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Abstract A well-known differential game in the theory of differential games is the
“homicidal chauffeur” problem which was introduced by Isaacs [7]. It is
a pursuit-evasion game. In the paper, a variant of this problem proposed
by Bernhard [3] is considered. The computation of level sets of the value
function in this variant becomes difficult since holes in the “victory
domains” of the pursuer can appear. Some results of the computation
of level sets of the value function are presented. An explanation of
the generation of holes is given, based on the analysis of families of
semipermeable curves.

1. INTRODUCTION

A differential game where an inertial object pursues a non-inertial
one is considered. The dynamics of the game are similar to those for the
classical [7, 4, 11] homicidal chauffeur game of R. Isaacs. The difference
is that the evader must apply a reduced speed (in order not to be heard
by the pursuer) when the distance between him and the pursuer becomes
less than a given value. The idea of such a modification was suggested in
[3]. The pursuer minimizes the time of capture and the evader maximizes
it. The game is over when the evader gets into a given neighborhood of
the state of the pursuer (capture neighborhood).



In [6], level sets of the value function for particular magnitudes of
parameters of the problem were computed using an algorithm based
on viability theory. The solution to the problem has a complicated
structure: holes in the solvability set (in the victory domain) of the
pursuer can arise, the evader being safe from the pursuer within these
holes.

The investigation of such complex structures of solutions is of great
interest for viability theory and the theory of differential games. In
the problem considered, the geometry of level sets of the value func-
tion differs from the one that was analyzed for other problems with the
homicidal chauffeur dynamics [7, 4, 11, 8, 15].

In this paper, the problem is studied using an algorithm proposed by
the authors for computing level sets of the value function. The algorithm
is based on the theory of differential games [9, 10]. The dependence of
the structure of the solution on the parameters of the problem is inves-
tigated. The computations are done in the plane because a change of
variables can reduce the dimension of the original problem to two [7].
The algorithm uses specific properties of the plane and is very accurate.
It allows one to explore some fine peculiarities of the solution. Addition-
ally, the analysis of families of so-called semipermeable curves is used to
explain the occurrence of holes.

2. STATEMENT OF THE PROBLEM

The dynamics of the game in reduced coordinates has the form [7, 6]:

ẋ1 = −
w(1)

R
x2 ϕ+ v1, ẋ2 =

w(1)

R
x1 ϕ+ v2 − w(1),

where |ϕ| ≤ 1 and v ∈ Q(x).
(1)

Here (x1, x2)
′ is the state vector which gives the relative position of the

evader E with respect to the pursuer P , and w(1) and R are constants
which define the pursuer’s velocity and the minimal radius of turn, re-
spectively. The control of player P is ϕ, and the control of the evader
E is v = (v1, v2)

′.
The vector v belongs to the circle Q(x) with center at the origin and

radius w(2)(x) = min {(x21 + x22)
1/2, s}we/s, where we is the maximal

value of the velocity of player E, and s is a fixed positive number. Thus
the radius of the constraint Q(x) on the control of player E is constant
and equal to we outside the circle of radius s with center the origin, but
the radius is proportional to |x | inside this circle.

The terminal setM is the rectangle {(x1, x2)∈ R2 : −3.5 ≤ x1 ≤ 3.5,
−0.2 ≤ x2 ≤ 0}. The objective of the control ϕ is to minimize the
time of attaining the terminal set M , but the objective of the control
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v = (v1, v2)
′ is to maximize this time. Therefore the payoff of the game

is the time of attaining the terminal set.
The statement of the problem was taken from [6]. In the classical

statement [7] of the problem, the terminal set (capture neighborhood)
is a circle. A circle can be used in the acoustic version too. However,
more interesting cases from the mathematical point of view arise when
the capture neighborhood is a rectangle with its horizontal side much
greater than its vertical side.

The game is treated in frames of formalization from [9, 10]. We are
interested in finding level sets W (T,M), T > 0. Each of them is the set
of all initial states x0 in the plane such that player P can guarantee the
transition of the state vector to the set M within time T .

3. THE ALGORITHM

Here the main idea of the algorithm for computing the level sets
W (T,M) of the value function is described.

Let ∆ be a time step of the backward procedure. Let the i-th level
set of the value function, namely W (i∆,M), be available. This is the
maximal set from where the pursuer P guarantees the termination of
the game within the time i∆. On the basis of this set, we compute the
set W ((i + 1)∆,M), consisting of all states from which player P guar-
antees the attainment of W (i∆,M) within time ∆. As a result of such
computations for i = 0, 1, 2, ..., we obtain the collection of embedded
sets W (∆,M)⊂W (2∆,M)⊂· · ·⊂W (i∆,M)⊂· · ·⊂W (T,M).

M�0
a

b

c

d

Fi

Fi+1 −

+
W ((i+ 1)∆,M)

Figure 1 Construction of the sets W (i∆,M)

This is a dynamic programming method. In the theory of differential
games, the fundamental idea of the backward construction of level sets
was considered in works of Isaacs, Fleming, Pontryagin, Krasovskii and
Pschenichnyi.
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The central part of our algorithm is the notion of a front. The front
Fi+1 contains all points on the boundary of the set W ((i+1)∆,M) with
the property that the minimal guaranteed time of attaining the previous
set W (i∆,M) is precisely ∆. The side of the front in the backward time
direction will be called negative, and the opposite side will be called
positive, as in Figure 1. The algorithm computes a new front Fi+1 using
the previous front Fi. For the first step of the backward procedure, F0

coincides with the usable part [7] Γ0 of the boundary of M. The barrier
lines are obtained via connection of the corresponding ends of the fronts.
In Figure 1, the lines ab and cd are barriers.

We explain briefly how the fronts are constructed. Using the notation
p(x) = (−x2, x1)

′ · w(1)/R and g = (0,−w(1))′, we rewrite the equations
(1) as ẋ = p(x)ϕ+ v+ g. In the computation, each front is stored as an
ordered collection of points, so fronts are polygonal lines. An apex of a
polygonal line is called a point of local convexity if the angle between the
positive sides of the adjoining links is less than π. An apex of a front is a
point of local concavity if the above angle is greater than π. A cone K of
outer (inner) normal vectors is assigned to each point of local convexity
(concavity). At the endpoints of the front, the cone K is defined in a
different way: one extreme ray of the cone is the outer normal vector
to the front link, and the other extreme ray of the cone is defined by
some special relations. For each fixed point x∗ ∈ Fi of local convexity
and any vector ℓ ∈ K(x∗), the extremal controls ϕ◦, v◦ take the values
ϕ◦ = argmin{ℓ′p(x∗)ϕ : |ϕ| ≤ 1} and v◦ = argmax{ℓ′v : v ∈ Q(x∗)}.
Similarly, for the points of local concavity, the extremal controls are
ϕ◦ = argmax{ℓ′p(x∗)ϕ : |ϕ| ≤ 1} and v◦ = argmin{ℓ′v : v ∈ Q(x∗)}.

The extremal control ϕ◦ of player P can switch its value from one
extreme value to another, not only at the apexes of the front, but also at
inner points of the front links. In the game considered, such a switching
occurs at not more than one inner point of each front link, due to the
linearity of the dynamics in x and ϕ. The points where such a switching
takes place will be called neutral. The collection of all neutral points is
included (with the preservation of ordering) in the collection of apexes
defining the front. Each neutral point divides the original link into two
parts that are also considered as links of the front.

Other additional division points on the front links may also be in-
troduced, which take into account the dependence of the constraint on
the control of player E on x. The cone K for a neutral or additional
point contains only the outer normal vector at the point. Further, the
optimal controls of the players are given by the above formulae for the
local convexity case.
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Using the extremal controls, one computes the extremal trajectory
x(σ) = x∗ − σ(p(x∗)ϕ

◦ + v◦ + g), σ ∈ (0,∆], in reverse time. If the
extremal controls are not unique at x∗, a bundle of extremal trajectories
emanating from the point x∗ is considered.

As x∗ ranges through Fi, the ends of the extremal trajectories at
σ = ∆ are used to form the next front Fi+1. One can divide Fi into
regular parts so that the extremal trajectories emanating from the points
of one part do not intersect for σ ∈ (0,∆]. Thus each regular part
generates a regular field of extremal trajectories. The ends of these
trajectories form an ordered collection of points. Being connected, these
points give a polygonal line, which is called the secondary arc. The
new front Fi+1 is obtained by processing the regular secondary arcs, the
processing being reduced to the intersection of secondary arcs.

We consider this procedure for the simple case shown in Figure 2.
Here the front Fi consists of two regular parts [z1 · · · zω] and [zω · · · zr].
Both parts are composed of local convexity points. The ends of the ex-
tremal trajectories computed at σ = ∆ give two secondary arcs, namely
[ξ1ξ2 · · · ξs] and [ξs+1 · · · ξm], as shown in the left half of the figure. The
control of player E can be chosen for each of the points ξs and ξs+1 so
that the trajectories of the system (1) cannot reach the front Fi within
time ∆. Therefore, the “swallow tail” ξsξαξs+1 is not included in the
front Fi+1 = [ξ1ξ2...ξα...ξm], which is drawn on the right hand side of
Figure 2.

a)
z1

Fi

zω

zr

ξ1

ξ2

ξα

ξs

ξs+1

ξm

b)

z1

zω

Fi Fi+1

zr

ξ1

ξ2

ξα

ξm

�M

-z

Figure 2 Construction of fronts



232 V.S. Patsko and V.L. Turova

Unfortunately, very often, it is not sufficient to intersect neighboring
secondary arcs only. In Figure 3, for example, the secondary arcs S1, S2

and S3 are computed sequentially, but the next front is obtained due to
the intersection of S1 and S3.

Fi

S1

S2

S3

Figure 3 Secondary arcs: complicated case of disposition

Thus the algorithm produces a collection of fronts. In the course
of computations, possible self-intersections of fronts and their collisions
with the barrier lines are processed. The details of the algorithm can be
found in [12, 13, 14].

4. SEMIPERMEABLE CURVES

In this section, the results of some analysis of families of semiperme-
able curves in differential games with homicidal chauffeur dynamics will
be given. Using these results, one can find the solvability sets of the
game of kind [7]. Since the set W (T,M) converges to the solvability set
of the corresponding game of kind as T → ∞, solutions to this game
of kind can be used for verifying the computation of the sets W (T,M).
The families of semipermeable curves can also be helpful for checking
the computations of level sets of the value function within solvability
sets.

The families of semipermeable curves are determined from only the
dynamics of the system and the bounds on the controls of the players.
We explain now what semipermeable curves mean. Let

H(ℓ, x) = min
ϕ∈[−1,1]

max
v∈Q(x)

ℓ′f(x, ϕ, v) (2)

= max
v∈Q(x)

min
ϕ∈[−1,1]

ℓ′f(x, ϕ, v), x ∈ R2, ℓ ∈ R2,
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be the Hamiltonian of the game. Here f(x, ϕ, v) = p(x)ϕ + v + g. It
is easy to see that the function ℓ → H(ℓ, x) is convex in ℓ in the cones
ℓ′p(x) ≥ 0 and ℓ′p(x) ≤ 0 for any fixed x ∈ R2. Fix x and consider
ℓ such that H(ℓ, x) = 0. Letting ϕ∗ = argmin{ℓ′p(x)ϕ : ϕ ∈ [−1, 1]}
and v∗ = argmax{ℓ′v : v ∈ Q(x)}, it follows that ℓ′f(x, ϕ∗, v) ≤ 0 holds
for any v ∈ Q(x), and ℓ′f(x, ϕ, v∗) ≥ 0 holds for any ϕ ∈ [−1, 1]. This
means that the direction f(x, ϕ∗, v∗), which is orthogonal to ℓ, sepa-
rates the vectograms U(v∗) = {f(x, ϕ, v∗) : ϕ ∈ [−1, 1]} and V (ϕ∗) =
{f(x, ϕ∗, v) : v ∈ Q(x)} of the players P and E as in Figure 4. Such a
direction is called semipermeable. A smooth curve is called a semiper-
meable curve if the tangent vector at any point of this curve is a semiper-
meable direction.

R?
�

	

+) � ℓ

U(v∗)

V (ϕ∗)

+
−

x

f(x, ϕ∗, v∗)

	

Figure 4 Semipermeable direction

We now describe how the families of semipermeable curves can be
obtained. The semipermeable directions are derived from the roots of
the equation H(ℓ, x) = 0. We distinguish the roots “−” to “+” and the
roots “+” to “−”. When classifying these roots, we suppose that ℓ ∈ E ,
where E is the boundary of a convex polygon containing the origin.
We say that ℓ∗ is a root − to + if H(ℓ∗, x) = 0, and if H(ℓ, x) < 0
(H(ℓ, x) > 0) for ℓ < ℓ∗ (ℓ > ℓ∗) that are sufficiently close to ℓ∗, where
the notation ℓ < ℓ∗ means that the direction of the vector ℓ can be
obtained from the direction of the vector ℓ∗ using a counterclockwise
rotation through an angle not exceeding π. The roots − to + and the
roots + to − are called roots of the first and second type, respectively.
Due to the above mentioned property of the piecewise convexity of the
function H(·, x), the equation H(ℓ, x) = 0 can have at most two roots
of each type for any given x.
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Let us denote the roots by ℓ(j),i(x). The left index corresponds to the
type of root (− to + or + to −). The right index takes the value 1 or 2,
and indicates whether the minimum in (2) occurs for ϕ = 1 or ϕ = −1.

One can find the domains of the functions ℓ(j),i(·). They have very
simple structures for the classical formulation of the homicidal chauffeur
problem. In this case, the constraint Q on the control of player E does
not depend on x, so we have w(2) = we.

Figure 5 shows the domains of ℓ(j),i(·) in the classical case w(2) =
we ≤ w(1). Two symmetric cones with a joint apex at the origin are cut
by polygonal approximations to circular arcs of radius w(2)R/w(1), the
centers of the arcs being at the points (−R, 0) and (R, 0). The regions
of values of x where two roots of each type exist are marked A and B in
the figure. There is only one root of each type at the points x that are
outside A and B.

0

ℓ(1),1 ℓ(2),2

ℓ(2),1 ℓ(1),2

ℓ(1),1, ℓ(1),2

ℓ(2),1, ℓ(2),2
A B

ℓ(1),1, ℓ(1),2

ℓ(2),1, ℓ(2),2
�

W �
W

O
� O

�

Figure 5 Domains of the functions ℓ(j),i(·) when w(2) = we ≤ w(1)

In Figure 6, the domains of ℓ(j),i(·) are depicted for w(2) = we >
w(1). The digits 4, 2 and 0 state the number of roots. In this case, a
region C (the intersection of the circles of radius w(2)R/w(1) with centers
at (−R, 0) and (R, 0)) occurs where roots do not exist. The following
property holds true for any point x ∈ C: for any ϕ ∈ [−1, 1] there exists
v ∈ Q such that f(x, u, v) = 0. Therefore, in the region C, player E can
counter any control of player P , so the state remains immovable all the
time. Further, if a point x with the above property does not belong to
the terminal set M , then M cannot be reached from x. Regions of such
points are called the superiority sets of player E.

Using the forms of the domains of ℓ(j),i(·) in the classical case, one can
construct the domains for the case when Q depends on x. We describe
schematically how it can be done. First note that w(2) is constant on the
circumference of any fixed circle with center (0, 0). Further, w(2) = we
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ℓ(1),1, ℓ(1),2

ℓ(2),1, ℓ(2),2

4 4

ℓ(1),1, ℓ(2),1

2

ℓ(1),2, ℓ(2),2

2

C

0

Figure 6 Domains of the functions ℓ(j),i when w(2) = we > w(1)

holds outside the circle of radius s. Let Ω(r) be the circumference of the
circle of radius r with center at (0, 0). Find w(2)(r) = min{r, s}we/s.
If w(2)(r) ≤ w(1), then put the points x ∈ Ω(r) onto the domains of
Figure 5 constructed for w(2) = w(2)(r). Otherwise, if w(2)(r) > w(1),
then put these points onto the domains of Figure 6. Thus a division of
Ω(r) into arcs is obtained. The number and the type of roots are the
same for all points of each arc. In Figure 7, the division points a, b, c
and d, and those symmetric to them in the left half-plane, are shown,
Ω(r) being the dotted line. In Figure 8, the division points e and f , and
those symmetric to them, are depicted.

a

b

c

d

Figure 7 Construction of domains of ℓ(j),i(·) when w(2)(r) ≤ w(1)
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This technique is applied for every r in [0, s], and identically named
division points are connected. Thus the circle of radius s is divided into
parts according to the kinds of roots. Outside this circle, the dividing
lines coincide with the lines constructed for the case when Q does not
depend on x. We use the lines of Figure 5 or Figure 6, depending on
we ≤ w(1) or we > w(1), respectively.

e

f

Figure 8 Construction of domains of ℓ(j),i(·) when w(2)(r) > w(1)

4 4

2

2

2 2

ℓ(1),1 ℓ(2),2

�

W �

W

ℓ(2),1 ℓ(1),2

O

� O

�
ℓ(1),1, ℓ(1),2

ℓ(2),1, ℓ(2),2

A B

ℓ(1),1, ℓ(1),2

ℓ(2),1, ℓ(2),2

Figure 9 Domains of the functions ℓ(j),i(·) when Q depends on x and we = 0.8
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4 42 2

0

0

�

W

4

CU

CL

�

O

Figure 10 Superiority sets of player E when Q depends on x and we = 1.8

4 42 22 2

C

0

�

W
4

Figure 11 Superiority sets of player E when Q depends on x and we = 2

Figures 9, 10 and 11 were constructed in this way for the parameters
w(1) = 1, R = 0.8, s = 0.75 and we = 0.8, 1.8 and 2. In Figure 9,
the domains of the functions ℓ(j),i(·) are shown, and also the sets that
are analogous to A and B in Figure 5 are marked. In Figure 10, two
symmetric superiority sets of player E arise, the upper set being denoted
by CU and the lower set by CL. If we increase we, the sets CU and CL
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expand and form the double connected region that is denoted by C in
Figure 11. The number of roots of the equation H(ℓ, x) = 0 is also given
in Figures 10 and 11.

Figure 12 shows a fragment of the central part of Figure 10. The lines
that separate the domains of the functions ℓ(j),i(·) are included.

ℓ(1),1

ℓ(2),1

ℓ(2),2

ℓ(1),2

:
O

y
�

z

�

9

W

Figure 12 Domains of the functions ℓ(j),i in part of Figure 10

The function ℓ(j),i(·) is Lipschitz continuous on any closed bounded
subset of the interior of its domain. We consider the two-dimensional
differential equation

dx/dt = Πℓ(j),i(x), (3)

where Π is the matrix of rotation through the angle π/2, the rotation
being clockwise or counterclockwise if j = 1 or j = 2, respectively. Since
the tangent vector at each point of the trajectory defined by this equation
is a semipermeable direction, the trajectories are semipermeable curves.
Therefore player P can keep the state vector x on one side of the curve
(positive side), and player E can keep x on the other (negative) side.
Further, equation (3) specifies a family Λ(j),i of semipermeable curves,
such that a unique smooth semipermeable curve goes through each point
x of the domain of ℓ(j),i(·), the root ℓ(j),i(x) being the normal vector to
the curve at the point x. The notation p(j),i will be used for the curves
of the family Λ(j),i.

The family Λ(1),1 for the values of the parameters of Figure 10 is
depicted in Figure 13. The arrows show the direction of motion in reverse
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-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-
-

z

I

I

K

Figure 13 Family of semipermeable curves for the root ℓ(1),1

time. The families Λ(1),2, Λ(2),1 and Λ(2),2 can be obtained from Λ(1),1

by reflections in the x1- and x2-axes.

5. SUPERIORITY SETS

In this section, the role of superiority sets in the appearance of holes
within the solvability sets will be explained. As noted above, there can
be one doubly connected superiority set C of player E, or two simply
connected sets CU and CL, or the superiority set can be empty.

Let D be a connected superiority set of player E, and let the objective
of this player be to bring the state of the system to the set D. Denote by
D∗ the maximal solvability set (victory domain) of player E. It follows
from the definition of D∗ that E can bring the state of the system to
D from any point x ∈ D∗, but player P can prevent the state of the
system from approaching the set D for any point x 6∈ D∗. Since D is
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a superiority set of E, it possesses the property of v-stability [9, 10] (or
viability for E [6, 1]), and the set D∗ is v-stable too. This means that
player E can hold the trajectories of the system in D∗ for infinite time.
Hence, if D∗ ∩M = ∅, then the time for achieving the terminal set M
in the main problem is infinite for any x in D∗.

The boundary of D∗ is composed of smooth semipermeable curves of
the families Λ(j),i. The joins of these curves are called “sewing points”,
and they possess the semipermeability property [5]. In some cases, a
part of the boundary of D∗ can coincide with a part of the boundary
of D.

Due to the simple geometry of the sets D of the problems considered,
the sets D∗ can be obtained easily using the families of semipermeable
curves. For example, Figure 14 shows the configuration of D∗ when
D = CU as in Figure 10. The sewing point of the curves p(2),2 and p(1),2,
and the symmetric sewing point of the curves p(1),1 and p(2),1, lie on the
boundary of D.

3 k

p(1),1 p(2),2

p(2),1 p(1),2

D

D∗

Figure 14 Generation of the hole D∗ due to the superiority set D

Since level lines of the value function do not “penetrate” into the sets
D∗ in the case D∗ ∩ M = ∅, one can easily generate examples where
holes occur in the solvability sets, using this knowledge of the geometry
of the sets D∗.
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6. COMPUTATIONAL RESULTS

In this section, the dependence of the solution on the parameter we is
demonstrated. Other parameters of the problem are fixed and have the
values w(1) = 1, R = 0.8 and s = 0.75. The circle Q(x) is approximated
by a polygon. Let τ be the reverse time in the backward procedure for
the construction of fronts. The optimal time for a given state x is the
least time τ such that x ∈ W (τ,M).

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

x1

x2

M

A B

a

p(1),1

�

Figure 15 200 upper and lower fronts for we = 0.4 (every 10th front is plotted)

In Figure 15, the initial computations for we = 0.4 are shown. The
step ∆ is 0.005. The usable part of the terminal set M consists of three
segments: the upper side of M and two segments on the lower side.
The upper fronts that occur until τ = 0.29 are bounded on the left and
right by barrier lines. At τ = 0.29, these barrier lines meet the upper
boundaries of the sets A and B (see Figure 9), so they terminate. The
value function is discontinuous across the barrier lines. For τ > 0.29, the
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fronts begin to envelop the barrier lines, and left and right corner points
arise. The propagation of the front beyond the barrier lines from these
corner points is at a very low rate. An enlargement of this development
of the fronts on the right hand side is presented in Figure 16.

0

0.4

0.8

1.2

1.6

2.6 2.8 3 3.2 3.4 3.6

barrier line

end of barrier line

*

3

Figure 16 The structure of fronts near the barrier line

The continuation of the computation is shown in Figure 17. The upper
and lower fronts are calculated until τ = 1.6 and τ = 3.3, respectively.
The left and right lower fronts collide at τ = 1.76. Only one lower front
remains after this collision. The greatest value of τ below M occurs on
the lower boundary of M at the point (0,−0.2).

An enlargement of the accumulation of the lower fronts is shown in
Figure 18. We see that the end of the front moves along the terminal
set from the end of the usable part to the point a on the boundary of
the set B. The accumulation of fronts begins when they approach the
semipermeable curve p(1),1 that emanates from the point a, as shown in
Figure 15. The value function changes very rapidly in the accumulation
region, but it remains continuous.
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Figure 17 320 upper fronts and 660 lower fronts for we = 0.4

Figure 19 presents the computational results for we = 0.95 and ∆ =
0.005. As in the previous example, the upper barrier lines end at some
moment of reverse time, and the fronts begin to envelop them. The main
difference from before is the formation of a loop where the upper fronts
from the two sides of the figure meet. In this example, the region within
this loop (a “lagoon”) is filled out entirely by the further development
of the fronts, the filling out being completed at τ = 1.68.

An important feature of the lower part of Figure 19 is that the semiper-
meable curve p(1),1, emanating from the point a, intersects the right bar-
rier which is the semipermeable curve p(2),1. This did not happen in the
previous example. Thus the right lower fronts are confined to the right
side of the curve p(1),1. The time of attaining the terminal set becomes
infinite as the fronts approach the curve p(1),1. A symmetric situation
occurs for the left lower fronts. All the fronts are computed until τ = 2.4.
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Figure 18 The accumulation of fronts near the point a

The following facts were found experimentally. A lagoon is generated
by the upper fronts only if we ≥ 0.65. For we ∈ [0.65, 1.37), a lagoon
occurs and is completely filled by the further development of the fronts.
For we ∈ [1.37, 1.61], the fronts do not fill the lagoon completely. For
we > 1.61, the lagoon disappears.

Figure 20 presents computational results for we = 1.5 and ∆ = 0.005.
The left and right parts of the upper front meet at τ = 2.855. Then
the computation within the lagoon begins. The fronts do not penetrate
the set D∗, which is a hole inside the solvability set of player P , the
value function being infinite for x ∈ D∗. The computation is done until
τ = 3.73. The structure of the lower fronts is similar to that in the
previous example.

In Figure 21, a three-dimensional graph of the value function of the
Figure 20 example is presented. The axes in the horizontal plane are
x1 and x2, and the vertical axis measures the value function. The pic-
ture shows the value function for the region of (x1, x2) where the fronts
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Figure 19 480 upper and lower fronts for we = 0.95 (every 10th front is plotted)

are computed. The programs for the visualization of such graphs were
developed [2] by V.Averbukh and O.Pykhteev, Department of System
Support, Institute of Mathematics and Mechanics, Ekaterinburg.

Further increases in the value of we extend the set D∗. For exam-
ple, Figure 22 gives computational results for we = 1.9 and ∆ = 0.01.
The upper and lower fronts are computed until τ = 8.42 and τ = 1.6,
respectively.

7. CONCLUSION

In this paper, we have studied a variant of the homicidal chauffeur
differential game, under the assumption that the constraint on the con-
trol of the evader depends on the state. The two-dimensional situation
allows a complete description of the families of semipermeable curves



246 V.S. Patsko and V.L. Turova

-2

-1

0

1

2

3

-1 0 1 2 3 4

x1

x2

M

D∗

p(2),1

p(1),2

Figure 20 746 upper fronts and 340 lower fronts for we = 1.5 (every 10th front is
plotted)

that occur. The superiority sets of the evader, where semipermeable
curves do not exist, are detected. Thus the presence of holes that are
strictly inside the “victory domains” of the pursuer is explained. A short
description of the backward procedure for the computation of level sets
of the value function is also given. This procedure can be employed as
a specific algorithm for two-dimensional front propagation.
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