordinates Xg, y , ,  z e of  the center of  mass in 
the ground-fixed system (Fig. 1); the absolute velocity components 
Vxg, Vyg, V~g; the angles of  pitch, yaw, and bank 9, ~, 7; the angular 
velocity components in the body-axes system (o~, OJy, CO~. The dynamic 
pressure q is computed with the formula 

q = p I~2/2. 

The aerodynamic moments are 

M x  = qSlm~,, M y  = qS lmy ,  M z  = qSbrn~. 

The quantity J is determined via the moments of inertia Ix, Iy, I~y as 

J = I J y  -- t2y. 

The other variables and constants are explained in the notations. 
The aircraft is controlled by means of  the thrust force P, the elevator 

deflection 6~, the rudder deflection 6~, and the aileron deflection 6~. Note 
that the aerodynamic force coefficients c~,, Cy, c~ and the aerodynamic 
moment coefficients m~, my,  m~ depend on fie, fir, ~a" The aerodynamic 
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Fig. 1. Ground-fixed coordinate system. 

coefficients depend also on the angle o f  at tack a and the sideslip angle fl, 
which can be computed  as follows (Refs. 16-17) :  

= arcsin{[ - 1?xg(Sin ~k sin V - cos ff sin 0 cos 7) - 1?yg cos 0 cos 7 

- 1?~g(cos ~, sin 7 + sin ~b sin 0 cos V)]/(1? cos B)}, (13) 

fl = arcsin{[1?~g(sin ff cos 7 + cos ff sin 0 sin 7) - 1?yg cos 0 sin 

+ 1?~g(COS ~b cos 7 - sin ~ sin 0 sin 7)]/17}. (14) 

The wind velocity components  Wxg, Wee, Wzg affect the relative velocity 
components  1?~g, 1?yg, 1?~g via the relations 

vxg- Wx , 1?y = zy - wy , vz - wzg, (15) 
where Vxg, Vyg, Vzg denote  the absolute velocity components .  

2.2. Numerical Data .  In the numerical computat ions ,  we use the 
following data  pertaining to a Tupolev  TU-154 aircraft: 

m = 75 • 103 kg, 

S = 201 m 2, 

I~ = 2.5 x 106 kg m 2, 

I x y = 0 . 5  • 1 0 6 k g m  2, 

g = 9.81 m sec -2, 

l = 37.55 m, 

Iy = 7.5 • 106 kg m 2, 

tr = 1.72 deg. 

p = 1.207 kg m-3,  

b = 5.285 m, 

Iz = 6.5 x 106 kg m 2, 
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2.3. Aerodynamic Coefficients. The  aerodynamic  force coefficients 
cx, cy, cz in the system ( 1 ) - ( 1 2 )  refer to the body-axes system. They  are 
related to the corresponding coefficients ~ ,  gy, cz in the wind-body-axes 
system via the relations 

Cx = ?x cos ~ - ~y sin ~, Cy = ~y cos �9 + ~x sin ~, cz = ?~, (16a) 

where 

~ = 0.21 + 0.004~ + 0.47 x 10-3~ 2, (16b) 

~y = 0.65 + 0.09~ + 0.0036e, (16C) 

?z = --0.0115fl -- (0.0034 -- 6 X 10-5~)t5, (16d) 

Here  and below, angular  values are taken in degrees. 
The  aerodynamic  momen t  coefficients rex, my, m~ are specified by the 

following relations (Refs. 17-18),  which pertain respectively to the rolling 
moment :  

mx = m~fl + m~fr + m~6a + (l/2V)(n/180)(mJ, OOx + mY~oy), (17a) 

rn~ = --(0.0035 + 0.0001~) deg -1, (17b) 

m~, = - (0.0005 - 0.00003~) deg-  1, (17c) 

m ~ = - 0.0004 deg-  1, ( !7d)  

m x = - 0 . 6 1  + 0.004~, (17e) 

m y = - 0 . 3  - 0.012~, (17f) 

the yawing moment :  

my = mPyfl + my6, + m y 6  a + (l/217)(~/180)(m~,o9 x + mYcoy), 

my ~ = --(0.004 + 0.00005~) deg -1, 

r my = --(0.00135 -- 0.000015cr deg - j ,  

a ~.~ O~ m y  

x = 0.015~, my 

m y = - 0 . 2 1  - 0.005~, 

and the pitching moment :  

m,  = 0.033 - 0.017ct - 0.0136e + 0 . 0 4 7 ~  - !.29a~z/I 7. (19) 

Here,  the constant  6,t is equal to 1.26deg. The  expressions (13 ) - (19 )  
supplement Eqs. (1) "(12) .  

(18a) 

(18b) 

(18c) 

(18d) 

(18e) 

(180  



244 JOTA: VOL. 83, NO. 2, NOVEMBER 1994 

2.4. Time Lag of Servomechanisms. Let us assume that the change of 
the thrustforce is subject to the relations 

: = + + 

kp=l sec -I, E~=3538Nsec -I deg -I, 

47 $ 6 : , S  112 deg. 

6e= -41.3 deg, 

(20a) 

(20b) 

(20c) 

Here, 6ps is the engine control lever setting. Substituting the extreme values 
6ps = 47 deg and 6ps = 112 deg into the right side of Eq. (20a), we obtain 
for P = 0  the corresponding stationary values P ~ 2 x  10aN and 
P ~ 2 5  x 10aN. If the initial value of P belongs to the segment 
[2 • 104, 25 • 104], then it stays there later on. 

The servomechanism dynamics for the control surfaces is specified in 
the simplest form via the following equations, which pertain respectively to 
the elevator: 

6e = ke((~es - 6e) ,  (21a) 

k~ = 4 sec -1, 16es ] < 10 deg, (21b) 

the rudder: 

Sr = k r ( f r s  - 6r) ,  (22a) 

kr = 4 sec- i, [6r~ I < 10 deg, (22b) 

and the ailerons: 

$,~ = ka(6as  - -  (~a), (23a) 

ka  =asec  -1, 16a~l < 10 deg. (23b) 

The values 6es , firs, •as are the elevator setting, rudder setting, and aileron 
setting, respectively. 

2.5. Complete Nonlinear System. Upon adding Eqs. (20)-(23) to the 
main system (1)-(12), we obtain a differential system in the vector form 

=f(~ ,  as, W), (24) 

where 

W= W,,, W,,)" 

are the vectors of control and disturbance. Each of the control variables 
(scheduled deviations) ~ps, ~es, firs, ~ has upper and lower bounds [see 
(20c), (21b), (22b), (23b)]. 
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3. Minimax Control Law 

The nominal aircraft motion during landing up to the time when the 
RW threshold is reached is a uniform motion (without rotation) along the 
descending glide path. 

The aim of the control is to make the real motion close to the nominal 
motion. It is necessary to get the actual control without accurate a priori 
information on the location of the windshear zone and the wind velocity 
field in that zone. We assume the prior knowledge of approximate bounds 
for the deviations AWxg, AWyg, AW~g of the wind velocity components 
Wxg, Wyg, Wzg from the nominal values Wxgo, Wygo, Wzgo, which are as- 
sumed to be known as well. Some inertia characteristics of the wind 
velocity deviations can also be given. A minimax formulation of the control 
problem is natural, and the feedback control algorithm has to provide 
satisfactory landing trajectories for any disturbance realization chosen from 
the given class. 

To solve the problem, we apply the minimax approach using the 
methods of DG theory (Refs. 1, 2, 19-22). Effective computer programs 
have been created (Refs. 5, 23-25) for finding the optimal control laws 
(strategies) in linear DGs with fixed terminal time and convex payoff 
function depending on two components of the state vector. The system (24) 
is nonlinear. However, we can linearize it, solve the auxiliary DGs for the 
longitudinal and lateral motions, and use the results for the original 
nonlinear system. So, having the nominal values Wxgo, Wygo, Wzgo, the 
glide path inclination, and the nominal relative velocity, we can compute 
the values of the state variables corresponding to the nominal motion of 
the system (24). Linearizing (24) about the nominal motion, we obtain a 
linear controllable system decomposed into the VM and LM subsystems. 

The state vector of the VM subsystem consists of the deviations Axg, 
Ayg and the variables determining these deviations. The state vector of the 
LM subsystem consists of the deviation Azg and the quantities which 
determine it. 

To take into account the inertia of the wind velocity variation along 
the trajectory, we introduce additional linear differential equations, for 
example, 

A W m = kl (AFxg - A Wxg), (25a) 

A/Txg = k2 (wxg - AFx~). (25b) 

Here, wxg is a new independent variable and the constants kl, k2 determine 
the inertia of A W,:g. Similar equations are considered for A Wyg, A W~g. The 
variables Wxg, Wyg, wzg are interpreted as new disturbance factors. We add 
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the equations for A Wxg, A Wyg to the VM subsystem and the equations for 
A Wzg to the LM subsystem. 

For each of the subsystems, we consider an auxiliary DG with fixed 
terminal time tF, geometric restrictions on the control variables and wind 
disturbances, and convex payoff function depending on two components 
of the state vector at the time tf. In the VM subsystem, such components 
are Ay, A); in the LM subsystem, such components are Az, At. The first 
player (pilot) chooses the control variables so as to minimize the payoff 
function. The second player (nature) chooses the wind disturbances so as 
to maximize the payoff function. In the auxiliary DG problems, it is not 
necessary to give the any physical meaning to the time tf. 

Upon solving the auxiliary DG problems on a digital computer, we 
find the optimal laws realized by means of a collection of switch lines. 
Each collection corresponds to a certain control variable and is defined on 
the grid of reverse time instants counted from the final time tf. The switch 
line collections Kes, K~ for A6es, A6~ define the control components 
6es, 6as in the system (24). Namely, we put 6es = A6e~, 6,~ = A6a~ because 
the nominal values tSe~0, t$,~o are equal to zero. To use these controls, we 
continuously forecast the time remaining up to the time when the RW 
threshold is reached. Depending on it, certain switch lines from K~s,/(as 
are applied to choose the values 6e~, 6~. With the help of 6~, [6~], we 
want to make sure that the deviations of the state coordinates yg, Vyg 
[Zg, Vzg] from the nominal values along the trajectory are not too large; 
indeed, we are interested in making these deviations as small as possible 
at the time when the RW threshold is reached. 

Each of the controls 6ps, 6r, has a special purpose during landing 
(stabilization of relative velocity and near-nullification of the sideslip 
angle); hence, it is not natural to make their choice in the system (24) ,  
similarly to 6e, and 6,~, on the base of the auxiliary DG problems 
mentioned above. Instead, we choose the controls 6p~, 6r~ by the use of 
traditional (accepted nowadays) autopilot algorithms. 

To sum up, concerning the minimax control, we find the controls 
6es, 6~ from the auxiliary linear DGs; on the other hand, we construct the 
controls 3p~, 6r, by traditional autopilot methods. 

4. Auxiliary Linear Differential Games 

4.1. Vertical (Longitudinal) Motion. The linear VM subsystem is 
given by 

Y c = A , x + B , u + C , v ,  x~R 12, (26a) 
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D 

0 1 0 0 0 0 0 0 0 

0 -0.0501 0 --0.0973 -2.6422 0 0.0628 0.9971 0.0501 

0 0 0 1 0 0 0 0 0 

0 0.2409 0 -0.6387 45.2782 0 1.4479 0.0813 -0.2409 

0 0 0 0 0 1 0 0 0 

0 0.0003 0 0.0069 -0.5008 -0.5263 -0.3830 0 -0.0003 

--4 0 0 

0 - 1  0 

0 0 - 0 . 5  

0 0 0 

0 0 0 

0 0 0 

0 0 

0 0.0973 

0 0 

0 0.6387 

0 0 

0 -0.0069 

0 0 

0 0 

0.5 0 

- 3  0 

0 - 0 . 5  

0 0 

I 0 ,  0, 0, 0, 0, 0, 0 2.7, 0, 0, 0, 0 ]  7" 
B , =  0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0 J '  
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0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

- 3  

(26b) 

(26c) 

[ ~ 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, (26d) 
C . - - 0 ,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 ' 

X = [ X l ,  X 2 . . . . .  X 1 2 ]  T U ~- [A(~ps , A ( ~ e s ] L  1) = [Wxg, Wyg] r. ( 2 6 e )  

In this system, Xl = Axg and x3 -- Ayg are the deviations of Xg and yg 
from the nominal motion, respectively; x5 = A0 is the deviation of  the pitch 
angle; x7 = A6e is the deviation of the elevator from its trim position; 
x8 = AP/rn is the deviation of  the thrust force-to-mass ratio. We describe 
the deviation A Wxg by means of the variables x 9 and xlo; the corresponding 
equations coincide with (25), with x9 =AWxg. Similarly, the deviation 
AWyg is described by the variables xn and x12, with Xll =AWyg. The 
control variables of the first player (pilot) are the deviations Afps of the 
engine control lever setting and Ales of the elevator setting. The control 
variables Wxg and Wyg belong to the second player (nature) and are used to 
obtain the wind disturbances. 

The bounds are the following: 

IA~p~[ < 27~/180 rad = 27 deg, [A6e, I < 10n/180 rad = 10 deg, (26f) 

[Wxg [ -< 10 m sec-l,  [wyg I -< 5 m sec -1. (26g) 

We introduce a function ~b. which depends on the coordinates 
x 3 = Ayg and x4 = A)g. We let M .  be a convex hexagon on the (x3, x4)- 
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plane, with apexes ( - 3 , 0 ) ,  ( - 3 ,  1), (0, I), (3,0), ( 3 , - 1 ) ,  ( 0 , - 1 ) .  We 
suppose that 

~b,(x3, x4) = min{c > 0: (x3, x4)r~cM,}.  (27) 

We consider an antagonistic DG with dynamics (26), fixed terminal 
time tf, and payoff function ~b, given by (27). The first player (pilot) tries 
to minimize the value of the function ~b, at the time tf. The aim of the 
second player (nature) is the opposite. The set M ,  can be considered as a 
tolerance for the deviations Ayg and A)~g at the time tf; the function q~, 
indicates a deviation from the tolerance. The optimal strategy of the first 
player in the game (26)-(27) will be used to define the elevator setting (~es 
in the system (24). 

0 

. 4*=  0 

4.2. Lateral Motion. The linear LM subsystem is given by 

s = A * x  + B*u + C*v, x ~ R  l~ 

0 1 0 0 0 

0 -0 .0769  -5 .5553  0 9.2719 

0 0 0 1.0013 0 

0 -0 .0129  -0 .9339  -0 .2588  -0 .0883  

0 0 -0 .0514  0 

-0_0331 -2 .3865 -0 .9534  -0 .2256  

0 0 0 

0 - 1.4853 0 

0 0 0 

-0 .0303 -0 .2456  -0 .0460  

1 0 0 

-1 .4592  -0 .2327  -0 .6894  

- 4  0 

0 - 4  

0 0 

0 0 

(28a) 

0 0 

0.0769 0 

0 0 

0.0129 0 

0 0 

0.0331 0 

0 0 

0 0 

- 0 . 5  02 

0 - 3  

(28b1 

C * = [ 0 ,  0, 0, 0, 0, 0, 0, 0, 0, 3] r, (28d) 

x = [Xl, x2 . . . .  , Xlo] T, u = [A6~, A6a~ ] r, v = Wzg. (28e) 

In this system, xl = Azg is the deviation of Zg from the nominal motion; 
x3 = Aq/ and x5 = Ay are the deviations of the yaw and bank angles; 
x 7 = A6 r and x s = A8 a are the deviations of the rudder and the ailerons. We 
describe the deviation AWzg by means of the variables x9 and xlo, with 
x9 = A Wzg. The first player (pilot) control variables are the deviations A6rs 

o, o, o, o, o, 4, o, o, o,-] 
(28c) 

L oJ 0, 0, 0, 0, 0, 0, 0, 4, 0, 
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of the rudder and A6a~ of the ailerons. The variable W~g is used to obtain a 
wind disturbance and belongs to the second player (nature). 

The bounds are the following: 

[A6r, I _ 10~/180 rad = 10 deg, [A6a, I < 10rc/180 rad = 10 deg, (28t") 

[wz [ < 10 m sec -1. (28g) 

We introduce a function q~*, which depends on the coordinates 
xl = Azg and x2 = A~g. We let M* be a convex hexagon on the (xl, x2)- 
plane, with apexes ( - 6 ,  0), ( - 6 ,  1.5), (0, 1.5), (6, 0), (6, - 1.5), (0, -1 .5) .  
We suppose that 

~b*(xl, x2) = min{c > 0: (Xl, x2)r~cM*}. (29) 

We consider an antagonistic D G  with dynamics (28), fixed terminal 
time tf, and payoff function ~b* given by (29). The first player (pilot) tries 
to minimize the value of the function q~* at the time ty. The aim of the 
second palyer (nature) is the opposite. The set M* can be considered as a 
tolerance for the deviations Azg and A~g at the time tl; the function ~b* 
indicates a deviation from the tolerance. The optimal strategy of  the first 
player in the game (28)-(29)  will be used to define the aileron setting 6a~ 
in the system (24). 

4.3. Remarks. In the systems (26) and (28), the geometric variables 
are in meters, the angles are in radians, the time is in seconds. 

The coefficients of  the systems (26) and (28) were obtained by the 
linearization of  the system (24) with respect to the nominal motion. To 
compute the nominal motion, we use the following data: glide path 
inclination 0 = - 2 . 6 6  deg; nominal relative velocity 17 o = 72.2 m sec-1; 
nominal wind components Wxgo = - 5  m sec-1, Wyg 0 = Wzg 0 = O. For these 
data, the nominal values of the angle of attack and pitch angle are 5.42 deg 
and 2.94 deg, respectively; the nominal value Po/m equals 1.66 N kg-1; the 
nominal value 6p~O is 74.43 deg. The values 7o, ~ko, /30, COxO, OgyO, Ogzo, ~eO, 
(~rO, 6a0, 6esO, 6rsO, 6as0 are equal to zero. 

The bounds on the control variables Ares, Arts, A'~,,s in the auxiliary 
DGs are in concordance with those of  (21b), (22b), (23b). The value 
6p~o = 74.43 is not in the middle of  the segment [47, 112]. We determine the 
bound on Arps by the quantity 6p~O- 47 ~ 27 deg. 

The wind disturbance bounds in (26) and (28) are chosen according to 
reasonable consideration of  the wind abilities. The constants kl and k2 in 
the equations describing the inertia behavior of  AWxg, AWyg, AWzg [see 
(25)] are equal to 0.5 and 3, respectively. 
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5. Optimal First-Player Strategy in the Linear Differential Games 

The main features of the linear DGs (26)-(27) and (28)-(29) are the 
following. Each game has a fixed stopping time and a convex payoff 
function depending only on two coordinates of the state vector. Such 
features simplify the solution of these games (Ref. 2). First, we transform 
the DG (26)-(27) [(28)-(29)] into an equivalent second-order game (Ref. 
2). The relation between the state vector x of the system (26) [(28)] and 
the state vector y = [Yl, Y2] r of the equivalent game is described by the 
formula 

y(t) = X ,  ( t f -  t)x(t) [y(t) = X*(ty - t)x(t)], 

where X ,  (tf - t) [X*(tf - t)] is a matrix composed of the third and fourth 
[the first and second] rows of the fundamental Cauchy matrix for the 
homogeneous part of the system (26) [(28)]. The optimal control variables 
Ahps and ASes [ASrs and Aloe] in the DG (26)-(27) [(28)-(29)] are 
determined by means of switch surfaces in the space t, Y l ,Yz  of the 
equivalent game (Refs. 5, 22-24, 26). On one side of the switch surface, 
the optimal control takes an extremal value with a particular sign; on the 
other side, the optimal control is opposite in sign. The algorithmic details 
can be found in Refs. 5, 23-25. 

Every switch surface is realized on the computer via a set of sections 
on the given collection of reverse time instants z = t f -  t. These sections 
are called switch lines. The Ares switch lines He(z), with �9 = 7, 11, 14, are 
shown in Fig. 2. 

Denote by Be the second column of the matrix B , .  This column 
corresponds to the control variable Ages in the system (26). Let x(ti) be 
the state of the system (26) at the time t i. If the point 

y(ti) = X , ( t f -  ti)x(ti) 

lies in the direction of the vector X ,  ( t f -  t~)Be with respect to the switch 
line rle(t i -  t~), then we use Ages = - 10 on the next step of the discrete 
control scheme until the time ti+l. We use Abes = 10 in the opposite 
situation at the point y(t,.). Similarly, the choice of the optimal control 
variable Alas in the DG (28)-(29) at the time ti is made with the help of 
the switch line F l , ( t f - t i )  and the vector X * ( t f - t i ) B , .  Here, B, is the 
second column of the matrix B*. This column corresponds to the control 
variable Arab. As mentioned above, we use the optimal control vari- 
ables Ares and Ar~ from the linear DGs (26)-(27) and (28)-(29) for 
choosing (~es and 6a~ in the original nonlinear system (24). The control 
variables 6ps and firs in the system (24) are chosen by traditional autopilot 
methods. 
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Fig. 2. Switch lines. 

6. Downburst Models 

To simulate the motion of  the system (24), we suppose that the wind 
disturbance is associated with the aircraft flight through the downburst 
zone. Numerous papers devoted to downbursts have appeared recently. 
The downburst models used have been taken from Refs. 7 and 14-15. 
Below, we give a short outline of  the models. 

Model M1. See Ref. 14. The downburst is idealized as a three-dimen- 
sional axisymmetric vortex field. In this field, we distinguish the toroidal 
core region; in this region, the wind velocity is zero in the center and 
increases linearly along the radius to the frontier of  the core. Outside the 
core, the vortex field is determined by the stream function. Differentiation 
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of this function gives the radial and vertical components of the wind 
velocity. The radial component is resolved into two more components, the 
first parallel and the second orthogonal to the RW axis. The downburst is 
determined by three parameters: the modulus 1Io of the wind velocity vector 
in the central downburst point; the altitude Ho of the central point; and the 
radius R0 of the vortex. The core radius is equal to 0.8H0. The location of 
the downburst with respect to the glide path is determined by the coordi- 
nates of its center in the horizontal plane. 

Model M2. See Ref. 15. The main distinction of this model from the 
former consists in the absence of explicit ring vortex streams. 

Model M3. See Ref. 7. This model is given analytically. We modify 
this model by assuming that the wind velocity variations A Wxg, A W~g 
decrease to zero when the distance from the downburst center is large 
enough. 

The downburst model M1 has the following parameters: 
11o = 10 m sec -~, H0 = 300 m, R0 = 500 m. The parameters of the down- 
burst model M2 are chosen so as to have approximately the same down- 
burst zone size as for the downburst model MI and the same velocities at 
two particular points. A similar rule was used for the choice of the 
parameters of the downburst model M3. The structure of wind velocity 
field in the central vertical section for the downburst models M1-M3 is 
shown in Fig. 3. 

7. Simulation Results 

For the aircraft governed by the system (24), let the initial position 
Xg. at the time t .  be 8000 m from the RW threshold; let the values of all 
the state variables correspond to the nominal motion along the glide path. 

We consider two methods of control for the system (24). Method/1 
uses the traditional autopilot algorithms (Refs. 18 and 27) for 6ps, 8es, •rs, 
6,~. Method 12 is the minimax law; in this method, the control variables 
6ca , Oas are constructed via the switch lines obtained from the auxiliary DGs 
(26)-(27) and (28)-(29). The control parameters 6ps, 6rs are constructed 
with the help of traditional autopilot algorithms. Let tf = 15 sec for both 
auxiliary DGs. 

The peculiarity of the minimax control is the possibility of frequent 
switches from one extremal control value to another. To diminish the 
number of switches, we introduce a buffer zone near the switch lines. 
Because of it, the control variables have a gradual change. 
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Fig. 3. Downburst models; wind velocity structure in a vertical plane. 
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Denote by E a collection of reverse time instants zi on the interval 
[0, t i]  = [0, 15]. We suppose that the switch lines IIe(Zi), IIa(r; ) have been 
built for every z~sE. In Method 12, the switch lines are used in the 
following way. Let d(t) be the distance in Xg up to the RW threshold at the 
time t > t , ,  and let Vxgo be the nominal velocity in Xg. Then, s(t) = d(t)/ 
Vxgo is the forecasted time remaining until the aircraft reaches the RW 
threshold. To obtain (~es ((~as) for s(t) > t I = 15 sec, we use the same switch 
line corresponding to �9 = t  I. If  s(t) < ts, we use the line corresponding to 
the time z i e E  nearest to s(t). So, our control is comparatively rough, while 
d(t) >_ Vxgot f ~ 1000 m. I f  d(t) <_ Vxgotf, the control is more qualitative. 

The wind velocity components Wxg, Wyg, Wzg in the system (24) are 
calculated by the formulas 

= AWz  + 

here, A Wzg, A Wyg, A Wzg are taken from the downburst model; also, 

Wxgo = - 5 m sec- 1, Wygo = W~go = 0. 

The simulation results for Methods l 1 and 12 are shown in Figs. 4-7 .  
Traditional autopilot control curves are marked by diamonds, while mini- 
max control curves are unmarked. The time step for control and wind 
disturbance computation was equal to 0.2 sec. In Method 12, we had at our 
disposal the switch lines calculated with the time step 0.05 sec. For  all the 
graphs, the horizontal axis yields the distance Xg from the initial point. 

Figure 4 corresponds to Model M1; Fig. 5 was calculated for Model 
M2, and Fig. 6 was calculated for Model M3. Each of Figs. 4 - 6  contains 
two parts. Part a corresponds to the following downburst center location in 
the horizontal plane: longitudinal displacement from the initial aircraft 
position is D X  = 3000 m; lateral displacement is D Z  = 100 m. For  Part b, 
these displacements are D X  = 3000 m and D Z  = 600 m. We give graphs of  
the vertical and lateral deviations Ayg, Azg from the nominal motion, and 
also the wind deviations AWxg , AWyg, AWzg for Method 12; the wind 
deviations A Wxg , A Wyg, A Wzg for Method 11 are practically the same. Note 
that the deviations of the wind velocity components during modelling do 
not necessarily satisfy (see Figs. 4a and 5a) the bounds of the auxiliary 
linear DGs. 

It can be seen that the results for the minimax Method 12 are better 
than those for the traditional autopilot Method I 1 . 

For  Model M2 with center location D X  = 3000 m and D Z - - 2 0 0  m, 
Fig. 7 shows the deviation histories of  the following quantities: altitude, 
wind velocity components Wxg, Wyg, and relative velocity (Fig. 7a); angle 
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of attack, ratio P/m, and elevator deflection (Fig. 7b); lateral position, 
wind velocity component Wzg, yaw angle (Fig. 7c); bank angle, aileron 
deflection, rudder deflection (Fig. 7d). 

8. Conclusions 

This paper is devoted to aircraft guidance in landing under the action 
of severe wind disturbances. To find an appropriate feedback control, we 
apply numerical methods based on DG theory. We consider the motion of 
the aircraft in landing up to the time when the RW threshold is crossed. A 
priori information about the wind is supposed to be minimal: only the 
average values and deviation scales are assumed to be known. 

Our approach is the following. We linearize the complete nonlinear 
system of the aircraft dynamics equations with respect to the nominal 
motion. The resulting linear system is decomposed into subsystems describ- 
ing the vertical (longitudinal) and lateral motions. For each subsystem, an 
auxiliary DG with fixed terminal time tF, bounds on control variables and 
wind disturbances, and convex payoff function depending on two compo- 
nents of the state vector at the time tf is formulated. The first player (pilot), 
who governs the control variables, minimizes the payoff function. The aim 
of the second player (nature) is the opposite. In the auxiliary DG problems, 
it is not necessary to give any physical meaning to the time tf. 

Reducing the auxiliary DGs to two-dimensional DGs by certain 
transformations, we make them solvable with the help of specialized and 
efficient computer programs. As a result, optimal minimax controls are 
designed via switch surfaces. Every switch surface is realized on the 
computer via a set of sections (switch lines) on the given time grid. 

The control obtained is applied to the original nonlinear problem. In 
particular, to use the switch lines properly, we correct continuously the 
time of process termination. In simulating the aircraft motion, we employ 
different variants of the wind disturbances. In this paper, we suppose that 
the wind disturbance is associated with the aircraft flight through the 
downburst zone. The simulation results are essentially better for the 
proposed control than for traditional autopilot algorithms. 
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