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Chapter 12
Open-Loop Solvability Operator in Differential
Games with Simple Motions in the Plane

Liudmila Kamneva and Valerii Patsko

Abstract The paper deals with an open-loop solvability operator in two-person
zero-sum differential games with simple motions. This operator takes a given
terminal set to the set defined at the initial instant whence the first player can bring
the control system to the terminal set if the player is informed about the open-loop
control of the second player. It is known that the operator possesses the semigroup
property in the case of a convex terminal set. In the paper, sufficient conditions
ensuring the semigroup property in the non-convex case are formulated and proved
for problems in the plane. Examples are constructed to illustrate the relevance of the
formulated conditions. The connection with the Hopf formula is analysed.

Keywords Planar differential games • Semigroup property • Simple motions •
Open-loop solvability operator

12.1 Introduction

The paper concerns the simplest model description of dynamics in the differential
game theory:

Px D p C q; p 2 P; q 2 Q:

The system has no state variable x at the right-hand side, and the state velocity Px is
defined only by controls p 2 P and q 2 Q of the first and second players, where
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the constraints P and Q do not depend on the time. In Isaacs (1965), games with
such dynamics are called games with simple motions.

In numerical methods of the differential game theory, the simple motion dynam-
ics arises absolutely naturally under a local approximation of linear or nonlinear
dynamics when the capabilities of the players are “frozen” in the time and
state variables. In the framework of the simple motion dynamics, one calculates
the next step of an iterative procedure to construct the value function of the
game.

For example, one important class of differential games consists of the games with
linear dynamics, a fixed terminal time, and a continuous terminal payoff function.
For these games, the transfer to new variables is known (Krasovskii and Subbotin
1974, pp. 159–161; Krasovskii and Subbotin 1988, pp. 89–91). The new variables
can be regarded as forecasting the state variables to the terminal instant by the “free”
motion of the system under zero controls of the players. The transfer is performed
by the Cauchy matrix of the original problem. The new dynamic system has no
state variables at the right-hand side, but the controls of the players are multiplied
by coefficients depending on time.

Under the numerical construction of level sets of the value function, the time
interval is divided by a step, and the coefficients of the dynamics are frozen on each
small time interval (Botkin 1984; Isakova et al. 1984). So, at each step we get some
dynamics of simple motions. Being given a level set of the payoff function as the
terminal set and going backward from the terminal set, one recalculates the level set
at each time step using the dynamics of simple motions. Then one passes to the limit
as the step of the partition goes to zero. If the operator of recalculation is properly
chosen (at one step), then the limit set coincides with the level set (Lebesgue set) of
the value function.

This is the scheme. To perform it effectively, it is very important to choose an
operator to use at each step of the backward iterative procedure. It is most desirable
that the operator possesses the semigroup property: if the dynamics is frozen on
some time interval, then the use of any additional points of the partition does not
change the result of the iterative procedure.

We investigate the operator known as the programmed absorption operator in
Russian literature on the differential game theory (Krasovskii and Subbotin 1974,
p. 122). It can be called the open-loop solvability operator as well. For the simple
motion games, the semigroup property was established earlier (Pshenichnyy and
Sagaydak 1971) in the case of the operator dealing with convex sets. In this
paper, sufficient conditions providing the semigroup property in the non-convex
case are formulated and proved for the problems in the plane. Examples are
constructed to illustrate the relevance of the formulated conditions. In the appendix,
we describe the connection between the question under investigation and the Hopf
formula known in the differential game theory and the theory of partial-differential
equations.

The results obtained in the paper can be useful for developments and justifica-
tions of numerical methods in the differential game theory.
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12.2 Problem Statement: Open-Loop Solvability Operator

Consider a conflict-control dynamic system with simple motions (Isaacs 1965):

dx

dt
D p C q; p 2 P; q 2 Q; x 2 R

n: (12.1)

Here, t 2 Œ0; #�; p, q are controls of the first and second players; P , Q are convex
compact sets in R

n. Let M be a compact terminal set in R
n.

For a differential game, the notion of the maximal stable bridge W0 � Œ0; #� �
R

n terminating at the instant # on the set M (i.e., W0.#/ D M ) was introduced
in Krasovskii and Subbotin (1974, p. 67), Krasovskii and Subbotin (1988, p. 61).
Here, the notation W0.t/ for a t -section of the set W0 is used:

W0.t/ D fx 2 R
n W .t; x/ 2 W0g; t 2 Œ0; #�:

To guarantee the inclusion x.#/ 2 M , the positional strategy of the first player can
be constructed (Krasovskii and Subbotin 1974, 1988) by the procedure of extremal
aiming to the maximal stable bridge W0. The set W0 coincides with the solvability
set in the problem of guidance over non-anticipating strategies (Bardi and Capuzzo-
Dolcetta 1997; Subbotin 1995). The notion of the maximal stable bridge W0 is very
close to the notion of the viability kernel (Aubin 1991; Cardaliaguet et al. 1999), and
its t -section W0.t/ is well known as the alternating Pontryagin integral (Pontryagin
1967, 1981).

In the case of a convex set M , the Pshenichnyi formula describing constructively
the sections W0.t/, t 2 Œ0; #�, is known (Pshenichnyy and Sagaydak 1971):

W0.t/ D .M � .# � t /P /
��.# � t /Q: (12.2)

Here, operations of the algebraic sum (the Minkowski sum) ACB and the geometric
difference (the Minkowski difference) A

�� B of the sets A; B � R
n are used (see,

for example, Hadwiger (1957); Polovinkin and Balashov (2004); Pontryagin (1967,
1981)):

A C B WD fd 2 R
n W d D a C b; a 2 A; b 2 Bg;

A
�� B WD fd 2 R

n W d C B � Ag D
\

b2B

.A � b/:

The set A C B is convex if the both sets A and B are convex. The set A
�� B is

convex in the case of a convex set A.
Define the open-loop solvability operator (the programmed absorption operator):

M 7! T� .M/ WD .M � �P /
�� �Q; � D # � t:
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By (12.2), for a convex set M , we have

W0.t/ D T#�t .M/: (12.3)

It is of interest to try to establish some conditions providing equality (12.3) in the
case of a non-convex set M .

For any compact (generally speaking, non-convex) set M , the representation

W0.t/ D
\

�1C�2C���C�mD#�t; m2N
T�1.T�2.: : : T�m.M/ : : : // DW QT#�t .M/

is true (Pshenichnyy and Sagaydak 1971). Its right-hand side defines the operator
with multiple recomputations:

M 7! QT� .M/; � D # � t:

Therefore, the operators T� and QT� are equal (i.e., T� .M/ D QT�.M/ for all � 2
Œ0; #�) if, for any �1; �2 > 0 such that �1 C �2 � # , the following relation holds:

T�1C�2.M/ D T�1.T�2.M//: (12.4)

Equality (12.4) is known as the semigroup property of the operator T� .
In Pshenichnyy and Sagaydak (1971), the semigroup property was proved for
any convex set M . This implies (12.2).

Thus, the question on the validity of (12.3) in the case of a non-convex set M is
reduced to the formulation of conditions on the sets M , P , Q, and on the range of
�1; �2 to provide equality (12.4).

12.3 Auxiliary Results

Let us remark two obvious properties:

T� .M/ D
\

q2Q

.M � �.P C q//I (12.5)

x 2 T� .M/ , 8q 2 Q .x C �.P C q// \ M ¤ ¿: (12.6)

The following two results are known (Pshenichnyy and Sagaydak 1971).

Lemma 12.1.

T�1.T�2.M// � T�1C�2 .M/: (12.7)
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Proof. Fix x 2 T�1.T�2.M//. By (12.6), for any q 2 Q there exists p1 2 P such
that

x C �1q C �1p1 2 T�2.M/;

and there exists p2 2 P such that

z WD .x C �1q C �1p1/ C �2q C �2p2 2 M:

Since the set P is convex, the following inclusion holds:

p� WD �1p1 C �2p2

�1 C �2

2 P:

We have

x C .�1 C �2/.p� C q/ D z 2 M:

Thus, for any q 2 Q there exists p� 2 P such that

x C .�1 C �2/.p� C q/ 2 M:

Then by (12.6), we obtain x 2 T�1C�2.M/. ut
Lemma 12.2. Assume the set M is convex. Then

T�1C�2.M/ D T�1.T�2.M//; �1; �2 > 0:

Proof. By Lemma 12.1, it remains to prove that

T�1C�2.M/ � T�1.T�2.M//:

Let x 2 T�1C�2 .M/. Then, because of the property (12.6), for any q1 2 Q there
exists p1 2 P such that

z1 WD x C .�1 C �2/.p1 C q1/ 2 M: (12.8)

Let us prove the inclusion

x C �1.p1 C q1/ 2 T�2.M/: (12.9)

Fix q2 2 Q. By the same arguments as in (12.8), we find p2 2 P such that

z2 WD x C .�1 C �2/.p2 C q2/ 2 M:
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Considering the convexity of the set M , we have

x C �1.p1 C q1/ C �2.p2 C q2/ D �1z1 C �2z2

�1 C �2

2 M:

Thus, inclusion (12.9) holds. Therefore, by (12.6), we get x 2 T�1.T�2.M//. ut
In addition, three lemmas formulated and proved below are required.

Lemma 12.3 claims inequality (12.11), which, in particular, is necessarily true
if T�1C�2.M/ D T�1.T�2.M//. Further, a similar condition is used in the main
Theorem 12.1. In Lemma 12.4, the case of a convex set M is considered, and thus,
by Lemma 12.2, the semigroup property is necessarily true. The proof is based on
Lemma 12.3. The lemma is also used in the proof of Lemma 12.5, which is in its
turn necessary for our proof of Theorem 12.2.

Let �. � ; A/ be a support function of a compact set A � R
n, i.e.,

�. � ; A/ D maxfhx; �i W x 2 Ag; � 2 R
n:

Write

H.s/ D max
q2Q

hq; si C min
p2P

hp; si; s 2 R
n:

Lemma 12.3. Fix �1; �2 > 0, and assume that the sets T�2.M/, T�1.T�2.M// are
nonempty, � 2 R

n, and

�.�; T�1C�2.M// D �.�; T�1.T�2.M///: (12.10)

Then

�.�; T�1C�2.M// C �1H.�/ � �.�; T�2.M//: (12.11)

Proof. Since T�1.T�2.M// � T�1C�2.M/, we have T�1C�2.M/ ¤ ¿.
The definition of the set T�1.T�2.M// implies the inclusion

T�1.T�2.M// C �1Q � T�2.M/ � �1P:

Then

�.�; T�1.T�2.M/// C �1 max
q2Q

hq; �i � �.�; T�2.M// C �1 max
p2P

h�p; �i:

So, we get (12.11) by (12.10) and taking into account the equality

max
p2P

h�p; �i D � min
p2P

hp; �i:

ut
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Lemma 12.4. Let M be a convex set. Assume that �1; �2 > 0 and the sets T�2.M/,
T�1C�2.M/ are nonempty. Then, for any � 2 R

n, inequality (12.11) holds.

Proof. Since the set M is convex, Lemma 12.2 implies

T�1C�2.M/ D T�1.T�2.M//:

Then �.�; T�1.T�2.M/// D �.�; T�1C�2.M//. Using Lemma 12.3, we have (12.11).
ut

Lemma 12.5. Let � 2 R
n and � ¤ 0. Assume that there exists z� 2 M such that

the intersection M \ ˘� of the set M and the half-space

˘� D fx 2 R
n W hx � z�; �i � 0g

is convex and its interior is nonempty.
Then there exists # > 0 such that, for any � 2 Œ0; #�, the set T� .M/ is nonempty

and the function

� 7! ı�.�/ WD �.��; M/ � �H.��/ � �.��; T� .M//

increases on Œ0; #�.

Proof.

1) Define

�� D hz�; ��i:

Observe that �� < �.��; M/. Choose any � 2 .��; �.��; M//, and write

˘� D ˘� � .� � ��/�=k�k:

Since the interior of the intersection M \ ˘� is nonempty (in view of the fact that
the set M \ ˘� is convex and its interior is nonempty), for rather small � > 0,
we get

T� .M/ \ ˘� ¤ ¿: (12.12)

Thus, there exists ��
1 > 0 such that, for any � 2 Œ0; ��

1 �, we have (12.12).
Set

˛ D min
p2P

min
q2Q

hp C q; ��i:

We are able to choose a value ��
2 > 0 such that
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�˛ � �� � �; � 2 .0; ��
2 �:

Indeed, since �� � � < 0, any ��
2 > 0 can be taken if ˛ � 0; otherwise, we choose

any sufficiently small ��
2 > 0.

Set # D minf��
1 ; ��

2 g. (Thus, the value # depends on the choice of �.)

2) Fix � 2 Œ0; #�. Let us show that

T� .M/ \ ˘� � T�.M \ ˘�/: (12.13)

Choose x 2 T�.M/\˘�. By (12.6), for any q 2 Q there exists p� 2 P such that
x C �q C �p� 2 M . Since x 2 ˘�, we obtain hx; ��i � �. Therefore, considering
the choice of the value � and the definition of the value ˛, we deduce

�hx; ��i C �� � �� C �� � �˛ � �hq C p�; ��i:

Hence hx C �q C �p�; ��i � ��, i.e., x C �q C �p� 2 ˘�. Thus,

x C �q C �p� 2 M \ ˘�;

and, consequently, x C �q 2 .M \ ˘�/ � �P . Since q 2 Q is chosen arbitrarily, in
view of (12.5), we get

x 2
\

q2Q

�
.M \ ˘�/ � �.P C q/

� D T� .M \ ˘�/:

3) Fix �2; �1 C �2 2 Œ0; #�. By (12.12), we have

T�2.M/ ¤ ¿; T�1C�2.M/ \ ˘� ¤ ¿:

Considering (12.13), the convexity of the set M \ ˘�, Lemma 12.2, and the
monotonicity of T� , we calculate

T�1C�2.M/ \ ˘� � T�1C�2.M \ ˘�/ D T�1.T�2.M \ ˘�// � T�1.T�2.M//:

This implies that T�1.T�2.M// ¤ ¿ and

�.��; T�1C�2.M/ \ ˘�/ � �.��; T�1.T�2.M///: (12.14)

Since ˘� is a half-space with an outward normal vector � and the intersection
T�1C�2.M/ \ ˘� is nonempty, we find

�.��; T�1C�2.M// D �.��; T�1C�2.M/ \ ˘�/:

We employ this identity in (12.14) to obtain the inequality
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�.��; T�1C�2.M// � �.��; T�1.T�2.M///:

On the other hand, Lemma 12.1 implies the opposite inequality. So, equation (12.10)
holds.

Hence, considering Lemma 12.3, we get inequality (12.11), which is equivalent
to the inequality ı�.�1 C �2/ � ı�.�2/. Therefore, the function ı�.�/ increases on the
segment Œ0; #�. ut

12.4 The Main Theorem

Now, we deal with the case of R2.
A set A is called arcwise connected (Schwartz 1967) (in the sequel, connected

for brevity) if any two distinct points of the set A can be joined by a simple curve
(arc) which lies in the set.

A set A � R
2 is called simply connected (Schwartz 1967) if any simple closed

curve can be shrunk to a point continuously in the set, i.e., the set consists of one
piece and does not have any “holes.”

A polygon is defined as a plane figure that is bounded by a closed path composed
of a finite sequence of straight line segments (edges of the polygon).

Let us denote by VA the set of all outward normal unit vectors to the edges of the
polygon A. If A is a segment, we suppose that the set VA consists of two opposite
directed vectors that are normal to the segment A.

Let us formulate the main theorem.

Theorem 12.1. Assume that

(A1) M � R
2 is a simply connected compact set;

(A2) P � R
2 is either a non-degenerate segment, or a convex polygon ;

Q � R
2 is a convex compact set;

(A3) for any x 2 R
2 and � 2 VP , the set

˘M .x; �/ D M \ fz 2 R
2 W hz; �i 6 hx; �ig

is connected;
(A4) for any � 2 Œ0; #�, the set T� .M/ is nonempty and connected;
(A5) for any � 2 VP , the function

� 7! ı�.�/ WD �.��; M/ � �H.��/ � �.��; T� .M//

increases on the segment Œ0; #�.

Then the operator T� possesses the semigroup property on the segment Œ0; #�. (And,
consequently, W0.t/ D T#�t .M/, t 2 Œ0; #�.)
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Our proof of Theorem 12.1 is based on Lemma 12.6. To formulate the lemma,
let us introduce the following notations.

For the set T� .M/ ¤ ¿, we define “an envelope set”

env .T� .M// D
\

�2VP

fx 2 R
2 W hx; ��i � �.��; T� .M/ /g:

Note that T� .M/ � env .T� .M//. If P is a segment, then env .T� .M// is a closed
strip; if P is a polygon, then env .T� .M// is a convex polygon.

Let P be the set of vertices of the segment or polygon P . For a vertex p 2 P ,
define a bundle of unit vectors

N .p/ D ˚
.p � x/=kp � xkW x 2 P n fpg�:

If P is a segment, then the set P consists of two vertices, and the set N .p/ consists
of a unique vector for p 2 P .

Let l.a; �/ be a ray with the initial point a 2 R
2 and the direction along the vector

� 2 R
2:

l.a; �/ D fa C ˛� W ˛ � 0g:

Lemma 12.6. Assume that �1; �2 > 0, the sets T�2.M/ and T�1C�2.M/ are
nonempty, and the following conditions hold:

(L1) if y 2 R
2, q1 2 Q, and

.y C�1.P Cq1//\T�2.M/ D ¿; .y C�1.P Cq1//\ env .T�2.M// ¤ ¿;

then there exist p� 2 P and q2 2 Q such that

8� 2 N .p�/ l.y C �1.p� C q1/ C �2.p� C q2/; ��/ \ M D ¿I

(L2) for any � 2 VP , we have

�.��; T�1C�2.M// C �1H.��/ � �.��; T�2.M//:

Then

T�1C�2.M/ D T�1.T�2.M//: (12.15)

Proof. Suppose that (12.15) is false. Then, by Lemma 12.1, we can find

y 2 T�1C�2.M/ n T�1.T�2.M// ¤ ¿:
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Since y 62 T�1.T�2.M//, by (12.6), we find q1 2 Q such that

G1 \ T�2.M/ D ¿; G1 WD y C �1.P C q1/: (12.16)

1) Assume

G1 \ env .T�2.M// ¤ ¿: (12.17)

a) We now assert that there exists q2 2 Q such that

.G1 C �2.P C q2// \ M D ¿: (12.18)

Indeed, using (12.16), (12.17), and condition (L1), we find p� 2 P and q2 2 Q

such that

8� 2 N .p�/ l.b; ��/\M D ¿; b WD yC�1.p�Cq1/C�2.p�Cq2/: (12.19)

For any z 2 G1 we have the representation

z D y C �1. Np C q1/; Np 2 P:

In addition, for any p 2 P , we can write

z C �2.p C q2/ D b � ��; �� WD �1.p� � Np/ C �2.p� � p/:

We have

p� � Np
kp� � Npk 2 N .p�/ .p� ¤ Np/;

p� � p

kp� � pk 2 N .p�/ .p ¤ p�/:

Therefore, if �� ¤ 0, then ��=k��k 2 N .p�/. Considering (12.19), we get

z C �2.p C q2/ 62 M D ¿:

Hence (12.18) holds.

b) Set Qq D .�1q1 C �2q2/=.�1 C �2/. Then

y C .�1 C �2/.P C Qq/ D y C �1.P C q1/ C �2.P C q2/ D G1 C �2.P C q2/:

Using (12.18), we get .y C .�1 C �2/.P C Qq// \ M D ¿. By (12.6), we conclude
y 62 T�1C�2.M/, that contradicts to our choice of y.

2) Assume G1 \ env .T�2.M// D ¿. Then, using the definition of the operator
env , we write
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G1 �
[

�2VP

fx 2 R
2 W hx; ��i > �.��; T�2.M//g:

Since G1 is either a non-degenerate segment, or a convex polygon, and VP is the set
of outward normals to G1, we deduce that there exists �0 2 VP such that

8z 2 G1 hz; ��0i > �.��0; T�2.M//: (12.20)

Remark also that the inclusion y 2 T�1C�2.M/ implies the inequality

hy; ��0i � �.��0; T�1C�2 .M//: (12.21)

Suppose

p0 2 Arg max
p2P

hp; �0i; z0 WD y C �1.p0 C q1/:

Since z0 2 G1, using (12.20), (12.21), and the relations

hp0; ��0i D min
p2P

hp; ��0i; hq1; ��0i � max
q2Q

hq; ��0i;

we calculate

�.��0; T�2.M// < hz0; ��0i D hy; ��0i C �1hp0 C q1; ��0i
� �.��0; T�1C�2.M// C �1H.��0/;

that contradicts to condition (L2).
So, assuming the violation of (12.15), we obtain the contradictions in the both

cases 1) and 2). ut
Proof (of Theorem 12.1). Choose �2; �1 C �2 2 .0; #�. To prove the equality

T�1C�2.M/ D T�1.T�2.M//;

check conditions (L1) and (L2) of Lemma 12.6.
For any � 2 VP , the increase of the function ı�.�/ on the segment Œ0; #� implies

the inequality ı�.�1 C �2/ � ı�.�2/, which is equivalent to the inequality in (L2).
Let us verify condition (L1). Fix y 2 R

2 and q1 2 Q. Set G1 D y C �1.P C q1/,
and assume the following conditions hold:

G1 \ T�2.M/ D ¿; (12.22)

G1 \ env .T�2.M// ¤ ¿: (12.23)

Consider the following two cases: P is a non-degenerate segment and P is a
convex polygon.
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I. Let P be a non-degenerate segment.
Note that the set P is two-element (vertices of the segment P ), and for any

p 2 P , the set N .p/ consists of a unique vector.
Since G1 is a segment, which is parallel to P , and the set env .T�2.M// is a strip,

which is parallel to P , inequality (12.23) implies

G1 � env .T�2.M//:

Let us remark that the boundary of the set env .T�2.M// is formed by two supporting
lines of the connected set T�2.M/. Consequently, in view of (12.22), we can find a
vertex a� WD y C �1.p� C q1/, p� 2 P , of the segment G1 such that

l.a�; ��/ \ T�2.M/ ¤ ¿; N .p�/ D f��g: (12.24)

Since a� 62 T�2.M/, remembering (12.6), we find q2 2 Q such that

.a� C �2.P C q2// \ M D ¿: (12.25)

Besides, (12.24) implies that

9˛ > 0 W a� C ˛�� 2 T�2.M/:

Thus, due to (12.6), we have

.a� C ˛�� C �2.P C q2// \ M ¤ ¿: (12.26)

Eqs. Define b� WD a� C �2.p� C q2/. In view of (12.25), (12.26), and b� 2 a� C
�2.P C q2/, we find

l.b�; ��/ \ M ¤ ¿:

To get property (L1), it remains to prove that

l.b�; ���/ \ M D ¿:

Assume the converse. Then we can find

x� 2 l.b�; ���/ \ M:

Choose also x� 2 l.b�; ��/ \ M . Due to

l.b�; ˙��/ � ˘M .b�; �/ \ ˘M .b�; ��/; � 2 VP ;

the assumption (A3) implies that there exist continuous arcs �C � ˘M .b�; �/ and
�� � ˘M .b�; ��/ connecting the points x� and x�. As a result, the complex arc
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Fig. 12.1 Illustration to the proof of (12.29)

���C � M encircles the segment a� C �2.P C q2/. Remembering (12.25), we get
the contradiction with the simple connectedness of the set M . This contradiction
completes the proof of property (L1).

II. Let P be a convex polygon.

1) We next show that there exists p� 2 P such that

8� 2 N .p�/ l.y C �1.p� C q1/; �/ \ T�2.M/ ¤ ¿: (12.27)

Assume the converse, i.e.,

8 p 2 P 9 � 2 N .p/ W l.y C �1.p C q1/; �/ \ T�2.M/ D ¿: (12.28)

Since G1 is a convex polygon, we write

G1 D
\

�2VP

fz 2 R
2 W hz; �i � �.�; G1/g:

In view of (12.22), we have

T�2.M/ � R
2 n G1 D

[

�2VP

fz 2 R
2 W hz; �i > �.�; G1/g:

Using (12.28) and the connectedness of the set T�2.M/, we find �� 2 VP (Fig. 12.1)
such that

T�2.M/ � fz 2 R
2 W hz; ��i > �.��; G1/g: (12.29)
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Define

˘1 WD fz 2 R
2 W hz; ��i � �.��; G1/g:

Therefore

R
2 n ˘1 D fz 2 R

2 W hz; ���i < ��.��; G1/g:
Because of (12.29), we have

˘2 WD fz 2 R
2 W hz; ���i � �.���; T�2.M//g � R

2 n ˘1:

The last formula and the definition of the operator env imply

env .T�2.M// � ˘2 � R
2 n ˘1:

Remembering that G1 � ˘1, we have

env .T�2.M// \ G1 D ¿;

that contradicts to (12.23). Thus, (12.27) holds.

2) Set a� D yC�1.p�Cq1/. In view of (12.22), we get a� 62 T�2.M/. Using (12.6),
we find q2 2 Q such that

G2 \ M D ¿; G2 WD a� C �2.P C q2/: (12.30)

Besides, (12.27) implies that

8� 2 N .p�/ 9˛� > 0 W a� C ˛�� 2 T�2.M/:

So, considering (12.6), we have

8� 2 N .p�/ 9˛� > 0 W .G2 C ˛��/ \ M ¤ ¿: (12.31)

For the chosen p� and q2, let us prove that

8� 2 N .p�/ l.a� C �2.p� C q2/; ��/ \ M D ¿: (12.32)

Let pC and p� be the vertices of the polygon P adjoining the vertex p� such
that going around the vertices p�, p�, pC is counterclockwise (Fig. 12.2).

We have pC ¤ p�. Set

b D a� C �2.p� C q2/; �˙ D p� � p˙:

By �C (��) denote the outward normal vector to the edge of P that has its vertices
at the points p� and pC (respectively, p� and p�).



254 L. Kamneva and V. Patsko

Fig. 12.2 Illustration to the
verification of condition (L1)

a b

Fig. 12.3 Step 1 of the proof of (12.32)

The proof of (12.32) is divided into two steps. In the first step, we assert an
auxiliary statement. At the second step, assuming that (12.32) does not hold, we
obtain a contradiction with the simple connectedness of the set M .

Step 1. We claim that there exists a continuous arc � (Fig. 12.3), which connects
some points eC 2 l.b; �C/ and e� 2 l.b; ��/, and the inclusion

� � .b C K/ \ M (12.33)

holds, where K WD ˚
˛� W � 2 N .p�/; ˛ � 0

�
.

Define

B˙ D fz C ˛�˙ W ˛ > 0; z 2 G2g n G2:

Since G2 \ M D ¿ and (12.31) holds for � D �˙=k�˙k, we have B˙ \ M ¤ ¿.
Fix any b˙ 2 B˙ \ M . As BC \ B� D ¿, we conclude that bC ¤ b�.

a) Suppose

Arg min
z2G2

hz; �Ci D Arg min
z2G2

hz; ��i DW E:
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In this case, the convexity of G2 implies that the set E consists of a unique vector,
i.e., E D fQeg, and Qe is a vertex of the polygon G2 (Fig. 12.3a).

By Q�C and Q�� denote the outward normals to the edges adjoining the vertex Qe.
Assume that the normals are chosen in such a way that the counterclockwise angle
from Q�� to Q�C is less than 	 . Set

QK WD f˛.z � Qe/ W ˛ � 0; z 2 G2g:

Note that QK � K, @ QK \ @K D f0g, and

b˙ 2 B˙ � ˘M . Qe; Q��/: (12.34)

Besides, assumption (A3) implies that the set ˘M . Qe; Q�˙/ is connected.
Fix Q� 2 QK. Applying (12.31) for � D Q�=k Q�k, we can find Q̨ > 0 such that

.G2 C Q̨ Q�/ \ M ¤ ¿:

Choose c 2 .G2 C Q̨ Q�/ \ M . Note that

c 2 ˘M . Qe; Q�˙/: (12.35)

Consider the two possible cases: (i) c 2 .BC [ B�/; (ii) c 62 .BC [ B�/.

(i) Suppose c 2 B˙. Using (12.34), (12.35), and the connectedness of the set
˘M . Qe; Q�˙/, we conclude that there exists a continuous arc �1 � ˘M . Qe; Q�˙/

connecting the points c and b�. In the set ˘M . Qe; Q�˙/, the points c and b�
are separated by the set G2 [ .b C K/. Applying (12.30), from the arc �1

we can single out the required continuous arc � without self-intersections
which lies in the set b C K and connects some points eC 2 l.b; �C/ and
e� 2 l.b; ��/.

(ii) Suppose c 62 .BC [ B�/. In this case, the point c belongs to the interior of the
set b C K. We have

c; bC 2 ˘M . Qe; Q��/; c; b� 2 ˘M . Qe; Q�C/:

Using the connectedness of the sets ˘M . Qe; Q�C/ and ˘M . Qe; Q��/, we get that
there exists a continuous arc �1 � ˘M . Qe; Q�C/ connecting the points c and bC,
and there exists a continuous arc �2 � ˘M . Qe; Q��/ connecting the points b�
and c. By (12.30), from the complex arc �1�2 we can single out the required
continuous arc � without self-intersections which lies in the set b C K and
connects some points eC 2 l.b; �C/ and e� 2 l.b; ��/.

b) It remains to consider the case (Fig. 12.3b)

Arg min
z2G2

hz; �Ci ¤ Arg min
z2G2

hz; ��i:
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Fig. 12.4 Step 2 of the proof
of (12.32)

In this case, we can find Q� 2 VP such that

B˙ � ˘3 WD fz 2 R
2 W hz; Q�i � �. Q�; G2/ g:

Since bC; b� 2 ˘3, assumption (A3) implies that there exists a continuous arc
�1 � ˘3 \ M connecting the points bC and b�. In the half-plain ˘3, the points bC
and b� are separated by the set G2 [ .b C K/. By (12.30), from the arc �1 we can
single out the required continuous arc � without self-intersections which lies in the
set b C K and connects some points eC 2 l.b; �C/ and e� 2 l.b; ��/.

Thus, there exists the arc � with the required properties.

Step 2. Suppose that (12.32) is false, i.e.,

9 �0 2 N .p�/ W l.b; ��0/ \ M ¤ ¿:

Choose b0 2 l.b; ��0/ \ M (Fig. 12.4).
Let us construct a continuous closed arc without self-intersections which lies in

the set M and encircles the set G2. We have

eC; b0 2 ˘M .b; �C/; e�; b0 2 ˘M .b; ��/:

By assumption (A3), there exists a continuous arc �C � ˘M .b; �C/ connecting the
points b0 and eC, and there exists a continuous arc �� � ˘M .b; ��/ connecting the
points e� and b0. Without loss of generality, we can suppose that the arcs �C and
�� have no self-intersections.

The complex arc �C��� � M is continuous and closed; it has no self-
intersections and encircles the set G2. Using (12.30), we obtain a contradiction with
the connectedness of the set M . Thus, relation (12.32) is proved, i.e., condition (L1)
holds. ut
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12.5 The Case of Polygon M

Assumptions (A1)–(A3) of Theorem 12.1 concern only the sets M and P ; they are
geometric and easy to verify. Assumptions (A4)–(A5) deal with the segment Œ0; #�.

Theorem 12.2 formulated below (based on Lemma 12.5) asserts that if M is a
polygon with some geometric property with respect to P , then there exists some
interval of � where assumptions (A4)–(A5) hold.

Theorem 12.2. Assume that

(A1)� M � R
2 is a polygon;

(A2) P � R
2 is either a non-degenerate segment or a convex polygon;

Q � R
2 is a convex compact set;

(A3) for any x 2 R
2 and � 2 VP , the set

˘M .x; �/ D M \ fz 2 R
2 W hz; �i 6 hx; �ig

is connected.

Then there exists # > 0 such that the operator T� possesses the semigroup property
on the segment Œ0; #�. ( And, consequently, we get W0.t/ D T#�t .M/, t 2 Œ0; #�.)

Proof. The assumptions of the theorem contain assumptions (A1)–(A3) of
Theorem 12.1.

Note that the set T� .M/ is connected for rather small � > 0, i.e., assumption
(A4) holds for rather small # .

Let � 2 VP . By assumption (A3) of the theorem, for any x 2 R
2 the set ˘M .x; �/

is connected. Since M is a polygon, we choose z� 2 M such that the set ˘M .z�; �/

is either a triangle or a trapezium. We obtain that the assumptions of Lemma 12.5
hold for � D �. Consequently, there exists # > 0 such that assumption (A5) of
Theorem 12.1 is true.

By assumptions (A1)–(A5) of Theorem 12.1, we get that the operator T�

possesses the semigroup property on the segment Œ0; #�. ut

12.6 Examples on Violation of Assumptions (A3)–(A5)

Let us show that no one assumption from (A3)–(A5) of Theorem 12.1 is excessive,
i.e., violation of only one assumption of (A3)–(A5) allows one to find sets M , P ,
and Q, and instants �1 and �2 such that equality (12.4) is false.

Below, we consider that P and Q are the segments and �1 D �2 for all three
examples. The sets M , �1P , �1Q (thick solid line), T�2.M/ (dash line), T�1.T�2.M//

(hair line), and T�1C�2 .M/ (dotted line) are represented in Figs. 12.5–12.7.
Figure 12.5 shows an example such that only the geometric assumption (A3) of

Theorem 12.1 is violated: as the set M has a triangle excision at the right, the set
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Fig. 12.5 Example 1.
Assumption (A3) of
Theorem 12.1 is violated; 1 is
the boundary of the set M ,
2 is the boundary of the set
T�2 .M /, 3 is the boundary of
the set T�1 .T�2 .M //, 4 is the
boundary of the set
T�1C�2 .M /

Fig. 12.6 Example 2.
Assumption (A4) of
Theorem 12.1 is violated; 1 is
the boundary of the set M ,
2 is the boundary of the set
T�2 .M /, 3 is the boundary of
the set T�1 .T�2 .M //, 4 is the
boundary of the set
T�1C�2 .M /

˘M .x; �/ is not connected for some points x (here, � D .�1; 0/T). The difference
between the boundaries of the sets T�1.T�2.M// and T�1C�2.M/ takes place in its
middle part at the right.

The example in Fig. 12.6 is found in such a way that assumption (A4) concerning
the connectedness of the set T�2.M/ is violated. The set P is a segment with the
slope 45ı. Each of the sets T�1.T�2.M// and T�1C�2.M/ consists of two disjoint
parts. The underparts coincide (the triangle); the upsides are different.

Figure 12.7 gives an example such that the inequality ı�.�1 C �2/ < ı�.�2/

holds for � D .�1; 0/T, i.e., assumption (A5) is violated. The sets T�1.T�2.M//

and T�1C�2.M/ are different by small triangle in its upper part at the right.
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Fig. 12.7 Example 3.
Assumption (A5) of
Theorem 12.1 is violated:
ı�.�1 C �2/ < ı�.�2/; 1 is the
boundary of the set M , 2 is
the boundary of the set
T�2 .M /, 3 is the boundary of
the set T�1 .T�2 .M //, 4 is the
boundary of the set
T�1C�2 .M /
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Appendix

Let us consider a connection between the question investigated in the present work
and the well-known Hopf formula (Alvarez et al. 1999; Bardi and Evans 1984; Hopf
1965).

1) For an arbitrary proper (i.e., not identically equal to C1) function g W Rn !
.�1; C1�, we define the Legendre transform

g�.s/ D sup
x2Rn

Œhx; si � g.x/�; s 2 R
n:

By co g denote the convex hull of the function g. Properties of the function
g� (Rockafellar 1970, Chap. 3, §16; Polovinkin and Balashov 2004) imply that if
the proper function co g is continuous in R

n, then

.co g/� D g�: (12.36)

The support function �.�; A/ of a compact set A � R
n is connected with the

indicator function
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A.x/ D
�

0; x 2 A;

C1; x 62 A

of the set A by the relation

�.�; A/ D 
�
A.�/: (12.37)

2) The Hopf formula

w.t; x/ WD sup
s2Rn

Œhx; si�'�.s/C.# � t /H.s/�; s 2 Rn; x 2 Rn; t � # (12.38)

represents the generalized (viscosity (Bardi and Capuzzo-Dolcetta 1997) or min-
imax (Subbotin 1991, 1995)) continuous solution of the Cauchy problem for the
Hamilton–Jacobi equation

wt .t; x/ C H.wx.t; x// D 0; t 2 .0; #/; x 2 R
nI

w.#; x/ D '.x/; x 2 R
n;

(12.39)

with convex continuous terminal function ' (Bardi and Evans 1984).

3) Set

H.s/ D max
q2Q

hq; si C min
p2P

hp; si; '.s/ D 
M .s/;

where M is a convex compact set. Consider the function w defined formally by the
Hopf formula (12.38) for these data.

Let us show that

T#�t .M/ D fx 2 R
n W w.t; x/ � 0g: (12.40)

As a preliminary, for the convex sets A and B , we establish the relation

�. � ; A
�� B/ D co

�
�. � ; A/ � �. � ; B/

�
: (12.41)

We use the equality

A
�� B D

\

b2B

.A � b/:

It is known that the support function for the intersection of an arbitrary collection
of compact convex sets coincides (Rockafellar 1970) with the convex hull of
the function that is the minimum of support functions for the sets used in the
intersection. In our case,
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min
b2B

�.s; A � b/ D �.s; A/ C min
b2B

h�b; si D �.s; A/ � �.s; B/:

Consequently, (12.41) holds.
Applying (12.41), for the convex set M and � D # � t , we get

�.s; T� .M// D co h� .s/; (12.42)

where

h� .s/ WD �.s; M/ C �.s; ��P / � �.s; �Q/ D �.s; M/ � �H.s/: (12.43)

The compactness of the sets P and Q implies that the function co h� is
continuous. Using (12.36) and (12.42), we get

h�
� .x/ D .co h� /�.x/ D sup

s2Rn

Œhx; si � .co h� /.s/� D sup
s2Rn

Œhx; si � �.s; T� .M//�:

(12.44)
On the other hand, by (12.43) and (12.37), we calculate

h�
� .x/ D sup

s2Rn

Œhx; si � h� .s/� D sup
s2Rn

Œhx; si � 
�
M .s/ C �H.s/�: (12.45)

Since

T#�t .M/ D fx 2 R
n W sup

s2Rn

Œhx; si � �.s; T#�t .M//� � 0g;

applying (12.45), we write

T#�t .M/ D fx 2 R
n W h�

� .x/ � 0g :

Comparing (12.38), (12.44), and (12.45), we get (12.40).

4) Thus, if the compact set M is convex, then

W0.t/ D T#�t .M/ D fx 2 R
n W w.t; x/ � 0g:

Now, in the case of a convex set M , we have two variants of useful description
of the set W0.t/, whence the guidance problem of the first player to the set M at
the fixed instant # is solvable, namely, by the Pshenichnyi formula and by the Hopf
formula. The Pshenichnyi formula deals with sets, while the Hopf formula uses
functions.

In the paper, for the problems in the plane, we obtain sufficient conditions to
describe the set W0.t/ by the Pshenichnyi formula for a non-convex set M . The
Hopf formula does not work in the non-convex case.
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