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Abstract A number of zero-sum differential games with fixed termination
instant are given, in which a level set of the value function has one or more
time sections that are almost degenerated (have no interior). Presence of
such a peculiarity make very high demands on the accuracy of computa-
tional algorithms for constructing value function. Analysis and causes of
these degeneration situations are important during study of applied pursuit
problems.
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1. Introduction

During investigating zero-sum differential games, the main topic is constructing and
studying the value function of the game. One of the traditional approaches to value
function construction is to solve the corresponding Hamilton–Jacobi–Bellman–Isa-
acs partial differential equation. Another approach is based on the representation
of the value function as a collection of its level sets (Lebesgue sets). These sets are
built by means of a geometric method.

This representation is the most intuitive when the phase vector of the game
is two-dimensional or when the game can be reduced to such a situation. In this
case, any level set is located in a three-dimensional space time × two-dimensional
phase space and can be effectively constructed and visualized to graphic study of
its structure and peculiarities. The result of constructions is often a collection of
polygons that approximate its time sections (t-sections) on some time grid.

A very important thing both from theoretic and numerical points of view is loss
of interior by t-sections of a level set at some instant. Further its evolution (in the
backward time) can lead to complete degeneration of the set (its t-sections become
empty), or can bring back the interior. The last case corresponds to the situation
when we say that the level set has a narrow throat.

Earlier, the authors have investigated appearance of narrow throats in linear
differential game with fixed termination instant and terminal convex payoff func-
tion (Kumkov et al., 2005). That game appears during study an interception prob-
lem of one weak-maneuvering object by another one. This paper contains a number
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of examples of another games with convex payoff function, in which there are nar-
row throats. Also, we consider games having non-convex payoff. They arise from a
pursuit game with two pursuers and one evader. The study is made numerically by
algorithms and programs worked out by the authors.

2. Games with Convex Payoff Function

2.1. Problem Formulation

Let us consider a zero-sum linear differential game (Krasovskii and Subbotin, 1974;
Krasovskii and Subbotin, 1988):

ż = A(t)z +B(t)u+ C(t)v,
t ∈ [t0;T ], z ∈ Rn, u ∈ P ⊂ Rp, v ∈ Q ⊂ Rq,
ϕ
(
zi(T ), zj(T )

)
→ min

u
max

v
.

(1)

The first player governs the control u and minimizes the payoff ϕ; the second player
choosing its control v maximizes the payoff. The sets P and Q that constrain the
players’ controls are convex compacta in their spaces. The payoff function ϕ depends
on values of two components of the phase vector at the termination instant and is
convex.

It is necessary to construct level sets of the value function and study them from
the point of view of narrow throat presence.

2.2. Equivalent Differential Game

A standard approach to study linear differential games with fixed termination in-
stants and payoff function depending on a part of phase coordinates at the termina-
tion instant assumes a passage to a new phase vector; see, for example, (Krasovskii
and Subbotin, 1974; Krasovskii and Subbotin, 1988). These new variables are re-
garded as the values of the target components forecasted to the termination in-
stant under zero players’ controls. Often they are called zero effort miss coordi-
nates (Shima and Shinar, 2002; Shinar and Shima, 2002). In our case, we pass to
new coordinates x1 and x2, where x1(t) is the value of the component zi forecasted
from the current instant t to the termination instant T , and x2 is the forecasted
value of the component zj .

To obtain constructively the forecasted values, one uses a matrix combined of
two rows of the fundamental Cauchy matrix X(T, t) for the system ż = A(t)z. These
rows correspond to the target components of the phase vector. In our case, we use
the ith and jth rows of the Cauchy matrix. The change of variables is described
by the formula x(t) = Xi,j(T, t)z(t). (The subindices i, j of the matrix X denote
taking the corresponding rows of the fundamental Cauchy matrix.)

The equivalent game has the following form:

ẋ = D(t)u+ E(t)v,
t ∈ [t0;T ], x ∈ R2, u ∈ P, v ∈ Q, ϕ

(
x1(T ), x2(T )

)
,

D(t) = Xi,j(T, t)B(t), E(t) = Xi,j(T, t)E(t).
(2)

Further to analyze the evolution in time of the time sections of the level sets of
the value function, it is useful to involve the sets P(t) = D(t)P ,Q(t) = E(t)Q, which
are called vectograms of the players at the instant t. The sense of the vectograms
is the collection of velocities that can be given to the system by the players at the
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corresponding time instant. If one has that Q(t) ⊂ P(t), then it can be said that
at the instant t the first player has (dynamic) advantage. In the case of opposite
inclusion, we say about advantage of the second player.

2.3. Numerical Construction of Level Sets

Fix a value c and describe construction of an approximation of the level set Wc of
the value function V of game (2). The set will correspond to the chosen constant c.

For a numerical construction, at first, let fix a time grid {tj}, t0 < t1 < . . . <
tN = T . The constructions are made in the backward time from the termination
instant T . Let at some instant tj+1 we have an approximation Wc(tj+1) of the
t-section Wc(tj+1) of the level set Wc. Then the approximation Wc(tj) of the t-
section Wc(tj) is described by the following formula (Pschenichnyi and Sagaidak,
1970):

Wc(tj) =
(
Wc(tj+1) + (−∆j)D(tj)P

)
∗− ∆jE(t)Q. (3)

Here, ∆j = tj+1−tj ; D(tj) and E(tj) are the matrices from dynamics (2) computed
at the instant tj ; P and Q are the sets constraining the controls of the first and
second players. The sign “+” denotes the operation of algebraic sum (Minkowski
sum), and “ ∗−” denotes the geometric difference (Minkowski difference).

The initial set Wc(T ) for the procedure is taken as a convex polygon Mc close
in the Hausdorff metrics to the convex level set Mc =

{
(x1, x2) : ϕ(x1, x2) ≤ c

}
of

the payoff function. Convexity of the set Mc is due to the convexity of the payoff
function.

It is known that in linear differential games with fixed termination instant,
convexity of the target set provides convexity of all t-sections Wc(tj) of the corre-
sponding solvability set (the maximal stable bridge). Therefore, in procedure (3) we
can apply algorithms for processing convex sets. In iteration procedures suggested
by one of the authors (Isakova et al., 1984; Kumkov et al., 2005), convex sets in
the plane are described by their support functions. (There is a one-to-one corre-
spondence between a convex compact non-empty set S and its support function
ρ(l;S) = max

{
〈l, s〉 : s ∈ S

}
, which is positively-homogeneous; here, 〈·, ·〉 denotes a

dot product.) With that, to construct the support function of Minkowski sum of two
sets we should just construct the sum of the support functions of the summands. To
obtain the support function of Minkowski difference of two sets, it is necessary to
build convex hull of difference of support functions of the initial sets. Also there is
a very helpful fact that the support function of a convex polygon is piecewise-linear
with areas of linearity in the cones between outer normals to its neighbor edges.
Due to all these properties, it is possible to suggest effective procedures for addition
of sets, subtraction, and convex hull construction.

During the backward constructions, the current section Wc(tj+1) is summed
with the dynamic capabilities (−∆j)D(tj)P = (−∆j)P(tj) of the first player and
further subtracted by dynamic capabilities ∆jE(tj)Q = ∆jQ(tj) of the second
player. Thus, the change of the t-section is connected to the correlation of the
players’ vectograms. If the first player’s vectogram is “greater” than the vectogram
of the second one (that is, if the first player has advantage), then the t-section
grows in the backward time. In the opposite situation when the second player has
advantage, vice versa, the section contracts in the backward time. If neither P(t) ⊂
Q(t), nor Q(t) ⊂ P(t), then the first player has advantage in some directions and
disadvantage in others. Studying the situation of advantage of one or other player
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allows to estimate qualitatively the evolution of the level set in time without its
exact construction.

2.4. Examples

One-to-One Interception Problem. In the works (Shinar et al., 1984; Shinar
and Zarkh, 1996; Melikyan and Shinar, 2000), a three-dimensional problem of in-
terception in near space or upper atmosphere is considered. The pursuer P is an
intercept-missile; the evader E is a weak maneuverable target (for example, another
missile or a large aircraft). The geometry of the interception is drawn in Fig. 1. The
three-dimensional problem reduces naturally to a two-dimensional one. The longi-
tudinal velocities of the objects are rather large, and the approach time is small.
Thus, the control accelerations aP and aE that are orthogonal to the current veloc-
ity of the corresponding object cannot turn significantly the velocity vectors. Due
to this, the longitudinal motion of the objects can be considered as uniform. Also,
the minimal approach distance, which is the natural payoff in this game, can be
changed by the lateral distance at the instant of nominal longitudinal passage of
the objects. This instant is fixed as the termination one.

The three-dimensional geometric coordinates can be introduced as it is shown in
Fig. 1. The origin O is put at the position of the pursuer P . The axis OX coincides
with the nominal line-of-sight. The axis OY is orthogonal to OX and is located
in the plane defined by the vectors of the nominal velocities of the objects. The
axis OZ is orthogonal to OX and OY .

After excluding the longitudinal motion along the axis OX from consideration,
we pass to a two-dimensional problem of lateral motion in the plane OY Z. The
control of the evader defines its acceleration directly; the pursuer has a more com-
plicated dynamics. Its control affects the acceleration through a link of the first
order:

r̈P = F,

Ḟ = (u− F )/lP ,
r̈E = v,

t ∈ [0;T ], rP , rE ∈ R2, u ∈ P, v ∈ Q,
ϕ
(
x(T ), y(T )

)
=
∥∥rP (T )− rE(T )

∥∥. (4)

Here, rP and rE are the radius-vectors of the positions of the pursuer and evader in
the plane OY Z; lP is the time constant that describes the inertiality of servomech-
anisms transferring the control command signal u to the acceleration F ; v is the

Figure1. The geometry of the three-dimensional interception. The actual realizations of
the velocity vectors VP (t) and VE(t) are close to the nominal values (VP )col and (VE)col
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evader’s control; T is the termination instant coinciding with the instant of longitu-
dinal passage of objects along the nominal motions. The sets P and Q constraining
the controls of the players are ellipses. These ellipses are obtained after projection of
the original round vectograms on accelerations (that are orthogonal to the nominal
velocities (VP )col and (VE)col) into the plane OY Z. The parameters of the ellipse
(the semiaxes) are defined by the maximal acceleration of the corresponding object
(aP or aE) and by the angle between the vector of its velocity and the line-of-sight
((χP )col or (χE)col).

To pass to a standard game with the payoff depending on two components of
the phase vector, we use the following change of variables:

z1 = (rP )Y − (rE)Y , z2 = (rE)Z − (rE)Z ,
z3 = (ṙP )Y , z4 = (ṙE)Y ,
z5 = (ṙP )Z , z6 = (ṙE)Z ,
z7 = (r̈P )Y , z8 = (r̈P )Z .

(5)

In this case, the payoff function (which is the lateral miss) depends on the values
of z1 and z2 at the instant T :

ϕ
(
z1(T ), z2(T )

)
=
√
z21(T ) + z22(T ).

Proceeding to a two-dimensional equivalent game, we obtain the dynamics

ẋ = D(t)u+ E(t)v,
t ∈ [0;T ], x ∈ R2, u ∈ P, v ∈ Q,
ϕ
(
x(T )

)
=
∥∥x(T )

∥∥ =
√
x21(T ) + x22(T ),

where
D(t) = ζ(t) · I2, ζ(t) = (T − t) + lP e

−(T−t)/lP − lP ,
E(t) = η(t) · I2, η(t) = −(T − t),

(6)

and I2 is a unit 2× 2 matrix. The sets P and Q are

u ∈ P =

{
u : u′

[
1/ cos2(χP )col 0

0 1

]
u ≤ a2P

}
,

v ∈ Q =

{
v : v′

[
1/ cos2(χE)col 0

0 1

]
v ≤ a2E

}
.

Example 1. Below, we give the results (Kumkov et al., 2005) of numerical study
of problem (4). The following parameters have been used: lP = 1.0,

P =

{
u ∈ R2 :

u21
0.672

+
u22

1.002
≤ 1.302

}
, Q =

{
v ∈ R2 :

v21
0.712

+
v22

1.002
≤ 1

}
.

Using notations of the original formulation, we have

|VE |
|VP |

= 1.054,
aP
aE

= 1.3, cosχP = 0.67, cosχE = 0.71, lP = 1.
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Figure2. Example 1. A general view of the level set of the value function with a narrow
throat

Figure3. A large view of the narrow throat

In Fig. 2, one can see a general view of the level set Wc computed for c = 2.391,
which is a bit greater than the critical one (that is, to the one corresponding to
the level set, which t-section has no interior at some instant). The main interesting
properties of this tube is that it has the narrow throat and that the direction of
elongation of t-sections changes near the throat. A large view of the narrow throat
is given in Fig. 3. Such a complicated shape of the throat is conditioned by the
process of passage of the advantage from the second player to the first one in this
time interval.
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This example was computed in the time interval τ ∈ [0; 7]. Here and below,
τ = T − t denotes the backward time. The time step ∆ equals 0.01. The level sets
of the payoff function (that are rounds) and the ellipses of the constraints for the
players’ controls are approximated by 100-gons.

Generalized L.S.Pontryagin’s Test Example. In work (Pontryagin, 1964), the
following differential game

ẍ + αẋ = u, ÿ + βẏ = v. (7)

was taken as an illustration to the theoretic results. Here, α and β are some positive
constants; x, y ∈ Rn; ‖u‖ ≤ µ, ‖v‖ ≤ ν. The termination of the game happens when
the coordinates x, y of the objects coincide. The first player tries to minimize the
duration of the game, the second one hinders this. Later, differential games with dy-
namics (7) and termination conditions depending only on the geometric coordinates
of the objects were called in Russian mathematical literature as “L.S.Pontryagin’s
test example”.

Another well-known example with the dynamics

ẍ = u, ẏ = v (8)

and constraints for the player’s controls ‖u‖ ≤ µ, ‖v‖ ≤ ν was called by L.S.Pon-
tryagin (Pontryagin and Mischenko, 1969) as game “boy and crocodile”. The first
player (the “crocodile”) controls its acceleration and tries to catch the second one
(the “boy”) to some neighborhood. The second player is more maneuverable because
it controls its velocity.

Game (8) is a particular case of the game “isotropic rockets” (Isaacs, 1965),
which dynamics is

ẍ + kẋ = u, ẏ = v. (9)

In works (Pontryagin, 1972; Mezentsev, 1972; Chernous’ko and Melikyan, 1978;
Nikol’skii, 1984; Grigorenko, 1990; Chikrii, 1997), problems with dynamics more
complicated than (7), (8), (9) were studied:

x(k) + ak−1x
(k−1) + · · ·+ a1ẋ + a0x = u, u ∈ P, (10)

y(s) + bs−1y
(s−1) + · · ·+ b1ẏ + b0y = v, v ∈ Q. (11)

Games having dynamics (10), (11) and termination conditions depending only
on the geometric coordinates x, y, are often called “generalized L.S.Pontryagin’s
test example”. In this paper, let us assume that the payoff function is defined by
the formula ϕ

(
x(T ),y(T )

)
=
∥∥x(T )− y(T )

∥∥. Also, let us count that x, y ∈ R2.
A variable change similar to (5)

z1 = x1 − y1, z2 = x2 − y2,
z3 = ẋ1, z4 = ẋ2,
. . . . . . . . . . . . . . . . . . . . . . . .

z2k−1 = x
(k−1)
1 , z2k = x

(k−1)
2 ,

z2k+1 = ẏ1, z2k+2 = ẏ2,
. . . . . . . . . . . . . . . . . . . . . . . .

z2(k+s)−3 = y
(s−1)
1 , z2(k+s)−2 = y

(s−1)
2 ,
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transforms system (10), (11) to standard form (1):

ż = Az +Bu+ Cv, z ∈ R2(k+s)−2, u ∈ P, v ∈ Q,

with the matrices A, B, and C that do not depend on the time. The payoff function
is terminal and convex: ϕ

(
z1(T ), z2(T )

)
=
√
z21(T ) + z22(T ).

There can be other variants of the change, which are more convenient in particu-
lar situations, but all of them assume introduction of relative geometric coordinates
(z1, z2 in our case).

When some experience had been accumulated in numerical study of level sets
with narrow throats in the case of problem from works (Shinar et al., 1984; Shinar
and Zarkh, 1996; Melikyan and Shinar, 2000), the author decided to construct
another examples with narrow throats in the framework of games with the dynamics
of the generalized L.S.Pontryagin’s test example.

The most interesting results of constructing level sets of the value function for the
generalized L.S.Pontryagin’s test example are when at least one of the sets P and Q
is not a round (since the level sets of the payoff, which is distance between objects
at the termination instant, are rounds, we need something that destroys uniformity
of the sets). So, let us take the sets P and Q as ellipses with center at the origin
and main axes parallel to the coordinate axes. Then the players’ vectograms P(t)
and Q(t) for all instants are ellipses homothetic to the ellipses P and Q respectively.

As it becomes clear from the previous example, a narrow throat appears when
there is a change of advantage of players. Namely, at the initial period of the back-
ward time the second player should be stronger to contract t-section of level sets.
Then the advantage should pass to the first player to allow him to expand the sec-
tions. The easiest way to obtain such a change of advantage is to assign an oscillating
dynamics to one or both players.

The most illustrative way to study the passages of the advantage is to investigate
tubes of vectograms, that is the sets P =

{
(t, u) : u ∈ P(t)

}
,Q =

{
(t, v) : v ∈ Q(t)

}
.

If one of the tubes includes the other in some period of time, then in this period
the corresponding player has complete advantage.

Example 2. The dynamics is the following:

ẍ + 2 ẋ = u,
ÿ + 0.2 ẏ + y = v, x,y ∈ R2, u ∈ P, v ∈ Q.

Here, the first player controls an inertial point in the plane. The second object
is a two-dimensional oscillator. Both objects have a friction proportional to their
velocities. The controls are constrained by the ellipses

P =

{
u ∈ R2 :

u21
0.82

+
u22

0.42
≤ 1

}
, Q =

{
v ∈ R2 :

v21
1.52

+
v22

1.052
≤ 1

}
.

The tubes of vectograms appearing in this example are shown in Fig. 4a. Since
the dynamics of the second player describes an oscillating system, the advantage
passes from one player to another several times. At the beginning of the backward
time, the second player has the advantage, but later after a number of passes, the
advantage comes to the first player. An enlarged fragment of the tubes can be seen
in Fig. 4 b.
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a)

b)

Figure4. Example 2. Two views of the vectogram tubes. Number 1 denotes the tube of
the first player (the set P), number 2 corresponds to the second player’s vectogram tube
(the set Q)

Fig. 5 shows a level set Wc for c = 2.45098. This level set breaks (that is, is finite
in time and has empty t-sections from some instant of the backward time). Before
the break, orientation of elongation of the t-sections of Wc(t) changes. Namely,
before the last contraction of the tube, the sections are elongated vertically, and
after it the elongation is horizontal. As in the example in the previous subsection,
this change is due to delicate interaction of the vectogram tubes P(t) and Q(t) in
the time interval of the narrow throat.

If to increase the value of c, the length in time of the level sets grows jump-like.
The level set for c = 2.45100 can be seen in Fig. 6. In Fig. 7, its enlarged fragment is
given, which is near the narrow throat at τ = 11.95. This value of c can be regarded
as critical: for c < 2.45100 level sets break, for c ≥ 2.45100 they are infinite in time.
More exact reconstruction of the level sets corresponding to values c close to the
critical one needs a very accurate computations.

This example was computed in the time interval τ ∈ [0; 20]. The time step
is ∆ = 0.05. The round level sets Mc of the payoff function and the ellipses P
and Q were approximated by 100-gons.
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Figure5. Example 2. A broken level set close to the critical one, c = 2.45098

Figure6. Example 2. A general view of the level set with a narrow throat, c = 2.45100

Figure7. A large view of the narrow throat
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Example 3. To get an example with a level set of the value function with more than
one narrow throat, we should choose players’ dynamics to provide multiple passage
of advantage in such a way that each of players has it for a quite long time (to allow
the second player contract t-section almost to nothing). The most reasonable way
to get such a situation is to put an oscillating dynamics to both players.

Let the dynamics be the following:

ẍ− 0.025 ẋ + 1.3 x = u,
ÿ + y = v, x,y ∈ R2, u ∈ P, v ∈ Q.

Constraints for the players’ controls are equal ellipses:

P = Q =

{
v ∈ R2 :

v21
1.52

+
v22

1.052
≤ 1

}
.

Since the sets P and Q constraining the players’ controls are equal, then at any
instant the players’ vectograms P(t) and Q(t) are homothetic.

In Figs. 8a and 8b, the tubes of players’ vectograms are shown. The difference
of these figures is that in Fig. 8b the second player’s tube is transparent.

Fig. 9 contains a general view of the level set Wc for c = 1.2. In Fig. 10, there is
an enlarged fragment of the set near the first (in the backward time) narrow throat.
The instants of the backward time of the most thin parts of the set are τ1 = 5.65
and τ2 = 8.50.

The level set has been computed in the time interval τ ∈ [0; 16]. The time
step is ∆ = 0.05. Near the narrow throats, the time step was ten times smaller:
∆′ = 0.005. Again, the approximating polygons for the constraints for the controls
and for the payoff level set have 100 vertices.

Note again that despite the players’ vectograms are homothetic, the t-sections of
the level set and the vectograms are not. Absence of this homothety leads to com-
plicated shape of the t-sections of the level set of the value function and, therefore,
complicated shape of narrow throats.

Example 4. The dynamics of this example is described by the relations

ẍ + 0.025 ẋ + 1.2 x = u,

ÿ + 0.01 ẏ + 0.85 y = v, x,y ∈ R2, u ∈ P, v ∈ Q.

The constraints are taken as follows:

P =

{
u ∈ R2 :

u21
2.02

+
u22

1.32
≤ 1

}
, Q =

{
v ∈ R2 :

v21
1.52

+
v22

1.052
≤ 1

}
.

The vectograms appearing in this game are given in Fig. 11. The level set Wc

corresponding to c = 0.397 is shown in Fig. 12a. One can see three narrow throats.
An enlarged view of the middle one (which is the narrowest among them) can be
seen in Fig. 12b.

3. Games with Non-Convex Payoff Function

In the previous section, we demonstrate examples where number of narrow throats is
more than one. One can think that examples of this kind are artificial and, therefore,
rare. During last few years, the authors investigate differential games arising from
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a)

b)

Figure8. Example 3. A general view of the vectogram tubes. Number 1 denotes the tube
of the first player (the set P), number 2 corresponds to the second player’s vectogram tube
(the set Q). In subfigure b), the tube of the second player is transparent
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Figure9. Example 3. A general view of the level set with two narrow throats, c = 1.2

Figure10. An enlarged view of the first (in the backward time) narrow throat
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consideration of pursuit problems in near space or in upper atmosphere. Descriptions
of dynamics of the objects involved in the pursuit were taken from works by J. Shinar
and his pupils. Games of this type also bring examples having level sets with, at
least, two narrow throats.

3.1. Problem Formulation

Consider a game

żP1 = AP1(t)zP1 +BP1(t)u1,
żP2 = AP2(t)zP2 +BP2(t)u2,
żE = AE(t)zE +BE(t)v,
zP1
∈ Rn1 , zP2

∈ Rn2 , zE ∈ Rm, |ui| ≤ µi, |v| ≤ ν

(12)

with three objects moving in a straight line. The objects P1 and P2 described by the
phase vectors zP1

and zP2
are the pursuers. The object E with the phase vector zE

is the evader. The first components zP1 , zP2 , and zE of the vectors zP1 , zP2 , and zE
respectively are the one-dimensional geometric coordinates of the objects.

Two instants T1 and T2 are prescribed. At the instant T1, the pursuer P1 ter-
minates its pursuit, and the distance between him and the evader E is measured:
r1(T1) = |zP1

(T1)−zE(T1)
∣∣. Similarly, the second pursuer P2 stops to pursue at the

instant T2, when the distance r2(T2) = |zP2
(T2)− zE(T2)

∣∣ is measured.

The payoff is the minimum of these distances: ϕ = min
{
r1(T1), r2(T2)

}
. The

first player that consists of the pursuers and governs the controls u1, u2 minimizes
the value of payoff ϕ. The second player, which is identified with the evader E,
maximizes the payoff. All controls are scalar and have bounded absolute value.

Figure11. Example 4. A large view of the vectogram tubes. Number 1 denotes the tube
of the first player (the set P), number 2 corresponds to the second player’s vectogram tube
(the set Q)
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a)

b)

Figure12. Example 4. a) A general view of a level set with three narrow throats, c = 0.397;
b) An enlarged view of the narrowest of the throats (the middle one)

3.2. Equivalent Differential Game

Let us pass from system (12) with separated objects to two relative dynamics. To
do this, introduce new phase vectors y(1) ∈ Rn1+nE−1 and y(2) ∈ Rn2+nE−1 such
that

y
(1)
1 = zP1

− zE , y
(2)
1 = zP2

− zE .

The rest components y
(1)
i , i = 2, . . . , n1 + nE − 1, of the vector y(1) equal compo-

nents of the vectors zP1
and zE other than zP1

and zE . In the same way, the rest

components y
(2)
i , i = 2, . . . , n2 + nE − 1, of the vector y(2) are the components of

the vectors zP2
and zE other than zP2

and zE . Due to linearity of dynamics (12),
the new dynamics consisting of the two relative ones, is linear too:

ẏ(1) = A1(t)y(1) + B1(t)u1 + C1(t)v, t ∈ [t0;T1],
ẏ(2) = A2(t)y(2) + B2(t)u2 + C2(t)v, t ∈ [t0;T2],
y(1) ∈ Rn1+nE−1, y(2) ∈ Rn2+nE−1,

|ui| ≤ µi, |v| ≤ ν, ϕ = min
(∣∣y(1)1 (T1)

∣∣, ∣∣y(2)1 (T2)
∣∣).

(13)

The payoff function depends now on the first components of the phase vectors of the
individual games. An individual game of the pursuer Pi against the evader E is the
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game with the dynamics of the vector y(i) and the payoff
∣∣y(i)1 (Ti)

∣∣. The dynamics
of the individual games are linked only through the control of the evader.

In each individual game, let us pass to the forecasted geometric coordinates in
the same way as it is done from game (1) to (2). In the game of the pursuer Pi,

i = 1, 2, against the evader E, the passage is provided by the matrix X
(i)
1 (Ti, t)

constructed from the first row of the fundamental Cauchy matrix X(i)(Ti, t) that
corresponds to the matrix Ai. The variable changes are defined by the formulas

x1(t) = X
(1)
1 (T1, t)y

(1), x2(t) = X
(2)
1 (T2, t)y

(2). Note that x1(T1) = y
(1)
1 (T1) and

x2(T2) = y
(2)
1 (T2).

Dynamics of the individual games is the following:

ẋ1 = d1(t)u1 + e1(t)v, t ∈ [t0;T1],
ẋ2 = d2(t)u2 + e2(t)v, t ∈ [t0;T2],
x1, x2 ∈ R, |ui| ≤ µi, |v| ≤ ν.

(14)

Here, di(t) and ei(t) are scalar functions:

di(t) = X
(i)
1 (Ti, t)Bi(t), ei(t) = X

(i)
1 (Ti, t)Ci(t), i = 1, 2.

In the joint game of the pursuers against the evader, the payoff function is

ϕ = min
{∣∣x1(T1)

∣∣, ∣∣x2(T2)
∣∣}.

3.3. Numerical Construction of Level Sets

Numerical constructions for the taken formulation are more complicated due to the
following circumstances.

At first, for problem (2), any level set of the payoff function is plunged into the
phase space at the instant T . But for the new formulation, level sets of the payoff
can consist of two parts at two different (generally speaking) instants T1 and T2. At
second, level sets of the payoff in problem (2) compact. But now the components of

level sets corresponding to a constant c are infinite strips M(1)
c = {x : |x1| ≤ c} at

the instant T1 (that is an infinite strip along the axis x2) andM(2)
c = {x : |x2| ≤ c}

at the instant T2 (an infinite strip along the axis x1). Presentation of infinite objects
in a computational program is a quite difficult problem. At third, a realization of
procedure (3) for problem (2) is oriented on work with convex sets. In problem (14),
we need to proceed non-convex time sections.

An algorithm taking into account these considerations and also based on proce-
dure (3) can be formulated as follows.

For definiteness, let us assume that T2 ≤ T1. The opposite case is considered in
the same way.

For numerical constructions, fix a time grid in the interval [t0;T1]. It should

include the instant T2. At the instant T1, the set M(1)
c is taken as the start for

the procedure (3). In the case of numerical constructions, the infinite strip is cut
becoming a rectangle with a quite large size along the axis x2. Then, in the inter-
val (T2, T1], the procedure (3) is applied with the set D(t)P taken as a segment
[−|d1(t)|µ1; |d1(t)|µ1] × {0} (by this, we ignore the action of the second pursuer).
When the construction are made up to the instant T2, we unite the obtained t-

section Wc(T2 + 0) with the set M(2)
c (also cut to a finite size in the case of
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numerical constructions). Thus, we get the set Wc(T2), which is the start value
for the further iterations. In the time interval [t0;T2], the rectangle vectogram
[−|d1(t)|µ1; |d1(t)|µ1]×[−|d2(t)|µ2; |d2(t)|µ2] of the first player is taken; now, actions
of both players are involved. The vectogram of the second player (of the evader)
equals

[(
−|e1(t)|ν,−|e2(t)|ν

)
;
(
|e1(t)|ν, |e2(t)|ν

)]
for all time instants from the grid.

If T2 = T1 = T , then the start setMc at the instant T is union of the stripsM(1)
c

and M(2)
c (possibly, cut).

As it was mentioned above, the necessary realization of procedure (3) should be
able to process non-convex sets. Namely, we need operations of Minkowski sum and
difference, which first operand is not convex (the second one is convex because it
is computed as a convex vectogram multiplied by the time step). A helpful fact is
that both operations, sum and difference, can be fulfilled by one operation, namely,
sum. Indeed, it is true that

A ∗− B = (A′ −B)′.

Here, the prime denotes set complement. The authors worked out an algorithm
for construction Minkowski sum when the first operand is a union of a number of
simple-connected closed polygonal sets (possibly, non-convex), or is a complement to
such a polygon (in other words, is an infinite closed set with a number of polygonal
holes).

3.4. Variants of Servomechanism Dynamics

1. A First Order Link. In work (Le Ménec, 2011), a pursuit problem is formulated
that includes two pursuers and one evader. Each object has a three-dimensional
phase variable: one-dimensional coordinate, velocity, and acceleration. The acceler-
ation is affected by the control through a link of the first order:

ż1 = z2, ż2 = z3, ż3 = (u− z3)/l. (15)

Dynamics of the pursuer in problem (4) is similar, but now the geometric coordinate
is one-dimensional. As above, l is the time constant describing the inertiality of the
servomechanisms.

2. Damped Oscillating Control Contour. In work (Shinar et al., 2013), a game
is considered, in which one of the objects has a damped oscillating control contour:

ż1 = z2, ż2 = z3, ż3 = z4, ż4 = −ω2z3 − ζz4 + u. (16)

Here, ω is the natural frequency of the contour, ζ is the damping coefficient.

3. Tail/Canard Air Rudders. When considering an objects moving in the atmo-
sphere, it is important to take into account position of its rudders with respect to
the center of mass. A corresponding model is set forth in (Shima, 2005):

z̈ = a+ du, ȧ =
(
(1− d)u− a

)
/l. (17)

The parameter d is defined by the position of the rudder. A positive (negative)
value corresponds to the situation when the rudder is located in front of (behind)
the center of mass. The first situation is called canard control scheme, the second
one is called tail control scheme. The absolute value of d describes now far from the
center of mass the rudder is. The parameter l again is the time constant.
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4. Dual Tail/Canard Scheme. As a development of model (17), work (Shima
and Golan, 2006) suggests a dynamics of an objects, which has both canard and
tail rudders:

ż1 = z2, ż2 = z3 + dcuc + dtut, ż3 =
(
(1− dc)uc + (1− dt)ut − z3

)
/l. (18)

Here, the constant dc > 0 describes the capabilities of the canard rudder (then
index c means “canard” here), the constant dt < 0 corresponds to the tail rudder
(the index t means “tail”). The time constant l regarded to be common for inertiality
of both rudders.

In this model, one can see two scalar controls uc and ut (or one vector control u =
(uc, ut)

> taken from a rectangle). Therefore, formally this model does not belong
to class (12). But the procedures for construction level sets of the value function
suggested by the authors can be applied to such a dynamics with double scalar
control. The difference is that formula (3) includes now two summands connected
to two controls of the first player.

3.5. Examples

In this subsection, we assume that the evader has dynamics of type (15).

Example 5. Let both pursuers have the same dynamics of type (15). The param-
eters of the game are

µ1 = µ2 = 1.5, ν = 1.0, lP1 = lP2 = 1/0.25, lE = 1/1.0, T1 = T2 = 15.

The level set of the value function corresponding to c = 1.32 is shown in Fig. 13.
In similar problems studied in detail by the authors (Ganebny et al., 2012;

Kumkov et al., 2013), the advantage of a player in an individual game, can be
detected analytically by analyzing the parameters ηi = µi/ν and εi = lE/lPi . When
ηi > 1, ηiεi > 1, the ith pursuer has advantage over the evader. Vice versa, if ηi < 1,
ηiεi < 1, the advantage belongs to the evader. If the parameters do not obey one of
these conditions, then there is a situation of changing advantage of the ith pursuer
over the evader in time.

For the example, the data are such that both pursuers are weaker then the
evader at the beginning of the backward time (near the target set, which is located
in the plane t = T1 = T2). Due to this, at the beginning of the backward time, the

Figure13. Example 5. Narrow throats in a problem with three objects having dynam-
ics (15)
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Figure14. Example 6. A level set for example 2 with two narrow throats

t-sections start to contract. In Fig. 13, an instant can be distinguished when the
infinite strips (the rectangles elongated along the corresponding axes) degenerate
to a line due to this contraction and disappear. After this instant, the t-sections
consist of two finite disconnected parts that correspond to zones of joint capture.
If the position of the system is in such a zone, then the evader escaping from one
pursuer is captured (with the given miss) by the another one. These parts continue
to contract until an instant when the pursuers get the advantage. Further, the
contraction turns to expansion, and at some instant growing parts joins into one
simple-connected set that continue to grow infinitely.

Since the parameters of both pursuers coincide and the time lengths of both
individual games are equal, the dynamics of the coordinates x1 and x2 are the
same. Therefore, the evolution of t-sections is the same along both coordinate axes.
As it will be seen from the following examples, this is not true if the pursuers’
parameters or game lengths are different.

Example 6. Let both pursuers be equal again, but now they have dynamics (16)
with oscillating control contour. The parameters are the following:

µ1 = µ2 = 0.3, ν = 1.3, ωP1
= ωP2

= 0.5,

ζP1
= ζP2

= 0.0025, lE = 1.0, T = T1 = T2 = 30.

The level set of the value function corresponding to c = 1.6 can be seen in Fig. 14.

In this problem, due to fundamental difference of the pursuers’ and evader’s
dynamics, it is difficult to get analytically the conditions of advantage of one or
other player. Thus, the example is constructed on the base of the evolution of
the players’ vectograms obtained numerically. Presence of two narrow throats is
connected to repeat of a period such that at the beginning the advantage belongs
to the evader and at the end it comes to pursuers. The repeat is provided by the
oscillating type of the pursuers’ dynamics. More throats can be obtained by putting
to the evader an oscillating dynamics too.
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Figure15. Example 7. The level set W0.525 for the pursuers’ dynamics of type (18); the
pursuers have different parameters of the dynamics

Example 7. Consider now a pair of pursuers both having dynamics (18). Let some
dynamics parameters be different:

aP1,max = 1.05, aP2,max = 1.15, lP1
= lP2

= 1/0.18807,

dc,1 = dc,2 = 0.605, dt,1 = dt,2 = −0.5, α1 = 0.9, α2 = 0.8,

aE,max = 0.95, dE = 0.157980, lE = 1.0, T1 = 32, T2 = 29.

The value αi defines distribution of the control resource aPi,max of the ith pursuer
over the rudders:

|uc| ≤ α · aP,max, |ut| ≤ β · aP,max; α, β ≥ 0, α+ β = 1.

The level set Wc that correspond to c = 0.525 is given in Fig. 15. One can
see that due to difference of the pursuers’ dynamics the contraction of the set is
different along the axes x1 and x2: degeneration of the infinite strips happens at
different instants. Moreover, the finite parts remaining after degeneration of infinite
strips have sufficiently different sizes along the two coordinate axes.

4. Conclusion

A level set (Lebesgue set) of the value function corresponding to some value c can
be regarded as a solvability set of a game problem with the payoff equal to c. For
differential games with fixed termination instants, a level set of the value function
is a tube in the space time × phase space along the time axis. It is very important
to establish the law of evolution of time sections of the tubes in time. For example,
if a tube corresponding to some c has a small length in time, then it means that
the zone of guaranteed capture with the miss not greater than c is small too. If a
solvability set has a narrow throat, that is, a period of time where its t-sections are
close to degeneration (to loss of interior), then one should analyze accurately the
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possibility of practical application of the control law based on such a tube. In the
paper, it is shown that the presence of narrow throats is not rare both in model
differential games and practical pursuit problems.
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