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Semipermeable Curves and Level Sets of
the Value Function in Differential Games
with the Homicidal Chauffeur Dynamics

V.S. Patsko, V.L.Turova

Abstract. A classical and a modified (acoustic) variants of the differential
game “homicidal chauffeur” are considered. An interesting peculiarity of the
latter variant consists, in particular, in the presence of holes located strictly
inside the victory domain of the pursuit-evasion game. In the paper, an expla-
nation to this phenomenon is given. The explanation is based on an analysis of
families of semipermeable curves that are determined from only the dynamics
of the system. Results of the computation of level sets of the value function
are presented.

1. Introduction

The homicidal chauffeur game [4], [6] is one of the most known model differential
games of pursuit-evasion. In [1], [3], an acoustic capture variant of this game pro-
posed by P.Bernhard was considered. The evader must reduce his speed when he
comes close to the pursuer in order not to be heard. Mathematically, this can be
expressed in taking the restriction on the velocity of the evader that depends on
the distance between the evader and pursuer.

It was shown in [1],[3] that the solvability set (victory domain) of the acous-
tic problem can have holes located strictly inside this set. In such a case, it is
impossible to compute the boundary of the solvability set using only barrier lines
emitted from the usable part [4] of the terminal set.

This paper joins the paper [8] and is devoted to the description of families
of semipermeable curves arising both in the classical homicidal chauffeur problem
and its acoustic modification. The families of semipermeable curves are determined
from only the dynamics of the system (including constraints on the controls) and
do not depend on the form of the terminal set. The knowledge of the structure of
these families can be very useful when studying different properties of solutions
of time-optimal games. In particular, barrier lines which bound the solvability set
are composed from arcs of smooth semipermeable curves.

It was found out that for some parameters of the problem, regions where
semipermeable curves are absent can arise. It is shown that certain regions of this
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type can cause holes in solvability sets. The boundary of the solvability set can
be completely described using semipermeable curves issued from the boundary of
such regions and from the boundary of the terminal set.

In the final part of the paper, results of the computation of level sets of the
value function for the acoustic problem are presented.

2. Games with the Homicidal Chauffeur Dynamics

The pursuer P has a fixed speed w(!) but his radius of turn is bounded by a given
quantity R. The evader E is inertialess. He steers by choosing his velocity vector
v = (v1,v2)’ from some set. The kinematic equations are:

P: i, =wsing E: i.=un
7p = wh cosp Yo = Va.
b =wWe/R, |p|<1

The number of equations can be reduced to two (see [4]) if a coordinate system
with the origin at P and the axis x5 in the direction of P’s velocity vector is used.
The axis z is orthogonal to the axis z5.

The dynamics in the reduced coordinates is

&1 =-wWzo0/R+v; )

g2 = wWz; /R4 vy —w®, lp] < 1.

The state vector (z1, z2)’ gives the relative position of E with respect to P.

2.1. Classical homicidal chauffeur game

The control v is chosen from a circlé‘%f radius w® > 0 with the center at the origin.
The objective of the control ¢ of the pursuer is to minimize the time of attainment
of a given terminal set M by the state vector of system (1). The objective of the
control v of the evader is to maximize this time. Therefore the payoff of the game
is the time of attaining the terminal set.

2.2. Acoustic game

The difference is that the constraint on the control of player £ depends on z. It
is given by the formula

O(z) = k(z)Q, k(z) =min{|z|,s}/s, s> 0.

Here s is a parameter. We have Q(z) = @ if || > s. The objective of the control ©
is to minimize the time of attaining a terminal set M. The objective of the control
v is to maximize this time.

For the unification of notation, let us agree that Q(z) = Q for the classical
homicidal chauffeur game.
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3. Semipermeable Curves in Differential Games with the
Homicidal Chauffeur Dynamics

The families of smooth semipermeable curves are determined from only the dy-
namics of the system and the bounds on the controls of the players.

We explain now what semipermeable curves mean (see also [4]). Let

H = mi ] = in £/ 2 % (2
(¢,z) |I§}1§11£135§:)”(m"p’”) I T f(z,p,v), € R’ LeR? (2)

Here f(z,0,0) = p(z)p +v+g, p(a) = (~wz,1) - w® /R and g = (0, ~w ).
Fix z € R? and consider ¢ such that H(¢,z) = 0. Letting ¢* = argmin{¢'p(x)y:
l¢|l <1} and v* = argmax{€'v: v € Q(z)}, it follows that £ f(z, ©*,v) < 0 holds
for any v € Q(z), and £ f(x, p,v*) > 0 holds for any ¢ € [~1,1]. This means that
the direction f(z,¢*,v*), which is orthogonal to ¢, separates the vectograms
U(v*) = {f(ma P, V%) ¢ € [-1,1]} and Vip*) = {f(m,go*,v): v € Q(z)} of
players P and E. Such a direction is called semipermeable. A smooth curve is
called a semipermeable curve if the tangent vector at any point of this curve is a
semipermeable direction.

The number of semipermeable directions depends on the form of the function
¢ — H(¢,z) at the point z. In the case considered, the function H(-,z) is composed
of two convex functions:

max l'v+Up(z) +Lg, if p(z) <0
H(f,z)={ €9
2 mQa(X)E’v —Up(x)+ g, iflp(x)>0.
veQ(x

The semipermeable directions are derived from the roots of the equation
H(¢,z)= 0. We will distinguish the roots “—” to “}” and the roots “+” to “—”.
When classifying these roots, we suppose that £ € &, where £ is the boundary
of a convex polygon containing the origin. We say that £, is a root — to + if
H(l,z) = 0, and if H(¢,z) < 0 (H(,z) > 0) for £ < £, (£ > £,) that are
sufficiently close to £, where the notation £ < #, means that the direction of the
vector £ can be obtained from the direction of the vector £, using a counterclock-
wise rotation through an angle not exceeding w. The roots — to + and the roots
+ to — are called roots of the first and second type, respectively.

We denote roots of the first type by £():*(z) and roots of the second type
by £2)i(z). The right index takes the value 1 or 2, and indicates the half-plane
{¢ € R?: V'p(z) < 0} or {£ € R?: #'p(z) > 0}. Due to the above property of the
piecewise convexity of the function H(-,z), the equation H(¢,z) = 0 can have at
most two roots of each type for any given .

We now describe how the families of smooth semipermeable curves can be
constructed.
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3.1. Constraint Q on the control of player E does not depend on z
Assume that the constraint Q does not depend on z that is Q(z) = Q. Denote

. ’U2R ’UlR
Ay ={(z1,22) : 1 = o0 B 2= w@®? (v1,02)" € @}, (3)
. ) B ’02R . UlR /
B*—{(:vl,m) A __W + R, z9= ma (U1>'U2) EQ} (4)

The set B, is symmetric to the set A, with respect to the origin. Let C, = A, N B..

3.1.1. ROOTS OF EQUATION H({,z) = 0 Let us show for all z ¢ C. that the
equation H (4, z) = 0 has at least one root of the first type and one root of the
second type. To prove this, it is sufficient to verify that, for any z, there exist
vectors £ and £ such that H (¢,x) < 0and H(Z, z) > 0.

Let z ¢ A.. Then there exists a vector ¢ such that F'z > 7/ z for any z € A,.
That is _ _

—l'z+ max 'z < 0.
ZEA,

Denote by Z the nearest to 2 point of A,. The vector z —7Z can be considered as /.

A _ /
Assume ¢ = (—EQR/w(l), ElR/w(l)) . We have

’11)(1).’132 —w(l)xl
R R

!
H(¢, x) SE’( ) +£'g+n1€@5<£’v =

4
'z + max {' %~R, LIR :—Z'x—l-maxlﬁz<0.
vEQ w®) w® zZEA,

Similarly, one can show for x ¢ B, that there exists a vector £ such that
H(¢,z) < 0. Hence, if z ¢ C,, then there exists a vector ¢ such that H(¢,z) < 0.

Consider ¢ # 0 such that Z/p(:c) = 0 and Z/g > 0. Since 0 € intQ, then
H(l,z) = max{zlv tveEQRP+ Z,g > 0. This completes the proof.

Let z € intC,. We show that H(4, x) >0 for all £+ 0. Take ¢ # 0. Suppose
that min{¢'p(z)p : ¢ € [~1,1]} occurs for v = —1 (¢ = 1). It follows from the
definition of the set A, (B,) that for z € intA, (z € intB,), there exists a vector
Ux € intQ) such that f(z, —1, v.) = 0 (f(z, 1, vi) = 0). Hence, H({, z) > 0.
Therefore, roots of the first and second type do not exist for x € intC,. Due to
continuity of H, strict roots do not exist for z € HC, too.

3.1.2. CASE C, = () We consider cones spanned onto the sets A, and B, with
the apex at the origin. Denote these cones by coneA, and coneB,, respectively.
The part of coneA, after deleting the set

'UQR ’UlR
{(@1,22) : 71 = m*R/% xzz—m, 1<y <oo, (v1,v2)" € Q}

is denoted by A. Similarly, the set B as the part _of_ coneB, is introduced.
One can find the domains of the functions L0, § = 1,2, i =1,2. Figure 1
presents the sets A and B and the domains of the functions 0G0, §=1,2, 5=
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£(2),2

2,1 p(1),2
021 p(2),2

(1)1 p(1),2
021 p(2)2

FIGURE 1. Domains of £0)%. Set Q does not depend on z; C, = 0.

1,2, for the case where the set Q is a polygonal approximation of a circle of some
radius w®. The boundaries of A and B are drawn with the thick lines. There
exist two roots of the first type and two roots of the second type at each internal
point of the sets A and B. For any point in the exterior of A and B, there exist
one root of the first type and one root of the second type.

The function £):*(.) is Lipschitz continuous on any closed bounded subset
of the interior of its domain. Consider the two-dimensional differential equation

dz/dt = TLLDA (), (5)

where TI is the matrix of rotation through the angle 7 /2, the rotation being clock-
wise or counterclockwise if 7 = 1 or j = 2, respectively. Since the tangent vector at
each point of the trajectory defined by this equation is a semipermeable direction,
the trajectories are semipermeable curves. Therefore player P can keep the state
vector z on one side of the curve (positive side), and player E can keep z on the
other (negative) side. Equation (5) specifies a family A of smooth semiperme-
able curves. Pictures of the families AU)+* for the case C, = ) are given in [7].

3.1.3. CASE C, # 0 There are no roots in the set C,, there are four roots in the
set B2\ (A, | B.), and there are two roots (one root of the first type and one root
of the second type) in the rest part of the plane. Figure 2 shows the domains of
the functions £0)%(.) for this case. The set Q is a circle of some radius w® > b,
The digits 4, 2 and 0 state the number of roots. Using (5), one can produce the
families A" for the case where C, # 0.

The following important property holds true for any point z € C\ = A« Bx:
for any ¢ € [—1,1] there exists v € Q such that f(z,p,v) = 0. Therefore, in the
region C,, playcr E can counter any control of player P, so the state remains
immovable all the time. Further, if a point x with the above property does not
belong to the terminal set M, then M cannot be reached from z. We call regions
of such points the superiority sets of player F.
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2,1 p(1),2
221 p(2),2
4

FicurE 2. Domains of E(j)’i(-). Set Q does not depend on z; C, # 0.

3.2. Constraint Q on the control of player E' depends on z

Using the form of the domains of £0)+(.) from section 3.1, one can construct the
domains for the case Q(z) = k(z)Q@. Let us describe briefly how it can be done.

First note that k(z) = const for the points x of any circumference of some
fixed radius with the center at (0,0). It holds k(z) = 1 outside the circle of
radius s. Take a circumference Q(r) of radius r with the center at (0,0). Set
k(r) = min{r, s}/s and Q(r) = k(r)Q. We have Q(z) = Q(|z|).

Form the sets A,(r) and B.(r) substituting the set Q(r) instead of @ in
formulae (3) and (4) for A, and B,. Let Cy(r) = A«(r) () B«(r). Using A, (r) and
B, (r), construct domains of £0):i(-), the cases Cy(r) = 0 and C.(r) # 0 being
distinguished. Put the circumference Q(r) onto the constructed domains. As a
result, a division of the circumference onto arcs is obtained. The number and the
type of roots are the same for all points of each arc. This technique is applied for
every r in [0, s], and identically named division points are connected. Thus the
circle of radius s is divided into parts according to the kinds of roots. Qutside this
circle, the dividing lines coincide with the lines constructed for the case when Q
does not depend on z.

Since Q is a circle of radius w®, then Q(r) is a circle of radius w® (r) =
min{r, s}w® /s. The condition C,(r) = ) means w® (r) < w®, and the condition
C.(r) # 0 is equivalent to the relation w®(r) > wM. If w®(r) < w™, we put
the points z € Q(r) onto the domains of Figure 1 constructed for w(® = w® (r).
Otherwise, if w® (r) > w™), we put these points onto the domains of Figure 2.

Figures 3 and 4 were constructed in this way for the parameters w(!) = 1,
R=0.8,s=0.75and w® = 1.8 and 2. In Figure 3, two symmetric superiority sets
of player E arise, the upper set being denoted by Cy and the lower set by Cy,. If
we increase w(?, the sets Cyy and O, expand and form a doubly connected region
that is denoted by C. in Figure 4. The number of roots of the equation H(¢,z) = 0
is also given in Figures 3 and 4. A picture of the family AM)! corresponding to
the parameters of Figure 3 is given in [8].
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FIGURE 3. Superiority sets Cy and Cr, of player E. Set Q depends
on z; w® =1.8.

FIGURE 4. Superiority set C of player E. Set Q depends on z;
2 =9
w s

4. Formation of Holes in Solvability Sets Due to Superiority Sets

The role of superiority sets in the appearance of holes within the solvability sets will
be explained in this section. As noted above, in the case of problem 2.2, there can
be one doubly connected superiority set C, of player E, or two simply connected
sets Cyy and Cy,, or the superiority set can be empty. In the case of problem 2.1,
the superiority set of player £/ can be simply connected or empty.

4.1. Stable set D

Let D be a closed set. Assume that the objective of player E is to bring the state
of the system to the set D. Denote by D the solvability set (victory domain of
player E) for this problem. It follows from the definition of D that E can bring
the state of the system to D from any point z € D, but player P can prevent
the state of the system from approaching the set D for any point = & D. The
boundary of D is composed of smooth semipermeable curves of the families AW,
The sewing points possess the semipermeability property (see [2]). In some cases,
a part of the boundary of D can coincide with a part of the boundary of D.
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a) b)

1),1 2),2
p( ) p( ) | p(l)yl p(z),Q

/ %

FIGURE 5. Construction of the sets C’U and C’L on the base of
the superiority sets Cy; and C..

Below, the set C, or one of the sets Cy and Oy is used as the set D. Since in
this case, D is a superiority set of F, it possesses the property of v-stability (see [5]
for the definition) or, in other terms, the property of viability for E (see [1]), and
the set D is v-stable too. This means [5] that player E can hold the trajectories of
the system in D for infinite time. Hence, if D\ M = 0, then the time for achieving
the terminal set M in the main problem is infinite for any point z in D. For this
reason, level lines of the value function cannot “penetrate” into the set D.

Due to the simple geometry of the sets D of the problems considered, the sets
D can be obtained easily using the families of semipermeable curves. For example,
Figure 5a presents the configuration of Cr. The values of parameters correspond to
Figure 3. The sewing point of the semipermeable curves p®2 and p(2 from the
families A®2 and A(V) 2 and symmetric to it sewing point of the curves p):1 and
p@:! from the families A(D:! and A®1ie on the boundary of Cp. In Figure 5b,
an example of the set C, for the same values of parameters is given.

Since level lines of the value function cannot penetrate into the set D in the
case ﬁﬂ M = 0, one can try to generate examples with holes in solvability sets
using the knowledge of the geometry of the sets D. We will show that the sets C’U,
but not the sets Cr, or C, can appear as holes.

4.2. Set é’L cannot be a hole

For the set Cp, a collection of expanding v-stable sets can be easily obtained.
Figure 6a shows such a collection computed for the set Cr from Figures 3 and 5b.
The first set of the collection is . The boundaries of the sets are formed by
semipermeable curves p(1):! and p(3)2.

Figure 6b shows the semipermeable curves that form the boundary of some
set S from the above collection. The curve p(h)1 corresponds to the control ¢ = 1,
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a)

FIGURE 6. a: Collection of expanding v-stable sets for the set CJ..
b: Explanation of v-stability.

but the curve p(?)»2 corresponds to the control ¢ = —1. The sign “4+” (“—”) marks
those sides of curves that player P (E) keeps. The curves p("):! and p(?2 are faced
with negative sides at the intersection point a. The property of v-stability means
the following: for any z € S and any ¢ € [—1, 1] there exists v € Q(z) such that
the vector f(z, ¢, v) is directed inside the set .S or it is tangent to the boundary
of 5 at z. For any point z € 0S excluding the point a, a vector v € Q(z) that
gives the maximum in (2) would be appropriate. A normal vector to the curve in
the negative side direction is considered as £ when computing the maximum in (2).
For the point a, the choice of an appropriate v depends on ¢.

Let us assume that there exists a hole C’L which is located strictly inside
the solvability set. It follows from this assumption that: 1) Cp, M = 0, 2) for
any boundary point z of C’L, there exist points of the fronts that are arbitrarily
close to x. Consider a v-stable set S from the expanding collection generated by
the set C;, and such that S and M have common points on the boundaries of
S and M only. Take a point z on a front strictly inside the set S. Such a point
exists because the set Cf, belongs to the interior of the set S and the fronts come
arbitrarily close to the set Cy. Then, player E can keep the trajectories of the
system within a set S, which is a subset of S and contains the point z on its
boundary, for infinite time. This contradicts to the fact that z lies on the front
and, therefore, player P brings the system to M for a, finite time.

Similar arguments are true for the sets C, in the acoustic or classical game.

4.3. Set C’U can be a hole

We show that the set Cy cannot generate an expanding collection of v-stable sets.
Denote by r* = w™s/w® the minimal r for which C, (r) # 0. Consider the
circle F(7) of radius 7 = 7° /2 with the center at the origin. We have

w® — @ (2]) > w® — w®F) =w® /2, 2 € FEF). (©)
Let £(r) = —R+w® (r)R/w™, r>o0.
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Since the set Cy is strictly above the axis z1, then, for any r > 0, the set
C,(r) does not contain the points of intersection of the circumference Q(r) of
radius r and the center at the origin with the axis z1. Hence r > £(r).

Let z#(r, a) and 2°(r, o) are right and left intersection points of the straight
line z2 = o with the circumference Q(r), 0 < a <7, r > 7. Using inequality
r > &(r), choose positive B and @, a < 7, so that mfé(r, a) > B + glr); r =,
0 < a<a. We also obtain m?(r, a) < ~B—§(r), r>7 0<a<a

Denote by X(a) = {z: 0< 22 < a}, a <@, a horizontal strip of the width
o over the axis x1. _

Using the inequality for z7 (r, ), we obtain z; > 8 + £(|z|) for the points
z € X (a) on the right of the circle F(7). Hence, it holds

CbQILp:—l = _xl'w(l)/R + vy — ’w(l) < —Bw(l)/R + w(l)_

w®(|z)) + v — w® < —Buw/R (7)
for any v € Q(z) and ¢ = —1. Similarly, using the inequality for LE?(T‘, a), we get
5 e = 1w /R + vy — w® < —Bw(l)/R (8)

for x € X (&) on the left of the circle F(7r), any v € Q(z) and ¢ = 1.
If a point z € X (&) belongs to the circle F(¥) and satisfies the inequality
z1 > &(F)/2 = —R/4, then we obtain

ia|p=—1 = — 21w /R + vy — w® <w /a4 vy —w® <—wB/a (9)

for any v € Q(z) and ¢ = —1. It was taken into account here that, using (6),
the relation |vz] < w®(|z]) < w® (F) = wM)/2 holds for x € F(7). Similarly,
if a point = € X(&) belongs to the circle F(r) and satisfies the inequality
21 < R/4, then for any v € Q(z) and ¢ =1, we get

i2|¢:1 = £C1’w(1)/R + vy — w(l) < —w(l)/4. (10)
Let 5 = min{ﬁw(l)/R, w) /4}. Take positive @ < min{&, 7/2} such that
aw® /7 < min{R/4, 7/2}. (11)

Put ¢ = —1 for the states o € X (@) with z¢; > 0. Taking into account (11)
and the estimate 21 = w(l)xg/R+v1 > > —w® for zo > 0, we obtain that any
trajectory emanated from the point o remains on the right side from the vertical
straight line z; = max{—R/4, —7/2} within the time &/¥. Using (7) and (9), we
get from here that the trajectory arrives at the axis z; within this time. Similarly,
setting ¢ = 1 and using (8), (10) and (11), one obtains that any trajectory
emanated from the point o € X(@),z01 < 0, arrives at the axis z; within the
time @/ remaining on the left side from the straight line z; = min{R/4, 7/2}.

Thus player P can bring trajectories to the axis z; from any initial point x
that belongs to the strip X (@). It follows from this property that Cy () X (@) = 0.
Using the latter, one obtains that there is not any collection of v-stable sets that
monotonically expands from the set Cy and fills out the whole plane.
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5. Holes and the Boundary of Solvability Set

The results of the previous section show that holes located strictly inside solvability
sets (victory domains) cannot be formed due to the sets C, and Cr. On the
contrary, the set C’U being generated in a way similar to that for C, and C’L can
be a hole in the victory domain.

In the papers [1], [3], the acoustic game is considered for a terminal set
M in the form of a rectangle {(z1,z2) : —3.5 < z; < 3.5, —0.2 < zp < 0}.
Figure 7 presents level sets of the value function of the acoustic game with the
above terminal set and the following values of parameters: w() = 1, w® = 1.5
and s = 0.8 . The computation was done using an algorithm [7], [8] developed by
the authors. One can see that in fact the hole coincides with the set C’U.

It is emphasized in [1], [3] that the victory domain in similar examples with
holes cannot be obtained using semipermeable curves (barriers) emitted from the
boundary of the terminal set only. Now this conclusion can be formulated more
precisely: the boundary of the victory domain is composed not only of semiperme-
able curves issued from the boundary of the terminal set but also of semipermeable
curves emitted from the boundary of the set Cy .

If one increases w(® | the hole is being inflated and becomes “open” (see, for
example, Figure 22 in [8]). The boundary of the victory domain transforms into

Z2

25 | : e

1.5 ;CU i

0.5 -

FIGURE 7. Level sets for w® = 1.5; 746 upper fronts, 340 lower
fronts, every 10th front is plotted.
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a connected curve but even in this case, it is composed of semipermeable curves
emitted both from the boundary of the terminal set and boundary of the set Cy.

The following question can be formulated. Does an example with the homi-
cidal chauffeur dynamics exist where a hole, which is strictly inside the victory
domain, does not coincide with the set Cu? (In this paper, it is shown that such
holes cannot coincide with the sets C, and C'L)
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